Effects of Dietary Galla Chinensis Tannin Supplementation on Antioxidant Capacity and Intestinal Microbiota Composition in Broilers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Management
2.2. Sample Collection
2.3. Antioxidative Parameters and Endotoxin Concentration
2.4. SCFA Concentrations and pH Values
2.5. Analysis of Gene Expression
2.6. Microbial Analysis of Cecal Digesta
2.7. Statistical Analysis
3. Results
3.1. Antioxidant Status and Endotoxin Concentration in Serum
3.2. Antioxidant Status in Intestinal Mucosa
3.3. Expression of Antioxidant-Related Genes
3.4. SCFA Concentrations and pH Values of Cecal Contents
3.5. Microbial Diversity in Cecal Digesta
3.6. Microbial Richness and Diversity in Cecal Digesta
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Panda, A.K.; Cherian, G. Role of vitamin E in counteracting oxidative stress in poultry. J. Poult. Sci. 2014, 51, 109–117. [Google Scholar] [CrossRef]
- Liu, Y.; Bao, Z.; Xu, X.; Chao, H.; Lin, C.; Li, Z.; Liu, Y.; Wang, X.; You, Y.; Liu, N. Extracellular signal-regulated kinase/nuclear factor-erythroid2-like2/heme oxygenase-1 pathway-mediated mitophagy alleviates traumatic brain injury-induced intestinal mucosa damage and epithelial barrier dysfunction. J. Neurotraum. 2017, 34, 2119–21314. [Google Scholar] [CrossRef] [PubMed]
- Figueira, T.R.; Barros, M.H.; Camargo, A.A.; Castilho, R.F.; Ferreira, J.C.; Kowaltowski, A.J.; Sluse, F.E.; Souza-Pinto, N.C.; Vercesi, A.E. Mitochondria as a source of reactive oxygen and nitrogen species: From molecular mechanisms to human health. Antioxid. Redox Signal. 2013, 18, 2029–2074. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Huang, W.; Jie, F.; Wang, M.; Zhong, Y.; Chen, Q.; Lu, B. Discovery of Keap1−Nrf2 small−molecule inhibitors from phytochemicals based on molecular docking. Food Chem. Toxicol. 2019, 133, 110758. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Yang, H.; Xu, M.; Wang, X.; Wang, C.; Lian, Y.; Mehmood, A.; Dai, H. Stevia residue extract ameliorates oxidative stress in d-galactose-induced aging mice via Akt/Nrf2/HO-1 pathway. J. Funct. Foods. 2019, 52, 587–595. [Google Scholar] [CrossRef]
- Camara-Lemarroy, C.R.; Metz, L.M.; Yong, V.W. Focus on the gutbrain axis: Multiple sclerosis, the intestinal barrier and the microbiome. World J. Gastroenterol. 2018, 24, 4217–4223. [Google Scholar] [CrossRef]
- Zhang, S.; Shen, Y.R.; Wu, S.; Xiao, Y.Q.; He, Q.; Shi, S.R. The dietary combination of essential oils and organic acids reduces Salmonella enteritidis in challenged chicks. Poult. Sci. 2019, 98, 6349–6355. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, X.; Jiang, X.; Chen, L.; Hong, L.; Zhuo, Y.; Lin, Y.; Fang, Z.; Che, L.; Feng, B. Effects of dietary supplementation with exogenous catalase on growth performance, oxidative stress, and hepatic apoptosis in weaned piglets challenged with lipopolysaccharide. J. Anim. Sci. 2020, 98, skaa067. [Google Scholar] [CrossRef]
- Degroote, J.; Vergauwen, H.; Van Noten, N.; Wang, W.; De Smet, S.; Van Ginneken, C.; Michiels, J. The effect of dietary quercetin on the glutathione redox system and small intestinal functionality of weaned piglets. Antioxidants 2019, 8, 312. [Google Scholar] [CrossRef]
- Hu, C.; Xiao, K.; Luan, Z.; Song, J. Early weaning increases intestinal permeability, alters expression of cytokine and tight junction proteins, and activates mitogen-activated protein kinases in pigs. J. Anim. Sci. 2013, 91, 1094–1101. [Google Scholar] [CrossRef]
- Ren, Y.Y.; Zhang, X.R.; Li, T.N.; Zeng, Y.J.; Wang, J.; Huang, Q.W. Galla chinensis, a traditional Chinese medicine: Comprehensive review of botany, traditional uses, chemical composition, pharmacology and toxicology. J. Ethnopharmacol. 2021, 278, 114247. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Xie, W.; Lu, J.; Guo, X.; Xu, J.; Xu, W.; Chi, Y.; Takuya, N.; Wu, H.; Zhao, L. Tannic acid-based metal phenolic networks for bio-applications: A review. J. Mater. Chem. B 2021, 9, 4098–4110. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Niu, J.; Liu, H.; Jiao, N.; Huang, L.; Jiang, S.; Yan, L.; Yang, W. Effects of dietary macleaya cordata extract containing isoquinoline alkaloids supplementation as an alternative to antibiotics in the diets on growth performance and liver health of broiler chickens. Front. Vet. Sci. 2022, 9, 950174. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Liu, X.; Zhao, G.; Hu, T.; Wang, Y. Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production. Anim. Nutr. 2018, 4, 137–150. [Google Scholar] [CrossRef]
- Lavin, S.R.; Chen, Z.; Abrams, S.A. Effect of tannic acid on iron absorption in straw-colored fruit bats (Eidolon helvum). Zoo Biol. 2010, 29, 335–343. [Google Scholar] [CrossRef]
- Jansman, A. Tannins in feedstuffs for simple-stomached animals. Nutr. Res. Rev. 1993, 6, 209–236. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.-T.; Wong, T.Y.; Wei, C.-I.; Huang, Y.-W.; Lin, Y. Tannins and human health: A review. Crit. Rev. Food. Sci. 1998, 38, 421–464. [Google Scholar] [CrossRef]
- Lee, S.; Shinde, P.; Choi, J.; Kwon, I.; Lee, J.; Pak, S.; Cho, W.; Chae, B. Effects of tannic acid supplementation on growth performance, blood hematology, iron status and faecal microflora in weanling pigs. Livest. Sci. 2010, 131, 281–286. [Google Scholar] [CrossRef]
- Starčević, K.; Krstulović, L.; Brozić, D.; Maurić, M.; Stojević, Z.; Mikulec, Ž.; Bajić, M.; Mašek, T. Production performance, meat composition and oxidative susceptibility in broiler chicken fed with different phenolic compounds. J. Sci. Food Agric. 2015, 95, 1172–1178. [Google Scholar] [CrossRef]
- Song, Y.; Luo, Y.; Yu, B.; He, J.; Zheng, P.; Mao, X.; Huang, Z.; Luo, J.; Luo, Y.; Yan, H. Tannic acid extracted from gallnut prevents post-weaning diarrhea and improves intestinal health of weaned piglets. Anim. Nutr. 2021, 7, 1078–1086. [Google Scholar] [CrossRef]
- Jing, C.; Niu, J.; Liu, Y.; Jiao, N.; Huang, L.; Jiang, S.; Yan, L.; Yang, W.; Li, Y. Tannic acid extracted from galla chinensis supplementation in the diet improves intestinal development through suppressing inflammatory responses via blockage of NF-κB in broiler chickens. Animals 2022, 12, 2397. [Google Scholar] [CrossRef]
- Niu, J.; Wang, Q.; Jing, C.; Liu, Y.; Liu, H.; Jiao, N.; Huang, L.; Jiang, S.; Guan, Q.; Li, Y. Dietary galla chinensis tannic acid supplementation in the diets improves growth performance, immune function and liver health status of broiler chicken. Front. Vet. Sci. 2022, 9, 1024430. [Google Scholar] [CrossRef]
- NY/T 33–2004; Feeding Standard of Chicken, China. Ministry of Agriculture: Beijing, China, 2004.
- Acres, A. Broiler Management Guide; Aviagen Limited: Midlothian, UK, 2009; pp. 1–59. [Google Scholar]
- Chen, J.; Li, F.; Yang, W.; Jiang, S.; Li, Y. Supplementation with exogenous catalase from penicillium notatum in the diet ameliorates lipopolysaccharide-induced intestinal oxidative damage through affecting intestinal antioxidant capacity and microbiota in weaned pigs. Microbiol. Spectr. 2021, 9, e00654-21. [Google Scholar] [CrossRef]
- Li, Y.; Liu, H.; Zhang, L.; Yang, Y.; Lin, Y.; Zhuo, Y.; Fang, Z.; Che, L.; Feng, B.; Xu, S. Maternal dietary fiber composition during gestation induces changes in offspring antioxidative capacity, inflammatory response, and gut microbiota in a sow model. Int. J. Mol. Sci. 2019, 21, 31. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhao, X.; Zhang, L.; Zhan, X.; Liu, Z.; Zhuo, Y.; Lin, Y.; Fang, Z.; Che, L.; Feng, B. Effects of a diet supplemented with exogenous catalase from penicillium notatum on intestinal development and microbiota in weaned piglets. Microorganisms 2020, 8, 391. [Google Scholar] [CrossRef] [PubMed]
- Magoč, T.; Salzberg, S.L. Flash: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. Uchime improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The silva ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2012, 41, D590–D596. [Google Scholar] [CrossRef]
- Barreira, J.C.; Ferreira, I.C.; Oliveira, M.B.P.; Pereira, J.A. Antioxidant activities of the extracts from chestnut flower, leaf, skins and fruit. Food Chem. 2008, 107, 1106–1113. [Google Scholar] [CrossRef]
- Beninger, C.W.; Hosfield, G.L. Antioxidant activity of extracts, condensed tannin fractions, and pure flavonoids from Phaseolus vulgaris L. seed coat color genotypes. J. Agric. Food Chem. 2003, 51, 7879–7883. [Google Scholar] [CrossRef] [PubMed]
- Dutta, N.; Dubey, M.; Banerjee, P.S.; Pattanaik, A.K.; Sharma, K.; Kumar, P.; Narang, A. Effect of supplementing tanniferous tree leaves mixture on immune response and GI nematodes in kids. Livest. Res. Rural Dev. 2012, 24. Available online: http://www.lrrd.org/lrrd24/2/dutt24035.htm (accessed on 2 August 2023).
- Dey, A.; De, P.S. Influence of condensed tannins from Ficus bengalensis leaves on feed utilization, milk production and antioxidant status of crossbred cows. Asian Australas. J. Anim. Sci. 2014, 27, 342. [Google Scholar] [CrossRef]
- Peng, K.; Shirley, D.C.; Xu, Z.; Huang, Q.; McAllister, T.A.; Chaves, A.V.; Acharya, S.; Liu, C.; Wang, S.; Wang, Y. Effect of purple prairie clover (Dalea purpurea Vent.) hay and its condensed tannins on growth performance, wool growth, nutrient digestibility, blood metabolites and ruminal fermentation in lambs fed total mixed rations. Anim. Feed Sci. Technol. 2016, 222, 100–110. [Google Scholar] [CrossRef]
- Minelli, A.; Bellezza, I.; Conte, C.; Culig, Z. Oxidative stress-related aging: A role for prostate cancer? Bba-Rev. Cancer 2009, 1795, 83–91. [Google Scholar] [CrossRef]
- David, M.; Munaswamy, V.; Halappa, R.; Marigoudar, S.R. Impact of sodium cyanide on catalase activity in the freshwater exotic carp, Cyprinus carpio (linnaeus). Pestic. Biochem. Phys. 2008, 92, 15–18. [Google Scholar] [CrossRef]
- Finkel, T.; Holbrook, N.J. Oxidants, oxidative stress and the biology of ageing. Nature 2000, 408, 239–247. [Google Scholar] [CrossRef]
- Wu, B.; Cui, H.; Peng, X.; Fang, J.; Zuo, Z.; Deng, J.; Huang, J. Dietary nickel chloride induces oxidative intestinal damage in broilers. Int. J. Environ. Res. Public Health 2013, 10, 2109–2119. [Google Scholar] [CrossRef]
- Li, H.; Song, F.; Duan, L.-R.; Sheng, J.J.; Xie, Y.H.; Yang, Q.; Chen, Y.; Dong, Q.Q.; Zhang, B.L.; Wang, S.W. Paeonol and danshensu combination attenuates apoptosis in myocardial infarcted rats by inhibiting oxidative stress: Roles of Nrf2/HO-1 and PI3k/AKT pathway. Sci. Rep. 2016, 6, 23693. [Google Scholar] [CrossRef]
- Loboda, A.; Damulewicz, M.; Pyza, E.; Jozkowicz, A.; Dulak, J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: An evolutionarily conserved mechanism. Cell Mol. Life Sci. 2016, 73, 3221–3247. [Google Scholar] [CrossRef]
- Sajadimajd, S.; Khazaei, M. Oxidative stress and cancer: The role of nrf2. Curr. Cancer Drug Targets 2018, 18, 538–557. [Google Scholar] [CrossRef] [PubMed]
- Yeoman, C.J.; White, B.A. Gastrointestinal tract microbiota and probiotics in production animals. Annu. Rev. Anim. Biosci. 2014, 2, 469–486. [Google Scholar] [CrossRef]
- Van de Guchte, M.; Blottière, H.M.; Doré, J. Humans as holobionts: Implications for prevention and therapy. Microbiome 2018, 6, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Van Hul, M.; Geurts, L.; Plovier, H.; Druart, C.; Everard, A.; Ståhlman, M.; Rhimi, M.; Chira, K.; Teissedre, P.L.; Delzenne, N.M. Reduced obesity, diabetes, and steatosis upon cinnamon and grape pomace are associated with changes in gut microbiota and markers of gut barrier. Am. J. Physiol.-Endocrinol. Metab. 2018, 314, E334–E352. [Google Scholar] [CrossRef] [PubMed]
- Scalbert, A. Antimicrobial properties of tannins. Phytochemistry 1991, 30, 3875–3883. [Google Scholar] [CrossRef]
- Liu, X.L.; Hao, Y.Q.; Jin, L.; Xu, Z.J.; McAllister, T.A.; Wang, Y. Anti-Escherichia coli O157: H7 properties of purple prairie clover and sainfoin condensed tannins. Molecules 2013, 18, 2183–2199. [Google Scholar] [CrossRef]
- Wang, M.; Huang, H.; Hu, Y.; Huang, J.; Yang, H.; Wang, L.; Chen, S.; Chen, C.; He, S. Effects of dietary microencapsulated tannic acid supplementation on the growth performance, intestinal morphology, and intestinal microbiota in weaning piglets. J. Anim. Sci. 2020, 98, skaa112. [Google Scholar] [CrossRef]
- Brugaletta, G.; Luise, D.; De Cesare, A.; Zampiga, M.; Laghi, L.; Trevisi, P.; Manfreda, G.; Sirri, F. Insights into the mode of action of tannin-based feed additives in broiler chickens: Looking for connections with the plasma metabolome and caecal microbiota. Ital. J. Anim. Sci. 2020, 19, 1349–1362. [Google Scholar] [CrossRef]
- Azagheswari, B.K.; Padma, S.; Priya, S.P. A review on microcapsules. Glob. J. Pharmacol. 2015, 9, 28–39. [Google Scholar] [CrossRef]
- Ma, N.; Guo, P.; Zhang, J.; He, T.; Kim, S.W.; Zhang, G.; Ma, X. Nutrients mediate intestinal bacteria-mucosal immune crosstalk. Front. Immunol. 2018, 9, 5. [Google Scholar] [CrossRef]
- Eckburg, P.B.; Bik, E.M.; Bernstein, C.N.; Purdom, E.; Dethlefsen, L.; Sargent, M.S.; Gill, R.; Nelson, K.E.; Relman, D.A. Diversity of the human intestinal microbial flora. Science 2005, 308, 1635–1638. [Google Scholar] [CrossRef] [PubMed]
- Jandhyala, S.M.; Talukdar, R.; Subramanyam, C.; Vuyyuru, H.; Sasikala, M.; Nageshwar Reddy, D. Role of the normal gut microbiota. World J. Gastroenterol. 2015, 21, 8787–8803. [Google Scholar] [CrossRef] [PubMed]
- Polansky, O.; Sekelova, Z.; Faldynova, M.; Sebkova, A.; Sisak, F.; Rychlik, I. Important metabolic pathways and biological processes expressed by chicken cecal microbiota. Appl. Environ. Microb. 2016, 82, 1569–1576. [Google Scholar] [CrossRef] [PubMed]
- Hamer, H.M.; Jonkers, D.; Venema, K.; Vanhoutvin, S.; Troost, F.; Brummer, R.J. The role of butyrate on colonic function. Aliment. Pharm. Ther. 2008, 27, 104–119. [Google Scholar] [CrossRef]
- Miquel, S.; Martin, R.; Rossi, O.; Bermúdez-Humarán, L.; Chatel, J.; Sokol, H.; Thomas, M.; Wells, J.; Langella, P. Faecalibacterium prausnitzii and human intestinal health. Curr. Opin. Microbiol. 2013, 16, 255–261. [Google Scholar] [CrossRef]
- Chevrot, R.; Carlotti, A.; Sopena, V.; Marchand, P.; Rosenfeld, E. Megamonas rupellensis sp. Nov., an anaerobe isolated from the caecum of a duck. Int. J. Syst. Evol. Microbiol. 2008, 58, 2921–2924. [Google Scholar] [CrossRef]
- Davila, A.M.; Blachier, F.; Gotteland, M.; Andriamihaja, M.; Benetti, P.H.; Sanz, Y.; Tomé, D. Re-print of “intestinal luminal nitrogen metabolism: Role of the gut microbiota and consequences for the host”. Pharmacol. Res. 2013, 69, 114–126. [Google Scholar] [CrossRef]
- Huang, W.; Guo, H.L.; Deng, X.; Zhu, T.T.; Xiong, J.F.; Xu, Y.H.; Xu, Y. Short-chain fatty acids inhibit oxidative stress and inflammation in mesangial cells induced by high glucose and lipopolysaccharide. Exp. Clin. Endocr. Diab. 2017, 125, 98–105. [Google Scholar] [CrossRef]
Items | Phases | |
---|---|---|
0–21 d | 21–42 d | |
Ingredients, g/kg | ||
Wheat bran | 119.8 | 129.8 |
Soybean meal, 44% CP | 137.7 | 101.8 |
Corn gluten meal | 39.9 | 39.9 |
Limestone | 17.0 | 17.0 |
Corn starch residue | 79.9 | 99.8 |
L-Lysine HCl, 76.8% | 10.0 | 10.0 |
Extruded soybean | 15.0 | 21.0 |
Phytase | 1.0 | 1.0 |
Calcium monophosphate | 11.0 | 11.0 |
L-Threonine, 98% | 1.0 | 1.0 |
DL-Methionine, 98% | 2.0 | 2.0 |
Choline | 1.0 | 1.0 |
Sodium chloride | 4.0 | 4.0 |
Trace mineral premix 1 | 1.0 | 1.0 |
Vitamin premix 2 | 0.2 | 0.2 |
Complex enzyme | 0.2 | 0.2 |
Antioxidant | 0.2 | 0.2 |
Corn | 559.1 | 559.1 |
Total | 1 kg | 1 kg |
Calculated analysis, g/kg | ||
Metabolizable energy, MJ/kg | 123.3 | 125.0 |
Crude protein | 194.7 | 179.3 |
Crude fat | 34.5 | 37.4 |
Calcium | 9.4 | 8.7 |
Available phosphorus | 3.5 | 3.3 |
Lysine | 11.5 | 10.0 |
Methionine | 5.0 | 4.0 |
Genes b | Primer Sequences, 5′-3′ a | Size, bp |
---|---|---|
β-actin | F:ATTGTCCACCGCAAATGCTTC R:AAATAAAGCCATGCCAATCTCGTC | 113 |
NQO1 | F:GAGTGCTTTGTCTACGAGATGGA R:ATCAGGTCAGCCGCTTCAATC | 104 |
Sirt1 | F:CACGCCTTGCTGTAGACTTCC R:ATGAACTTGTGGCAGAGAGATGG | 148 |
HO-1 | F:GTCCCGAATGAATGCCCTTGA R:ATGACCGTTCTCCTGGCTCTT | 139 |
Nrf2 | F:CACGCCTTGCTGTAGACTTCC R:ATGAACTTGTGGCAGAGAGATGG | 109 |
GPX1 | F:CGGCTTCAAACCCAACTTCAC R:CTCTCTCAGGAAGGCGAACAG | 85 |
SOD1 | F:CGCAGGTGCTCACTTCAATCC R:CAGTCACATTGCCGAGGTCAC | 89 |
CAT | F:GGAGGTAGAACAGATGGCGTATG R:CGATGTCTATGCGTGTCAGGAT | 114 |
SOD2 | F:GCTGTATCAGTTGGTGTTCAAGGA R:GCAATGGAATGAGACCTGTTGTTC | 130 |
16S | 515F:GTGCCAGCMGCCGCGGTAA 806R:GGACTACHVGGGTWTCTAAT | 291 |
Items (%) | Treatment 1 | p Value | |
---|---|---|---|
CON | GCT | ||
Bacteroidota | 32.23 ± 4.35 | 32.93 ± 3.70 | 0.905 |
Firmicutes | 32.19 ± 2.79 | 35.36 ± 4.58 | 0.571 |
Verrucomicrobiota | 2.99 ± 1.65 | 6.15 ± 5.10 | 0.572 |
Euryarchaeota | 8.08 ± 4.96 | 0.04 ± 0.04 | 0.181 |
Desulfobacterota | 7.75 ± 1.66 | 4.12 ± 1.89 | 0.186 |
Synergistota | 3.20 ± 1.43 | 2.36 ± 1.07 | 0.653 |
Halobacterota | 2.56 ± 1.28 | 3.51 ± 1.03 | 0.578 |
Fusobacteriota | 0.10 ± 0.06 | 0.86 ± 0.84 | 0.417 |
Unidentified_Bacteria | 2.56 ± 0.35 | 1.71 ± 0.19 | 0.078 |
Campylobacterota | 1.08 ± 0.62 | 0.58 ± 0.16 | 0.461 |
Others | 7.26 ± 0.68 | 12.35 ± 3.67 | 0.240 |
Items (%) | Treatment 1 | p Value | |
---|---|---|---|
CON | GCT | ||
Akkermansia | 2.95 ± 1.67 | 5.54 ± 5.22 | 0.649 |
Methanobrevibacter | 8.08 ± 4.96 | 0.04 ± 0.04 | 0.181 |
Alistipes | 16.07 ± 1.69 | 14.69 ± 2.71 | 0.577 |
Bacteroides | 6.33 ± 3.96 | 7.33 ± 2.54 | 0.838 |
Prevotellaceae_UCG-001 | 2.50 ± 2.30 | 1.73 ± 0.90 | 0.761 |
Desulfovibrio | 6.95 ± 1.54 | 3.66 ± 1.85 | 0.209 |
Ligilactobacillus | 0.54 ± 0.21 | 1.86 ± 1.68 | 0.460 |
Synergistes | 3.20 ± 1.43 | 2.36 ± 1.07 | 0.653 |
Barnesiella | 2.80 ± 1.32 | 2.97 ± 1.34 | 0.933 |
Faecalibacterium | 2.97 ± 0.56 | 5.75 ± 0.58 | 0.009 |
Megamonas | 0.43 ± 0.09 | 3.20 ± 1.16 | 0.044 |
Methanocorpusculum | 2.56 ± 1.28 | 3.51 ± 1.03 | 0.578 |
Parabacteroides | 1.27 ± 0.36 | 2.99 ± 1.05 | 0.183 |
Butyricicoccus | 0.35 ± 0.11 | 1.43 ± 1.11 | 0.388 |
Fusobacterium | 0.10 ± 0.06 | 0.86 ± 0.83 | 0.417 |
[Ruminococcus]_torques_group | 1.85 ± 0.35 | 2.43 ± 0.63 | 0.435 |
Helicobacter | 1.06 ± 0.62 | 0.57 ± 0.16 | 0.468 |
CHKCI001 | 1.20 ± 0.44 | 0.27 ± 0.07 | 0.102 |
Colidextribacter | 0.51 ± 0.06 | 0.63 ± 0.27 | 0.693 |
Romboutsia | 0.91 ± 0.21 | 0.57 ± 0.24 | 0.324 |
Group-Pair | R-Value | p Value |
---|---|---|
CON vs. GCT | 0.094 | 0.150 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, P.; Ren, X.; Niu, J.; Liu, Y.; Huang, L.; Jiang, S.; Jiao, N.; Yuan, X.; Yang, W.; Li, Y. Effects of Dietary Galla Chinensis Tannin Supplementation on Antioxidant Capacity and Intestinal Microbiota Composition in Broilers. Agriculture 2023, 13, 1780. https://doi.org/10.3390/agriculture13091780
Yuan P, Ren X, Niu J, Liu Y, Huang L, Jiang S, Jiao N, Yuan X, Yang W, Li Y. Effects of Dietary Galla Chinensis Tannin Supplementation on Antioxidant Capacity and Intestinal Microbiota Composition in Broilers. Agriculture. 2023; 13(9):1780. https://doi.org/10.3390/agriculture13091780
Chicago/Turabian StyleYuan, Peng, Xiaojie Ren, Jiaxing Niu, Yang Liu, Libo Huang, Shuzhen Jiang, Ning Jiao, Xuejun Yuan, Weiren Yang, and Yang Li. 2023. "Effects of Dietary Galla Chinensis Tannin Supplementation on Antioxidant Capacity and Intestinal Microbiota Composition in Broilers" Agriculture 13, no. 9: 1780. https://doi.org/10.3390/agriculture13091780
APA StyleYuan, P., Ren, X., Niu, J., Liu, Y., Huang, L., Jiang, S., Jiao, N., Yuan, X., Yang, W., & Li, Y. (2023). Effects of Dietary Galla Chinensis Tannin Supplementation on Antioxidant Capacity and Intestinal Microbiota Composition in Broilers. Agriculture, 13(9), 1780. https://doi.org/10.3390/agriculture13091780