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Abstract: This paper presents analyses of the potential use of Sentinel-1 (S-1) and Sentinel-2 (S-2)
imagery to generate models of winter wheat growth under agricultural drought vs. normal conditions
identified based on potential yield losses calculated in the Agricultural Drought Monitoring System
(ADMS). The analyses carried out showed the sensitivity of satellite images to agricultural drought
conditions determined in ADMS. The study was conducted in a large region, the West Pomeranian
Voivodeship (NUTS PL42), and the analysis covered about 22,935 polygons with winter wheat
production that constituted a total area of about 108,000 ha in the period from the 1st of April to the
1st of July 2021. For S-1 data, VH and VV backscatter and the VH/VV ratio were calculated, and for
S-2 data, NDVI and NDWI indices were calculated, which were used to build models of winter wheat
growth under water stress and in normal conditions. The obtained results presented in this work
include: (i) Development of a test version of a model describing the winter wheat crop’s growth,
with a preliminary assessment showing the potential for recognizing water shortage effects; and
(ii) identification of promising indicators of water scarcity for crops, calculated based on S-1 and
S-2 images, that could be recommended for application in remote sensing (RS) of drought effects as
complementary multispectral and radar observations. The results obtained in this work also gave
many clues regarding the direction and method of including satellite remote sensing in national
monitoring programmes, which involves operations on many types of big data sets.

Keywords: SAR remote sensing; optical remote sensing; time series; crop water stress; yield losses

1. Introduction

Satellite imagery used for agricultural applications allows the phenomena under study
to be observed either temporally or spatially, depending on the image resolution, from
global to field scale, i.e., drought monitoring [1], plant freezing [2], crop overwintering
assessment [3], yield forecasting [4], crop identification [5], plant disease and pest detec-
tion [6,7], precision agriculture [8,9]. However, so far, these studies have been expensive.
The imagery delivered by the European Space Agency, in the Copernicus Programme, has
changed this situation by providing free remote sensing data. In particular, the Sentinel-1
(S-1) and Sentinel-2 (S-2) mission’s data make it possible to observe the Earth’s surface with
a spatial resolution starting at about 10 m and a frequency in Europe of about 5–6 days.
Several studies are being conducted to explore the potential utilization of Sentinel-1 and
Sentinel-2 imagery, separately and as a synergy, to provide support for the development
and management of agriculture [10–13]. The synergy of S-1 and S-2 imagery is being
investigated for the reason that optical data from S-2, unlike radar data from S-1, are often
disturbed by cloudiness and do not allow ongoing observations during crucial growth
stages of crops. However, radar data require different interpretation than optical data,
which are influenced by various factors such as moisture and the physical structure of
the plant [14], so many ongoing studies are exploring the possibility of interpreting the
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results obtained from S-1 using S-2 data. Therefore, S-1 may be useful for, e.g., moni-
toring phenological phases of plants [15], where the authors of the study, using neural
networks, obtained an average accuracy of 93.5% for the separation of rice phenological
phases, and the average error between the calculated and actual phenological date was
3.08 days; crop classification based on temporal signatures with a supervised approach [16],
where the author achieved an overall accuracy higher than 70%, or crop classification
using the Random Forest method [17], where the 48 crop groups could be classified with
an overall accuracy of 93.4%; monitoring crop height [18], where the authors showed a
strong relationship between maize height and SAR parameters, with the coefficient of
determination for VV + VH (R2 = 0.82), VV (R2 = 0.81), and VH (R2 = 0.80); selection of
the optimal machinery type for sugarcane field cultivation [19], where authors developed
a mathematical model and received an accuracy of 83.6% and 81.2% for the training and
testing models, respectively; monitoring plant development [20–22], where authors showed
a high sensitivity of the indicators provided by S-1 to the detection of phenological growth
stages for different crops; or testing sensitivity to agricultural drought [23,24], where au-
thors found a correlation between backscatter as well as interferometric data and crop
water stress. On the other hand, S-2 is more suitable for yield prediction [25,26] since
authors reported a strong correlation between the obtained yield and vegetation indices
with R2 values ranging from 0.6 to 0.9; precision nitrogen fertilization [27], where authors
showed that NDVI data can be used for field-scale optimal nitrogen management models;
or detailing the soil-agricultural map [28]. The synergy of S-1 and S-2 could, therefore,
be applied to, e.g., monitoring phenological phases of plants [29], where authors found
that the highest identification of phenological phases was obtained for a combination of
optical and SAR data in comparison to using these data separately; agricultural drought
monitoring [30], where authors indicated that the synergy of these data can be a useful
indicator of crop condition, especially for corn and sunflower, with prediction rates of
86% and 71%, respectively; monitoring crop parameters [31,32] such as plant’s growth and
height; crop identification [33–35], where authors obtained maximum crop classification
accuracy of 85%, 75%, and 86%, respectively; or determination of soil properties [36], where
applied models showed a prediction accuracy of 94%, 89%, and 96% for pH, SOM and clay
content, respectively.

Since the synthetic aperture radar (SAR) response depends on geometric and dielec-
tric properties, it is expected that water scarcity caused by drought should be visible in
the SAR response. The radar signal reflected by plant tissues under normal conditions
with proper vigor should be different from the plant’s response affected by water stress.
Plant status evaluated with the use of radar data (images) should be correlated with the
results of methods based on the analysis of multispectral images using vegetation indices
derived from S-2 images. Combining these two methods enables monitoring of plant status
under different weather conditions, e.g., periods of high cloudiness, and the relationship
between vegetation indices calculated from multispectral images and ground observations
is very well documented in the literature and can support the interpretation of indices
extracted from radar images. Demonstrating these relationships and the possibility of their
implementation in the drought monitoring system is the main purpose of this work.

The novelty of this work is: (i) demonstrating the potential of Sentinel-1 and Sentinel-2
imagery in detecting agricultural drought at a regional scale; (ii) generating a model of win-
ter wheat growth and development under normal and agricultural drought conditions for
the region; and (iii) providing regional analyses of study crops for a large research sample.

2. Materials and Methods
2.1. Study Area Location

The research area consisted of 21,850 fields of winter wheat, each larger than 0.5 ha,
located in the West Pomeranian Voivodeship (NUTS PL42) [37], in the north-western part
of Poland. This region of the country is characterized by the largest average farm size of
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about 32 ha [38]. In the case of this study, the average field size was 7 ha, and the total
analyzed area was about 145,750 ha (Figure 1).
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nian Voivodeship in 2021. Source: own study.

Soil and climatic conditions in the West Pomeranian Voivodeship contribute to agri-
cultural development; in this region, soils of medium value predominate—classes IVa
and IVb, which cover around 50% of all arable land [39]. The most favorable soil condi-
tions are found in the south-western part of the province, and the poorest soils are in the
south-eastern part of the region. The climate of the West Pomeranian region results from
the interaction between maritime and terrestrial climates as well as the influence of local
factors. The northern and western parts of the voivodeship are characterized by a maritime
climate. However, along with the increasing distance from the Baltic Sea towards the east,
the features of a continental climate are perceptible. On average, the annual air temperature
ranges from 7.0 ◦C to 8.5 ◦C, and the annual precipitation ranges from 490 to 770 mm in
this region.

Winter wheat (Triticum aestivum L.) fields were chosen for the study because this crop
covers the largest part of the agricultural land in this region of the country, and the research
period ran from April to July 2021. The meteorological conditions during the autumn of
2020 were optimal, and the crop was characterized by good overwintering, which created
conditions for good growth and development of the winter wheat in the spring of 2021.
Daily air temperature variations allowed plants to become well tempered. In March, winter
plants re-started growth at the usual time for this region of the country [40]. However, the
Agricultural Drought Monitoring System (ADMS) conducted by the Institute of Soil Science
and Plant Cultivation (IUNG-PIB) recorded the most intense drought for winter cereals
in a few sub-regions of the West Pomeranian Voivodeship. This created very favorable
conditions for testing the effect of drought on winter wheat development as registered by
S-1 and S-2 data at the regional scale.
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2.2. Materials

For this research, the following databases were used:

• Agricultural Drought Monitoring System (ADMS): a soil drought vulnerability cat-
egory map describing the soil variability, climatic water balance (CWB) maps, and
estimated yield losses [41,42]

• Agency for Restructuring and Modernization of Agriculture (ARMA): field boundaries
used for direct payments [43]

• European Space Agency, Copernicus Programme: Sentinel-2 and Sentinel-1 satellite
images [44].

2.2.1. Agricultural Drought Monitoring System Data

The ADMS uses a combination of databases and computer applications integrating
meteorological data and soil-agricultural maps to present the spatial heterogeneity of water
retention in different soil drought vulnerability categories. In the ADMS, the occurrence
of agricultural drought is showcased in 14 reports between the 21st of March and the
30th of September when the CWB values calculated for each reporting period are lower
than defined in the “Act on subsidies to insurance of agricultural crops and farm animals
in Poland” [45] according to specific crop species or groups (also defined in the Act) and
soil categories. For each reporting period using CWB values, the yield loss caused by
agricultural drought is calculated in respect of the monitored crops, and the maximum loss
for the entire season is the highest value found in a single report. Reports are published
every 10 days, and the presented results cover 60 days from the date of their publication.
Drought risk analysis is reported on winter cereals in nine reports from the 21st of March
to the 10th of August [46].

Soil Drought Vulnerability Category Map

ADMS, in order to determine areas affected by agricultural drought, takes into account
not only CWB values but also soil texture derived from soil-agricultural maps, which
determines the available water capacity of the soil. This allowed us to distinguish four soil
drought vulnerability categories (Table 1).

Table 1. Description of soil drought vulnerability categories.

Name Description Available Water Capacity (AWC)

Category I Highly sensitive to drought <127.5 mm
Category II Sensitive to drought 127.5–169.9 mm
Category III Moderately sensitive to drought 170.0–202.5 mm
Category IV Slightly sensitive to drought >202.5 mm

Source: [47,48].

Climatic Water Balance (CWB) Maps and Yield Loss Estimation

To determine the areas with agricultural drought hazards, the ADMS IT system
generates CWB maps, calculated from the difference between the amount of precipitation
and potential evapotranspiration. Geospatial precipitation raster data are collected from
ground-based meteorological radars of the POLRAD network, which is managed by the
Institute of Meteorology and Water Management-National Research Institute (IMWM-PIB),
while the potential evapotranspiration is calculated by the Penman method using data
obtained from a network of meteorological stations distributed throughout Poland. Based
on the values from the CWB maps, and taking into account the soil drought vulnerability
category, potential yield losses for specific agricultural crops were determined.

More information on the functioning of the ADMS and the yield loss estimation methods
can be found in Doroszewski and Górski [49], Doroszewski et al. [50], Szewczak et al. [51],
Bartosiewicz and Jadczyszyn [52], and Jędrejek et al. [12].
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2.2.2. Agency for Restructuring and Modernization of Agriculture Data

Field boundaries in SHP format were obtained from the ARMA database, which col-
lects this data to determine the acreage of crops grown on farms needed for the distribution
of direct payments to farmers. All polygons were pre-processed, and objects with attributes
of winter wheat were selected for further analysis.

2.2.3. European Space Agency Data

The Sentinel series of space missions under the Copernicus Programme have been
carried out by the European Space Agency, which provides member countries with free
access to all data acquired under this project.

Sentinel-1

The Sentinel-1 (S-1) mission consisted of two satellites, 1A and 1B (deactivated on
23 December 2021), equipped with SAR radar sensors operating in C-band. The constella-
tion of these satellites and the technical parameters of the sensors allowed the entire globe
to be imaged within 6 days with a spatial resolution of 10 m [53].

Sentinel-2

The Sentinel-2 (S-2) mission consists of two satellites, 2A and 2B, equipped with a
13-channel multispectral scanner in the visible radiation range, capturing imagery with
a spatial resolution of 10, 20, and 60 m (depending on the band). The revisit time for the
satellite pair is 5 days [54].

Both satellites, S-1 and S-2, are shifted 180 degrees relative to each other and operate
in a heliosynchronous orbit.

2.3. Methods and Scenario of the Analysis

The analyses were conducted in five successive stages: (1) preparation of polygon win-
ter wheat fields for analysis; (2) calculation of potential yield loss based on CWB; (3) maps
of indices from S-2 and S-1 data; (4) time series modeling of winter wheat growth variability
under different weather conditions; and (5) methods of comparing the index variability
function over time.

Step 1: Preparation of Polygons Winter Wheat Fields for Analysis

Winter wheat field boundaries were intersected with the soil drought vulnerability
category map. Then, a 10 m negative buffer was made for the newly created polygons
in order to reduce the influence caused by the boundaries between the soil drought sus-
ceptibility categories on the calculated satellite indicator values (Figure 1). Each polygon
was assigned a category of soil drought vulnerability. New polygons created under this
intersection were the basis for further analysis, which covered only those exceeding or
equal to 0.5 hectares. Finally, 22,935 polygons were analyzed. The total area covered by this
analysis was 107,676 ha.

Step 2: Calculation of Potential Yield Loss Based on CWB

For the prepared polygons from step one, based on the climatic water balance maps
generated in ADMS, potential yield losses of winter wheat caused by water scarcity were
calculated. These losses were computed using the values from the CWB maps, according
to the original formulas developed at IUNG-PIB, with respect to soil categories for winter
cereals in nine reporting periods (Figure 2). Thus, yield losses in nine periods were
calculated for each winter wheat polygon from step 1. By selecting the maximum values
of losses obtained from partial reports, the maximum winter wheat yield losses that
occurred in 2021 were calculated. As an outcome in step 2, each polygon received attributes
of potential yield losses over the nine reporting periods as well as maximum reached
yield losses.
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Step 3: Maps of Indices from S-2 and S-1 Data

Sentinel-1A and Sentinel-1B images produced from the 1st of April to the 1st of July
2021 were downloaded from the ESA servers (ESA 2023). The studied fields were located
in six passes of the Sentinel-1 satellite (ascending relative orbits A146, A73, and A175;
descending relative orbits D95, D22, and D124).

The pre-processing of Sentinel-1 images to sigma nought (σ0) was realized using the
ESA SNAP toolbox [55]. The data were downloaded as Level-1 Ground Range Detected
(GRD) products. GRD border noise was removed. The data were calibrated to convert
the digital numbers received from the satellite into backscatter coefficients. The thermal
noise in the data was removed to enhance the overall quality of the image. For the terrain
correction, the COPERNICUS GLO-30 Digital Elevation Model was applied. This step
accounts for the influence of topography on the radar signal by applying a correction based
on the elevation information provided by the GLO-30 model. The data were radiometrically
calibrated to convert the backscatter coefficients to sigma nought values. Sigma nought
represents the radar backscatter coefficient normalized to the radar’s incident angle. All
the obtained values were converted to a logarithmic scale with the unit decibel (dB).
Speckle reduction was not conducted to ensure unbiased data values. As a result of this
processing, backscatter images were obtained for the two polarizations: vertical-vertical
(VV) and vertical-horizontal (VH). The median backscatter of VH and VV was calculated
for each surveyed polygon from step 2, and based on these values, the VH/VV ratio
was also obtained.

Sentinel-2A and Sentinel-2B images were downloaded from the ESA servers [44] with
Level 2A processing, which stores bottom of atmosphere (BOA) reflectance information after
atmospheric correction. The studied fields were located in eight Sentinel-2 granules (33UXU,
33UWU, 33UVU, 33UXV, 33UWV, 33UVV, 33UXA, and 33UWA). For all downloaded
images, the cloud and shadow probability mask (CLDPRB) provided by ESA were used.
For further analysis, only image fragments with no cloud cover within the investigated
polygons during the whole investigation period were selected to keep the tested area of the
fields constant.

From the numerous vegetation indices (VIs) that can be calculated from S-2 image
channels [56], two were selected for the purpose of the study: the Normalized Differ-
ence Vegetation Index (NDVI)—detecting crop health and stage development—and the
Normalized Difference Water Index (NDWI)—canopy water content sensitive.
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NDVI is the most commonly used and documented VIs in the literature, used in
agriculture to monitor vegetation dynamics [57,58].

NDVI =
B8 − B4
B8 + B4

(1)

where B8 = NIR S-2 band (0.785–0.900 µm); B4 = RED S-2 band (0.650–0.680 µm);
NDWI was introduced by Gao in 1996 [59]. This VIs is a useful indicator for the

detection of plant liquid water content and has less sensitivity to atmospheric dispersion
effects than NDVI.

NDWI =
B8 − B11
B8 + B11

(2)

where B8 = NIR S-2 band (0.785–0.900 µm); B11 = SWIR1 S-2 band (1.565–1.655 µm);
As a result of the analyses performed in this step, maps of NDVI and NDWI indices

from S-2 and VV, VH, and VH/VV from S-1 were obtained.

Step 4: Time Series Modelling of Winter Wheat Growth Variability under Different
Weather Conditions

Based on the results from Step 3, for each study polygon (Step 2), a median value
of the analyzed S-1 and S-2 indices was calculated with the assigned date of satellite
observation. The study dataset was categorized into two subsets, according to the yield
losses estimated by the ADMS (calculated in step 2). The first subset contained yield
losses below 15% (considered no significant agricultural drought or lack of drought), and
the second subset comprised losses above 35% (observable high impact of agricultural
drought on winter wheat plants). Yield losses between 15 and 35% were excluded from
the analyses, being considered an intermediate condition between those with visible and
non-visible agricultural drought impact on the growth and development of winter wheat.
To visualize winter wheat growth fluctuations, a moving window method in a 10-day step
was used to smooth and reduce the noise of daily outlier data variations. For smoothing
the time series of the studied indices, the median was taken from the interval of the time
series value covering observations around the current value, including itself. In total,
775,508 S-1 observations and 186,507 S-2 observations were used to create a winter wheat
growth variability function under both drought and no drought conditions. Due to the
lack of normal distribution in the sets of the S-1 and S-2 index values for individual fields,
non-parametric dispersion measures (median and MAD) were used (Formula (1)). MAD is
the median of the absolute deviations from the median and is robust to data outliers [60].

MAD = b Mi
(∣∣xi − Mj

(
xj
)∣∣) (3)

where xi—n original observations; Mi—median of the series; b—constant;
Trimming the data by MAD was done to eliminate data outliers caused by other

factors, e.g., damage caused by pests and diseases, biomass, and greenness change caused
by weed infestation or improper crop cultivation.

Step 5: Methods of Comparing the Index Variability Function over Time

The dynamics of index volatility over time were analyzed using two methods: (i) visual
analysis, where the course of average index values and deviations in the entire observation
period was initially presented using functions and diagrams; and (ii) descriptive analysis,
where the differences between the average values of the indices observed in 10-day intervals
in drought-prone and drought-free regions were compared.

To visualize the course of index variability in a study period, a script was written in
the R environment [61]. This algorithm generates diagrams of the development and growth
of winter wheat for a 10-day moving window. The created diagrams were composed of
error bars meaning +/−1 MAD (black vertical bars) from the median of the 10-day dataset
(red dots) and an estimated smoothed winter wheat growth function (blue line).
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Descriptive analysis with tabular descriptions is one of the qualitative methods used
in research that aims to assess some characteristics of a specific population or situation.
Usually, this type of research opens the way to deeper and more complex research on a
given phenomenon, presenting, for example, as in this study, the periods during which we
should expect to find answers to the presented research problem. For this type of analysis,
various statistical software can be used, of which Excel was chosen for this study.

3. Results

The calculated potential yield losses according to IUNG (step 2) for the study area
ranged from 0 to 55%.

Figures 3–7 present the variability and development of indices derived from S-1 and
S-2 images over the season for normal and drought conditions and a comparison of the two
functions. On the left (A), the course of variability of index values in standard conditions
is presented; on the right (B), in conditions of water shortage causing yield losses greater
than 35%. In addition, the median values (red dots) and the error bars show the range of
+/−1MAD. In all C figures, a comparison of the variability and development of the indices
over time for standard and water-limited conditions is presented.

3.1. Variability and Development of Vegetation Indices Derived from Sentinel-2 Images

For Sentinel-2, graphs of NDVI (Figure 3) and NDWI (Figure 4) development were
created. Higher differences between the two datasets of fields (normal and agricultural
drought conditions) were observed for NDWI (Figure 4C) and slightly smaller for NDVI
(Figure 3C). This may be due to the fact that the NDWI index is a so-called drought index,
which measures canopy water content and is a very good indicator of the plant’s water
stress, while the NDVI index values are more correlated with the quantity of biomass and
chlorophyll content. It is also confirmed by other studies that the NDWI index is more
sensitive to agricultural drought detection than the NDVI, which was proved, e.g., in a
semi-arid region of Zacatecas, Mexico [62].

In the case of NDWI, a better separation is also observed between the functions
describing the average index values for the separated ranges of yield losses (Figure 4A,B).
These differences are the most visible for the period from 13 April to 12 May and from
2 June onwards, i.e., from the period of plant maturation and loss of greenness.
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3.2. Variability and Development of Indices Derived from of Sentinel-1 Images

Spatially averaged at the field level, values of VV, VH, and VH/VV derived from S-1
images showed that the growth and development pattern of winter wheat (expressed
by these indices) grown under no-drought conditions (Figures 5A, 6A and 7A) and
drought conditions (Figures 5B, 6B and 7B) varied the most significantly for backscat-
ter VH (Figure 6C) and for cross ratio VH/VV (Figure 7C). When using the VV index, the
differences in winter wheat development were almost invisible (Figure 6C).

Higher values of the VH index were observed in early spring for winter wheat not
affected by drought (Figure 5A) in comparison with the VH values for winter wheat affected
by drought (Figure 5B) during the period of rapid plant growth. However, an opposite
situation was faced after 13 May (Figure 5C), when the lines of VH development intersected
and higher values of VH were observed for wheat grown under drought conditions.

The differences between the VV backscatter functions developed for wheat grown
under normal and agricultural drought conditions were much less visible. In addition, an
intersection of the functions was observed earlier, around 3 May (Figure 6C).

Variability and development of the VH/VV ratio over the season were similar to
the results obtained for the VH index, where during the period of rapid winter wheat
growth (till mid-May), higher VH/VV ratio values were found for winter wheat grown
under normal conditions (Figure 7A) compared to VH/VV values observed for wheat from
fields under drought conditions (Figure 7B). Around 18 May, the lines showing VH/VV
variability for winter wheat fields under different weather conditions had intersected
(Figure 7C), and afterwards the course of the VH/VV functions had reversed. Higher
VH/VV values were noted under conditions with a water deficit (Figure 7B) compared to
conditions without water scarcity (Figure 7A).
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(B) drought conditions, and (C) a comparison of the two VH/VV functions. Source: own study.

3.3. Difference between Medians of Indices Derived from Sentinel-1 and Sentinel-2 Images under
Normal and Drought Conditions

With a tabulated comparison of the differences in median values of the indices devel-
oped for winter wheat grown under normal and water shortage conditions, it is possible to
select the best dates for RS of drought impact on the crop. Such periods are highlighted in
red (Table 2). These periods represent the time when the indices’ values differed the most
for winter wheat grown under the conditions of varied AWC. In green are highlighted the
periods when the differences in the indices’ values were very small and the investigation of
drought using RS was not possible or the results of the study could be the most uncertain.
It is important to note that indices derived from radar images of S-1 in comparison to NDVI
and NDWI derived from optical images of S-2 showed the highest differences in various
periods, which is why they might be used for registering agricultural drought at different
stages of plant development.

Table 2. Difference between medians of indices derived from Sentinel-1 and Sentinel-2 images under
normal and drought conditions. The significance of the difference is distinguished by the color
gradation: from green (the least significant) to red (the most significant).

NDVI NDWI VV VH VH/VV
5 April–14 April 2021 0.01 0.04 0.22 0.17 0.52
15 April–24 April 2021 0.02 0.08 0.43 1.04 0.66
25 April–4 May 2021 0.04 0.07 0.44 1.21 0.84
5 May–14 May 2021 0.04 0.07 0.50 0.07 0.41

15 May–24 May 2021 0.02 0.02 0.35 0.44 0.16
25 May–3 June 2021 0.04 0.06 0.01 0.38 0.35
4 June–13 June 2021 0.06 0.08 0.34 0.73 0.45

14 June–23 June 2021 0.09 0.11 0.09 0.11 0.19

4. Discussion

This work responds to the urgent need to complement the current drought monitoring
system developed by IUNG-PIB with additional data provided by satellite-based remote
sensing. Until 2020, this monitoring system was only intended to identify administrative
units (municipalities) where agricultural drought could potentially cause yield losses
exceeding 20% in selected crops. For this estimation of yield losses in crops, performed
using an adapted methodology in ADMS, low-resolution meteorological data from a
weather station network was sufficient to calculate the climatic water balance (CWB). Since
2020, the functionality of the ADMS has been modified as new meteorological data from
the POLRAD network with greater resolution became available, which allowed for the
estimation of losses at a higher spatial resolution. Meanwhile, the ADMS system was
included as a component of a more complex application software called the Drought
Application developed on behalf of the Ministry of Agriculture and Rural Development,
allowing modeling of yield losses at the field scale and eventually modeling general income
losses on farms resulting from agricultural drought [63]. For this reason, the monitoring
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system had to take into account the field size and cultivated crops. In its present form,
ADMS only estimates the potential yield losses resulting from drought conditions, which
means it does not take into account the applied method of cultivation since that kind of
information is not collected in the farmers’ applications for direct payments received by
ARMA. Collecting these additional data and, therefore, the possibility of comprehensive
modeling of the crop development process during the growing season is possible with
the use of RS. In the literature, there are many examples of effective application of RS, not
only in drought monitoring [30,64,65], but also in monitoring other factors responsible for
crop yield losses, such as agricultural practices [66], climatic conditions [67], and economic
conditions [68]. However, the use of RS in the administrative monitoring system entails
further challenges. In the case of the ADMS, these are mainly:

• necessity to ensure full coverage of the country for a given time interval;
• acquisition of high-quality data, free from interference or information losses;
• the technique of acquiring data must be adapted to register the physical characteristics

of the objects tested (spatial and spectral resolution);
• data must be publicly available.

Currently, all the above points are met only by one supplier of satellite data—the
European Space Agency, which provides images from the sensors of the Sentinel satel-
lites [69] under the Copernicus Programme. These data meet the above requirements, as
described below:

• the revisit time of the S-1 and S-2 satellites is 5–6 days (for Poland), which enables a
continuous generation of the volatility function of the selected indices, as shown in
Figures 3–7;

• images are provided at various levels of processing—including geometric and radio-
metric correction; ESA also provides a set of analytical tools under an open source
license [70]; parallel acquisition of multispectral and radar data creates the possibility
of supplementing the lost information in S-2 images in case of cloud cover by modeling
it based on images from S-1;

• the spatial resolution (10 m) of the main spectra channels (S-2) and registration of
reflections (S-1) is sufficient for monitoring at the scale of agricultural plots (fields);

• all the images from the Copernicus Programme are available free of charge and without
any delay in accessing them; data transfer between ESA servers and the end user can
be programmed automatically.

Although Sentinel images allow for comprehensive satellite monitoring, their inter-
pretation requires building an advanced model. In the case of drought monitoring, the
model should take into account the specific features of the objects under observation. This
work presents the results for winter wheat, which is the main crop of winter cereals grown
in Poland, the yield losses of which are estimated using the same method. Other cereal
species in this group will show different spectral characteristics [71]. Greater differences in
spectral characteristics are observed among the 14 groups of crops monitored in ADMS
(e.g., spring cereals, winter cereals, rapeseed, maize, etc.). This fact indicates that a complete
satellite-based system for monitoring crop conditions and drought effects has to take crop
characteristics into account separately.

The results also indicate a need for a more comprehensive study using satellite-based
RS for individual plant species. The analysis of the variability of VIs for a large population of
winter wheat fields clearly indicates that a simple separation of crops growing in standard
conditions from those affected by severe drought is not possible. This may be observed
in diagrams A and B presented in Figures 3–7, which show a wide range of values for
both standard and drought conditions. This indicates a significant impact of other factors
responsible for the condition of crops expressed by indices derived from S-1 and S-2 images,
among which crop husbandry practices seem to be the crucial one. With a combination
of appropriate cultivation practices, such as increasing the humus content of the soil, it
is possible to significantly increase the crop resilience and thus reduce the detrimental
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influence of drought leading to yield losses, as shown by the experiments conducted by the
Research Centre For Cultivar Testing [72].

This premise will determine the choice of further research direction, which, similarly
to this work, will analyze large datasets (parts of fields) after grouping them into classes
based on farming technique applied, i.e., separate fields with organic fertilization, zero
tillage, organic, intensive, or extensive farming. Different varieties will also be taken into
account, especially those recommended as drought tolerant, as well as data on the use of
growth regulators for stem shortening.

Another challenge in the development of satellite monitoring is the description of
crop development based on Vis, taking into account different stages of plant development.
Unfortunately, due to the size of the country, the time of occurrence of the stage differs be-
tween regions, and a precise indication of the time of its occurrence is currently not possible.
Therefore, fragmented information from in situ observations will have to supplement the
data modeled using growing degree days (GDD) [73]. This will allow us to standardize the
modeled development of winter wheat using GDD for the whole of Poland, illustrated in
Figures 3–7, and improve the precision of indicating the main stages of plant development,
which are the most “sensitive” to RS of water shortage—in this work, presented for the time
ranges from Table 2. It is obvious that during satellite observations, a parallel influence of
many factors on the final condition of the crop is observed. Therefore, in the work already
carried out, research has been undertaken on the possibilities of separately assessing the
impact of independent (mainly weather) and dependent factors (mainly farming technique).
As presented in this work, a preliminary assessment of the impact of farming practices is
possible using the functions presented in Figures 4–7 and described in the publication [12].
However, the results of in-depth modeling will be discussed in detail in the next work.

In the case of agricultural practices, remote sensing methods can be used as a decision
support system to determine the direct impact of agricultural drought on the producers’
fields. Drought demonstrates to farmers all the farming technique mistakes made not
only during the growing season but also in the long term. Intensification of agriculture,
such as simplified crop rotation and replacing manure with mineral fertilizers, often only
single-nutrient nitrogen fertilizers, degrades the cultivated soil, causing losses of humus.
The humus horizon provides nutrient storage, a source of carbon for soil microorganisms,
stabilizes the soil pH, and has the capability to retain water. Restoration of soil properties
takes years, even decades. The results show that by using proper agricultural practices, the
farmer can minimize the impact of negative drought conditions.

5. Conclusions

In conclusion, the most important results obtained in this work include:

• Development of a test version of the model describing the course of vegetation in
winter wheat cultivation, including a preliminary assessment of the possibility of
recognizing the effects of water shortages on these crops.

• Indication of indices developed based on the S-1 and S-2 imagery, which are promising
as water shortage indicators for crops and may be recommended for implementation
in future research and development works as mutually complementary.

• Testing the possibility of modeling large datasets for the development of a drought
monitoring system in Poland.

These results make it possible to confirm the working hypothesis and indicate the
possibility of building an effective remote sensing system, which, supplied with information
on the course of weather and the state and character of farming technique, will allow
for effective modeling of the yielding of winter cereals and indicate the main causes
of recorded losses. The obtained results are preliminary, showing that Sentinel-1 and
Sentinel-2 images would be a valuable source of information supplementing the ADMS
conducted at IUNG-PIB, as was also shown in two previous articles [12,28]. However, the
results should be extended by building additional databases describing in more detail the
agricultural practices applied by the farmer in the cultivation of a given crop, which (besides
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soil conditions) significantly determine its yield, e.g., agricultural practices improving
soil retention properties, selection of crop varieties with increased tolerance to water
deficiencies, appropriate sowing dates, etc.
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12. Jędrejek, A.; Koza, P.; Doroszewski, A.; Pudełko, R. Agricultural Drought Monitoring System in Poland—Farmers’ Assessments
vs. Monitoring Results (2021). Agriculture 2022, 12, 536. [CrossRef]

13. Kumar, V.; Huber, M.; Rommen, B.; Steele-Dunne, S.C. Agricultural SandboxNL: A National-Scale Database of Parcel-Level
Processed Sentinel-1 SAR Data. Sci. Data 2022, 9, 402. [CrossRef] [PubMed]

14. Henderson, F.M.; Lewis, A.J. Principles and Applications of Imaging Radar. Manual of Remote Sensing, 3rd ed.; John Wiley and Sons,
Inc.: Hoboken, NJ, USA, 1998; Volume 2.

15. Wang, B.; Liu, Y.; Sheng, Q.; Li, J.; Tao, J.; Yan, Z. Rice Phenology Retrieval Based on Growth Curve Simulation and Multi-Temporal
Sentinel-1 Data. Sustainability 2022, 14, 8009. [CrossRef]

16. Arias, M.; Campo-Bescós, M.Á.; Álvarez-Mozos, J. Crop Classification Based on Temporal Signatures of Sentinel-1 Observations
over Navarre Province, Spain. Remote Sens. 2020, 12, 278. [CrossRef]

17. Beriaux, E.; Jago, A.; Lucau-Danila, C.; Planchon, V.; Defourny, P. Sentinel-1 Time Series for Crop Identification in the Framework
of the Future CAP Monitoring. Remote Sens. 2021, 13, 2785. [CrossRef]

18. Nasirzadehdizaji, R.; Balik Sanli, F.; Abdikan, S.; Cakir, Z.; Sekertekin, A.; Ustuner, M. Sensitivity Analysis of Multi-Temporal
Sentinel-1 SAR Parameters to Crop Height and Canopy Coverage. Appl. Sci. 2019, 9, 655. [CrossRef]

https://doi.org/10.3390/rs14163971
https://doi.org/10.3390/rs12030477
https://doi.org/10.3390/rs13061177
https://doi.org/10.3390/rs14051238
https://doi.org/10.1590/1809-4430-eng.agric.v41n6p619-633/2021
https://doi.org/10.1094/PDIS-03-15-0340-FE
https://doi.org/10.3923/ajps.2017.160.171
https://doi.org/10.5194/isprs-archives-XLI-B8-953-2016
https://doi.org/10.15302/J-FASE-2018226
https://doi.org/10.5194/isprs-archives-XLII-3-W6-91-2019
https://doi.org/10.3390/agronomy11010110
https://doi.org/10.3390/agriculture12040536
https://doi.org/10.1038/s41597-022-01474-4
https://www.ncbi.nlm.nih.gov/pubmed/35831313
https://doi.org/10.3390/su14138009
https://doi.org/10.3390/rs12020278
https://doi.org/10.3390/rs13142785
https://doi.org/10.3390/app9040655


Agriculture 2023, 13, 1798 15 of 17

19. Imantho, H.; Seminar, K.B.; Hermawan, W.; Saptomo, S.K. A Spatial Distribution Empirical Model of Surface Soil Water Content
and Soil Workability on an Unplanted Sugarcane Farm Area Using Sentinel-1A Data towards Precision Agriculture Applications.
Information 2022, 13, 493. [CrossRef]

20. Vreugdenhil, M.; Wagner, W.; Bauer-Marschallinger, B.; Pfeil, I.; Teubner, I.; Rüdiger, C.; Strauss, P. Sensitivity of Sentinel-1
Backscatter to Vegetation Dynamics: An Austrian Case Study. Remote Sens. 2018, 10, 1396. [CrossRef]

21. Khabbazan, S.; Vermunt, P.; Steele-Dunne, S.; Ratering Arntz, L.; Marinetti, C.; van der Valk, D.; Iannini, L.; Molijn, R.; Westerdijk,
K.; van der Sande, C. Crop Monitoring Using Sentinel-1 Data: A Case Study from The Netherlands. Remote Sens. 2019, 11, 1887.
[CrossRef]

22. Harfenmeister, K.; Itzerott, S.; Weltzien, C.; Spengler, D. Agricultural Monitoring Using Polarimetric Decomposition Parameters
of Sentinel-1 Data. Remote Sens. 2021, 13, 575. [CrossRef]

23. Barbouchi, M.; Chaabani, C.; Cheikh M’Hamed, H.; Abdelfattah, R.; Lhissou, R.; Chokmani, K.; Ben Aissa, N.; Annabi, M.; Bahri,
H. Wheat Water Deficit Monitoring Using Synthetic Aperture Radar Backscattering Coefficient and Interferometric Coherence.
Agriculture 2022, 12, 1032. [CrossRef]

24. Shorachi, M.; Kumar, V.; Steele-Dunne, S.C. Sentinel-1 SAR Backscatter Response to Agricultural Drought in The Netherlands.
Remote Sens. 2022, 14, 2435. [CrossRef]
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E. Fundamentals of a Agricultural Drought Monitoring System [in Polish—Podstawy Systemu Monitoringu Suszy Rolniczej].
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