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Abstract: When aiming at the problems such as missed detection or misdetection of recognizing
green walnuts in the natural environment directly by using target detection algorithms, a method
is proposed based on improved UNet3+ for green walnut image segmentation, which incorporates
the channel and spatial attention mechanism CBAM (convolutional block attention module) and
cross-entropy loss function (cross-entropy loss) into the UNet3+ network structure, and introduces
the five-layer CBAM in the encoder module to construct the improved UNet3+ network model.
The model consists of an encoder module (down-sampling), a decoder module (up-sampling) and
a full-scale skip connection module, a full-scale feature supervision module, and a classification
guidance module. After utilizing data-enhanced approaches to expand the green walnut dataset, the
improved UNet3+ model was trained. The experimental findings demonstrate that the improved
UNet3+ network model achieves 91.82% average precision, 96.00% recall rate, and 93.70% F1 score in
the green walnut segmentation task; the addition of five-layer CBAM boosts the model segmentation
precision rate by 3.11 percentage points. The method can precisely and successfully segment green
walnuts, which can serve as a guide and research foundation for precisely identifying and localizing
green walnuts and finishing the autonomous sorting for intelligent robots.

Keywords: image segmentation; green walnut; UNet3+; CBAM

1. Introduction

In China, walnut is widely distributed and planted in more than 20 provinces (districts);
of these, Xinjiang has the largest walnut planting area at 350,000 hectares, with an annual
production of nearly 700,000 tons, ranking second in the nation; Shanxi has the second-
largest walnut planting area at 680,000 hectares, with an output of 200,000 tons, ranking
third in the nation [1]. However, at present, in many places, like Aksu in Xinjiang, Qingyang
in Gansu, Qinling in Shanxi, and Daliang Mountain in Sichuan, the primary method of
harvesting walnuts is manual hand-picking and knocking with a long pole which is labor-
intensive and inefficient. Walnut quality will be affected if harvesting is not completed in
time. Even though there are many different brands of agricultural machinery and numerous
technical applications, China’s walnut-picking technology is still in its infancy due to its
ineffective machinery, its propensity to damage walnut branches, its identification system’s
shortcomings, which make it difficult to identify the fruit, and other more significant
problems. Additional research and development will also be required, which will cost more
money [2]. The green walnut fruits growing on the tree in the natural environment will be
affected by many interference factors, mainly including the walnut target and the leaves,
branches, and other backgrounds between the color being extremely similar, and at the
same time due to changes in light and leaf shading, fruit overlap, shadow coverage, and
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other factors. Target detection algorithms will have higher leakage or misdetection rates
when used to directly identify green walnuts.

In order to recognize walnut targets more accurately, walnut targets must first be
distinguished from the background and then detected. Green walnuts have a more complex
growing environment, and segmentation can provide richer semantic information to better
understand the context and structure of the target and improve the accuracy of detection.
At present, there are few studies on the segmentation of green walnuts at home and abroad,
and there is an urgent need to propose effective solutions. Therefore, a solution for the
segmentation of green walnuts was sought by studying different fruits and vegetables.
For example, Zhang Yanfei et al. [3] proposed an apple recognition method based on a
two-stage segmentation algorithm that combines region-labeled gradient Hough Circle
Transform with Otsu and Watershed. The recognition accuracies of the method were 90.75%
in smooth conditions and 89.79% in backlight conditions. Wang Zhifen et al. [4] proposed
a new kernel density estimation optimized clustering segmentation algorithm, which
obtains the super-pixel region representation of the image by SLIC algorithm, and the local
densities of the data points are obtained by kernel density estimation, which drastically
reduces the computational amount of the algorithm, and achieves an efficient and accurate
segmentation of the target image. Long Jinhui et al. [5] proposed a constrained clustering
segmentation algorithm for citrus fruit images based on quantum particle swarm; this
algorithm has a lower segmentation error rate as well as a higher peak signal-to-noise ratio
than the OTSU algorithm, fuzzy clustering image segmentation algorithm, and other image
segmentation algorithms, which reduces the segmentation error rate of the robot image
processing system of picking fruit and vegetables. Xu Zhibo et al. [6] proposed a HED
optimization network model based on the VGG network and HED network, whose ODS
reaches 0.765 on BSDS500, which improves the operational efficiency and adaptability to
the complex environment of a pepper-picking robot. Liu Xiaoyang et al. [7] proposed a fruit
segmentation method for apple-picking robots based on super-pixel features; this method
has better segmentation results with image segmentation accuracy up to 0.9214 and recall
up to 0.8565 as compared to the chromatic aberration method using pixel-level features
and the fruit segmentation method using neighborhood pixel features. Xu Liming et al. [8]
proposed a method based on a homomorphic filtering algorithm for image segmentation
of Yangmei, which can effectively segment Yangmei from the background, and the mean
value of segmentation error Af is only 2.26%, which solves the problem that it is difficult to
accurately segment the image of Yangmei fruits in the natural environment. Xu Liming
et al. [8] proposed a method based on the homomorphic filtering algorithm for image
segmentation of Yangmei, which can effectively segment Yangmei from the background,
and the mean value of segmentation error Af is only 2.26%, which solves the problem that
it is difficult to accurately segment the image of Yangmei fruits in the natural environment.
Wang Yude et al. [9] proposed an image segmentation algorithm that fuses color features
and texture features to solve the problem of segmenting melon fruit and background images
in complex backgrounds. Zhang Hongqi et al. [10] introduced the region information
near the threshold point into the segmentation algorithm for the characteristics of tomato
fruit images and proposed an improved Otsu threshold segmentation method based on
a two-dimensional histogram, which improved the segmentation effect of tomato fruit
images in the tomato-picking machine vision system. Xu Liming et al. [11] proposed a
segmentation method for Yangmei images based on homomorphic filtering and the K-mean
clustering algorithm, and the average values of segmentation error, false-positive rate, and
false-negative rate of this algorithm were 3.78%, 0.69%, and 6.8%, respectively. Anindita
Septiarini et al. [12] proposed a contour-based automatic image segmentation method for
oil palm fruits.

In recent years, deep learning methods have developed rapidly in the field of image
segmentation, and scholars at home and abroad have achieved more results in the field of
fruit image segmentation. Fan Xiangpeng et al. [13] designed a machine vision detection
method based on a deep convolutional neural network in order to realize the recognition and



Agriculture 2024, 14, 149 3 of 16

localization of green walnuts in a walnut garden, which added batch normalization processing
and region of interest calibration algorithms on the basis of the Faster R-CNN model, and the
improved algorithm modeled a 5.19% increase in accuracy rate compared with the original
Faster R-CNN model. Huang Leilei et al. [14] proposed a multi-stage segmentation and
morphological recovery method based on deep learning; this method has a fruit recognition
AP of 93.66% and a segmentation AP of 96.30%, which solves the problem of occlusion
and overlapping of citrus fruits in natural scenes. Liu Changyong et al. [15] researched and
proposed a method for automatic segmentation of fruit hearts based on the TMU-Net network
by incorporating the Transformer encoder into the U-Net network structure, constructing an
improved U-type convolutional network TMU-Net model, and freezing a specific network
layer using the migration learning method, which achieves an accuracy rate of 96.72% in
the fruit heart segmentation task. Peng Hongxing et al. [16] proposed a full convolutional
neural network-based litchi semantic segmentation algorithm, which combines DeepLabV3+
semantic segmentation model and Xception depth-separable convolutional features, with
an average intersection and merger ratio (MIOU) of 0.765, which is 0.144 higher than the
MIOU of 0.621 of the original DeepLabV3+ model. Jia Weikuan et al. [17] proposed an optimal
segmentation algorithm for green fruits based on SOLO, using the separation attention
network to design the backbone network of the SOLO algorithm, introducing the feature
pyramid network, and constructing the combined structure of ResNeSt+ FPN; the optimal
SOLO segmentation algorithm achieves an average recall and precision rate of 94.84% and
96.16%, respectively. Kang Hanwen et al. [18] proposed a multitasking network DaSNet-v2
for visual perception in orchards, realizing the accurate segmentation of apples’ IOU of 0.863.
The above method studies the recognition of apples, litchi, etc., but there is very little research
at home and abroad on green walnuts. For fruit growers who plant a large number of green
walnuts and are in urgent need of automated picking solutions, the above proposed method
can provide a reference basis for the research on green walnuts.

The UNet family of models is widely used, and for data types not seen in network
models, Unet3+ has more image detail information and better generalization ability than
the UNet model [19]. UNet3+ is an improved FCN with an encoder–decoder structure,
where the feature fusion is no longer conducted by directly adding the pixel values of
the corresponding positions of the feature map in the FCN, but by splicing and fusing
the feature maps, which increases the number of channels and thus improves the image
segmentation precision [20,21]. Compared with UNet and UNet++, UNet3+ redesigns the
jump connection using multiscale features and fuses the deep and shallow features of the
data through a full-scale jump connection [22–24], which fully extracts the data features
with higher recognition accuracy, requires fewer parameters, and produces more accurate
location-aware and boundary-enhanced segmentation maps.

Thus, this paper proposes an improved UNet3+ network that introduces the five-layer
CBAM in the encoder module and integrates the channel and spatial attention mechanism
CBAM (convolutional block attention module) and cross-entropy loss function (cross-
entropy loss) into the UNet3+ network structure. This model enables the efficient division
of green walnuts in their natural habitat and offers technical assistance for the intelligent
harvesting of green walnuts.

2. Materials and Methods
2.1. Data Collection and Dataset Production
2.1.1. Image Acquisition

This experiment used the green walnut image dataset, partly from the orchard in
Zhengning County, Qingyang, Gansu Province, which were obtained via manual shooting
by hand with a cell phone, and partly through collecting from major plant websites such as
Chinese Field Herbarium, Plant Photo Bank of China, The Royal Horticultural Society, and
Chinese Flowers, Plants, and Trees. The collected images have different light intensities,
different fruit sizes, or different numbers of fruits, after which the eligible images are
subjected to data processing. The dataset contains five categories of image data, including



Agriculture 2024, 14, 149 4 of 16

different degrees of branch and leaf shading, different degrees of fruit overlap, different
light intensities, and different fruit sizes and different fruit numbers, etc. The same pro-
portion of images were in each category. Among them, different degree of foliage shading
refers to the area of green walnut fruits by foliage shading the fruit area less than 75%;
different degree of fruit overlapping refers to the area of green walnut fruits and fruits
shading each other less than 75% of the area of the fruits; different intensity of light refers
to the different light of the sunlight on the green walnuts; the shooting scene is taken as
a sunny day and cloudy day, and the shooting time is taken as 9 o’clock, 14 o’clock, and
17 o’clock; different sizes of the fruits refer to the different sizes of the fruits in the image;
and the number of different fruits refers to a variety of the number of fruits in the image,
which is taken as (1–6), (6–12), and (more than 12). Figure 1 shows the original green
walnut images.
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Figure 1. Original image of green walnut.

2.1.2. Data Enhancement and Dataset Production

Training deep learning network model parameters provides sufficient sample data.
In order to increase the model’s capacity for generalization, data enhancement techniques
such as image rotation, left-right swapping, zooming in and out, small block distortion,
random brightness enhancement/decrease, random color/contrast enhancement/decrease,
random clipping, random cropping, random flipping, random grayscale coefficients, ran-
dom fogging, and Gaussian noise are applied to the original image of the captured green
walnut. A total of 10,143 images were obtained through data enhancement. Among them,
the probability of image rotation occurring is 80%, the probability of image left-right swap
occurring is 50%, the probability of image zoom-in and zoom-out is 80%, and the random
luminance enhancement/decrease, random color/contrast enhancement/decrease can be
based on the change factor to determine the degree of change. These data enhancement
techniques were applied in the order in which they were applied, and Figure 2 displays the
sample image obtained—the data-enhanced green walnut image.

In this paper, the image labeling tool Labelme was used to label the green walnut
region. An 8-bit grayscale labeled image was generated after processing, where the value
of each pixel point represents the species to which the pixel belongs. The expanded sample
images were divided in the ratio of 7:2:1 to obtain the training set, validation set, and test
set, respectively.
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Figure 2. Image of green walnut after data enhancement.

2.2. Improved UNet3+ Model

UNet3+ has made several improvements on the basis of the UNet model, but there are
still certain issues with it. The UNet3+ model is more complex than the traditional UNet
model, requiring more time and computational resources for training; moreover, due to the
complexity of the model and the increase in the number of parameters, the UNet3+ model
needs more training data to achieve better results; for some small targets or areas where
the detail information is not obvious enough, the performance of UNet3+ model still needs
to be improved.

2.2.1. UNet Network Architecture

The UNet network structure consists of an encoder and a decoder. The encoder consists
of multiple convolutional layers and pooling layers for extracting the image features after
reducing the size of the feature map. Each convolutional layer consists of convolutional
operations, batch normalization, and activation functions to enhance the representativeness
of the features and nonlinearities, and the pooling layer is used to reduce the dimensionality
of the feature map. The decoder consists of multiple up-sampling layers and convolutional
layers for mapping the features into the dimensions of the original image. The up-sampling
layer uses an inverse convolution operation to restore the feature map dimensions to
the original dimensions. The convolutional layers are used for feature fusion to extract
features through a sliding window of the convolutional kernel. In addition, each layer in
the decoder section is connected to the corresponding layer in the encoder section to form a
jump connection, which passes the low-level features and high-level features in the encoder
to the decoder, which can utilize different levels of feature information simultaneously to
improve the accuracy of segmentation.
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2.2.2. UNet3+ Network Architecture

UNet3+ [25–30] consists of five main parts: the encoder module (down-sampling),
the decoder module (up-sampling), the full-scale skip connection module, the full-scale
feature supervision module, and the classification guidance module. Figure 3 shows the
network structure.
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Encoder module: The encoding part is the same as that of UNet. First, the input
image is convolved twice with 3 × 3 convolution, followed by BatchNorm2d, ReLU. After
that, the max pool operation is performed, that is, 2 × 2 convolution with stride = 2. No
more down-sampling is performed after the fifth layer of convolution (max pool operation).
Whereas, 3 × 3 convolution operation affects the feature channel, down-sampling (Maxpool
for down-sampling) affects the resolution. BatchNorm2d performs data normalization.
ReLU, activation function. Maxpool uses a 2 × 2 convolution kernel to extract features to
shrink the feature map resolution by a factor of 1.

Decoder module: The encoder uses pooling and convolution to reduce the size of the
image, which reduces the image resolution and causes some detail information to be lost.
In the decoding path, the image information is complemented to some extent by twice
up-sampling, which restores the image to its original size in order to classify each pixel
point. Each decoder layer fuses small-scale feature maps from the encoder, same-scale
feature maps, and large-scale feature maps from the decoder, and the feature maps capture
fine-grained semantics and coarse-grained semantics at full scale. The small-scale feature
maps from the encoder reduce the size of the feature maps by maximum pooling and
change the number of channels of the feature maps by convolution. Same-scale feature
maps from the encoder change the number of channels of the feature map by convolution.
Large-scale features from the decoder expand the size of the feature map by up-sampling
and change the size and number of channels of the feature map by convolution. After that,
all the feature maps are spliced through the channel level to obtain a feature map with a
new number of channels, and then convolution, BN + ReLU, and after that, the feature
maps of the decoding layer are obtained to realize the full-scale feature fusion.

Full-scale jump connectivity module: Full-size jump connectivity changes the intercon-
nections between the encoder and decoder and the internal connections within the decoder.
Each decoder layer in UNet3+ incorporates small-scale and same-scale feature maps from
the encoder and large-scale feature maps from the decoder, which capture fine-grained and
coarse-grained semantics at the full scale. In this way, it compensates for the lack of UNet
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and UNet++ to explore enough information from the full scale to obtain a clear image of
the location and boundary of the target. Each decoder layer Xi

De fuses feature maps from
different sources as Expression (1) shows.

Xi
De =



Xi
En , i = N

H


C

(
D
(

Xk
En

))i−1

k=1
, C

(
Xi

En

)
︸ ︷︷ ︸

Scales:1th∼ith

, C
(

U(Xk
De)

)N

k=i+1︸ ︷︷ ︸
Scales:(i+1)th∼Nth


, i = 1, . . . , N − 1


(1)

C(.) presents a convolution operation, H(.) represents a feature propagation mechanism
including a convolution, a batch normalization, and a ReLU activation function. D(.) and U(.)
represent down-sampling and up-sampling, and [.] represent concatenation operations.

Full-scale feature supervision module: Full-scale deep supervision is proposed on
UNet3+ to generate a broadside output supervised by ground truth at each decoding
layer. This step involves the following operations: 3 × 3 conv, bilinear up-sampling, and
sigmoid. The specific operation of deep supervision: The last layer of the feature map
generated by the feature aggregation mechanism of each decoding layer is fed into the
3 × 3 convolutional layer, which is then accompanied by a bilinear up-sampling, where
the up-sampling is, in this case, to restore the resolution of the feature map to the level
of the input image. The output of deep supervision is then obtained by multiplying the
segmentation result obtained after up-sampling by the classification module’s result 0/1.
The result of this multiplication is then subjected to sigmoid processing. And the result
obtained is the output of deep supervision. The deeply supervised result is then input into
the loss function.

Classification bootstrap module: To achieve more accurate segmentation results,
UNet3+ predicts whether the input image contains the segmented target or not by adding
an additional classification task. As Figure 4 shows, the deepest 2D tensor Encoder5 under-
goes a series of operations containing Dropout, Convolution, Maxpooling, and Sigmoid,
and ends up with two values representing the probability of having/not having a segmen-
tation target. Utilizing the richest semantic information, the classification results can be
further guided by outputting two steps for each cut side. With the help of the Argmax
function, the two-dimensional tensor is transformed into a single output of {0,1} repre-
senting the presence/absence of a segmentation target, with 0 representing absence and
1 representing presence. Subsequently, the individual classification outputs are multiplied
with the side segmentation outputs. Due to the simplicity of the binary classification task,
this module obtains accurate classification results by optimizing the binary cross-entropy
loss function.

2.2.3. Improved UNet3+ Network Architecture

In this paper, we propose an improved UNet3+ network that incorporates CBAM
(channel and spatial Attention) and cross-entropy loss function (cross-entropy loss). The
model introduces CBAM (channel and spatial attention) in the encoder module, focuses on
the edge features of the green walnut image, suppresses unnecessary regional responses,
and suppresses irrelevant noise information such as illumination, etc. Figure 5 shows the
structure of the improved UNet3+ network.
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CBAM is introduced in the encoder module to focus on the edge features of the green
walnut image and suppress the unnecessary regional response to the uncorrelated light
noise information. CBAM is a kind of channel and spatial attention in hybrid attention.
As Figure 6 shows for CBAM [31], the CBAM module is able to sequentially generate
attention feature map information in both channel and spatial dimensions, and then the
two kinds of feature map information are multiplied with the previous original input
feature map for adaptive feature correction to produce the final feature map of the green
walnut image. The multiplication signs in Figure 6 denote element-level multiplication,
with a broadcast mechanism for dimensional transformation and matching in between.
The first multiplication sign indicates that the input feature F is multiplied with the output
Mc(F) of the channel attention module to obtain the result F′. The second multiplication
sign indicates that the result F′ after multiplying the input feature with the output of the
channel attention module enters the spatial attention module to obtain Mc(F′), and Mc(F′)
is multiplied with F′ to obtain F′′. The network backbone generates the feature map F ∈
RC×H×W, and the CBAM produces the 1D channel attention feature map Mc∈RC×1×1, and
the 2D spatial attention feature map MS ∈ R1×H×W. The computational formula is:

F′ = Mc(F)⊗ F
F′′ = Ms(F′)⊗ F′ (2)

⊗ denotes element-level multiplication, with a broadcast mechanism for dimensional
transformation and matching in between.
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Figure 6. CBAM network architecture.

As Figure 7 shows for the channel attention module, both average and maximum
pooling methods are used in the channel attention module; Fc

avg and Fc
max represent

the average pooled feature and maximum pooled feature, respectively. The features are
then fed into a shared multilayer perceptron (MLP) network to generate the final channel
attention feature map Mc ∈ RC/r×1×1, and the channel attention is computed as:

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F)))
= σ(W1(W0(Fc

avg)) + W1(W0(Fc
max)))

(3)
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Figure 7. Channel attention module.

Figure 8 shows the spatial attention module. To compute the spatial attention, firstly,
average pooling and maximum pooling in the channel dimension are performed, and then
the feature maps they produce are spliced together (concat). Then on the spliced feature
maps, a convolution operation is used to generate the final spatial attention feature maps
Ms(F) ∈ RH,W. Two pooling methods are used in the channel dimension to generate the 2D
feature maps: Fs

avg ∈ R1×H×W and Fs
max ∈ R1×H×W, and the spatial attention computation

formula is given as follows:

Ms(F) = σ( f 7×7([AvgPool(F); MaxPool(F)]))
= σ( f 7×7(Fs

avg; Fs
max))

(4)
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2.2.4. Constructing the Loss Function

The green walnut dataset for this experiment is class-balanced and pixels in the image
can be learned equally. Cross-entropy loss [32] is used as the loss function of the model
and can improve the performance of network models. The cross-entropy loss function is
calculated as:

LCE = −
M

∑
c=1

yclg(pc) (5)

where LCE is the cross-entropy loss; M is the number of categories of the sample; yc has only
two values 0 and 1, if the sample category is consistent with the current category, yc takes 1,
otherwise yc takes 0; PC is the probability that the current sample prediction belongs to the
c category. The loss function is a pixel-level cross-entropy loss, which examines each pixel
individually and compares the predictions (probability distribution vectors) for each pixel
category with the coded label vectors.
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2.3. Experimental Design
2.3.1. Training Environment

Hardware environment: The algorithm processing platform is a VMware 7.1 server,
the processor is an Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz, the graphics card model
is an NVIDIA Corporation GP102GL [Tesla P40], and the GPU model is a VMware
SVGA II Adapter.

Software environment: The Ubuntu 20.04.1 LTS was used, the programming lan-
guage was Python 3.8.17, and the deep learning framework Pytorch 1.7.1 was used for
network construction.

2.3.2. Training Parameters and Methods

In this paper, the network optimizer is selected as SGD optimizer, the learning rate is
set to 10−3, the number of batch input samples is 2, the loss function is set to CrossEntropy-
Loss, and the learning rate iterator adopts CosineAnnealingLR. The weight file is saved
once for every ten epoch iterations in the experiments, and the training is conducted for a
total of 80 rounds. For training the model, the image pixels were 512 × 512 pixels, and the
training process took almost 50 h.

2.3.3. Indexes for Model Evaluation

The results in the semantic segmentation task can be categorized as true positive
(TP), false positive (FP), true negative (TN), false negative (FN). Where negative refers
to the part of the non-object label (generally for the background information other than
the target), and positive generally refers to the part of the information that contains the
label. TP refers to the part of the input image that contains the label information and
is correctly recognized as the corresponding label information; FP refers to the part of
the input image that contains the background information and is incorrectly recognized
as the label information; TN means the part of the input image containing background
information and is correctly recognized as the corresponding background information;
FN means the part of the input image containing label information and is incorrectly
recognized as background information. Table 1 shows the corresponding confusion matrix.

Table 1. Confusion matrix.

Real Value Real Value

Positive Negative
Predicted value Positive True positive False positive
Predicted value Negative False negative True negative

Intersection Over Union (IOU), Precision, Recall, and F1-score are used as model evalua-
tion indexes. The Intersection Over Union is the ratio of the overlapping part of the predicted
and real regions to the pooled part. The formulas for Precision and Recall are as follows:

Precision =
TP

TP + FP
× 100% (6)

Recall =
TP

TP + FN
× 100% (7)

The Precision is the ratio of the number of correctly predicted positive samples to the
number of samples predicted to be positive, that is, the “accuracy rate”; Recall is the ratio of
the number of correctly predicted positive samples to the number of true positive samples,
that is, the “check-perfect rate”. The F1-score is a harmonic mean that combines precision
and recall, and is calculated as follows:

F1 − score =
2 × Precison × Recall

Precision + Recall
(8)
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3. Results and Discussion
3.1. Impact of CBAM Module on Model Performance

Under the same conditions of other parameters, this paper trains the model before and
after using the CBAM module and validates it on the test set. Table 2 shows the experimental
results. Compared to not using the CBAM module, the IOU, accuracy, and F1 values of
the improved UNet3+ (the lowest layer of the encode module, CBAM) network model
segmentation are improved by 0.76, 0.8, and 0.47 percentage points, respectively, which
indicates that the CBAM module effectively improves the performance of the network model.

Table 2. Experimental results before and after using the CBAM module.

Model IOU/% Precision/% Recall/% F1-Score/%

Without CBAM 84.89 88.71 95.64 91.60
With CBAM (one layer) 85.65 89.51 95.50 92.07
With CBAM (five layers) 88.36 91.82 96.00 93.70

The IOU, accuracy, and F1 values of the improved UNet3+ (five layers of CBAM are
added to the encode module) network model segmentation are improved by 3.47, 3.11, and
2.1 percentage points, respectively, indicating that the increase in the number of CBAM
layers effectively improves the performance of the network model.

3.2. Improved UNet3+ Network Model Improvement Effect

UNet, UNet++, UNet3+, and PSPNet, as classical models in semantic segmentation,
are characterized by high detection accuracy and model innovation. Therefore, in the green
walnut segmentation effect experiment, UNet model, UNet++ model, UNet3+ model, PSP-
Net model, and improved UNet3+ model are selected to compare the segmentation effect.
Figure 9 shows the segmentation effect of green walnuts with different network models,
and the real labels are the self-manually labeled labels. The comparison shows that for the
more overlapping green walnuts, the other models will have obvious segmentation incom-
pleteness, which is difficult to be applied in practical tasks, while the improved UNet3+
network model can segment the green walnuts more accurately and comprehensively,
which further shows that the improvements made in this paper are effective.
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In order to comprehensively analyze the segmentation performance differences be-
tween the improved UNet3+ model and the UNet model, UNet++ model, and UNet3+
model, under the same experimental conditions of the other parameters, 80 rounds of
training were performed using the green walnut dataset constructed in this paper, and
Figure 10 shows the change curves of the training intersection and integration ratios (IOUs)
of each model. It is found that, compared with other models, the IOU curve of the improved
UNet3+ model’s IOU curve is at the top, and the IOU value is finally stabilized at 88.36%,
indicating that a better performance is achieved at the early stage of training. As can be seen
in Figure 9, in the scenario of overlapping green-skinned walnut fruits, the UNet model
and PSPNet model are obviously incompletely segmented, while the improved UNet3+ can
segment the boundary better than the other models, as Pictue1 shows for the small-targeted
fruits, the UNet3+ model is incompletely segmented and the boundary is not smooth, and
the fruit portion of the YOLOV8-seg model is not partially segmented. For small target
fruits, the UNet3+ model segmentation is incomplete, and the boundary is not smooth,
and the YOLOV8-seg model fruit part segmentation is incomplete, while the improved
UNet3+ model segmentation of the fruit contour is very clear, which is better than the
other models, as Pictue4 shows. For the case that the shadows obscure the fruits under the
light, the UNet++ model segmentation is incomplete, while the improved UNet3+ model
still segments out the complete fruit contour, as Pictue5 shows. Therefore, in synthesizing
various scenarios, the improved UNet3+ model is clearly superior to the other models.
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The trained different network models were tested on the green walnut test set images
and evaluated based on IOU, Precision, Recall, F1-score, and Time, and Table 3 shows the
experimental results.

Table 3. Accuracy evaluation of the segmentation effect of different network models on green walnuts.

Network Name IOU/% Precision/% Recall/% F1-Score/% Time s/6

UNet 82.33 86.60 95.12 89.98 0.7671
UNet++ 83.70 87.58 95.70 90.85 1.4050
UNet3+ 84.89 88.71 95.64 91.60 1.3632

YOLOv8-seg 72.08 91.44 77.29 83.77 0.0588
PSPNet 86.35 89.38 96.91 92.49 0.7124

Improved UNet3+ 88.36 91.82 96.00 93.70 1.6931
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As can be seen from Table 3, the improved UNet3+ model has improved performance
in the green walnut segmentation task compared with the UNet model, in which the
IOU value, accuracy rate, and F1 value are improved by 6.03, 5.22, and 3.72 percentage
points, respectively; compared with the UNet++ network, the IOU value, accuracy rate, and
F1 value are improved by 4.66, 4.24, and 2.85 percentage points, respectively; compared
with the UNet3+ model, the accuracy rate was improved by 3.11 percentage points; and
compared with the PSPNet model, the accuracy rate was improved by 2.44 percentage
points. Compared with the YOLOv8-seg model, although the precision is only improved
by 0.38 percentage points, the combined evaluation index F1 of precision and recall is
9.93 percentage points higher, and the improved UNet3+ is more advantageous. When
studying the inference time of every six images, the average time consumed by the im-
proved UNet3+ model is 1.6931 s. Upgrading the manual recognition method commonly
used at the present stage to intelligent recognition, the detection accuracy is more important
than the detection time when considering the performance of different intelligent recogni-
tion methods, and the detection time of a single green walnut is order of “seconds”, which
can meet the detection requirements, so the detection time of the improved UNet3+ model
has met the demand.

4. Conclusions

When aiming for the use of target detection algorithms to directly recognize green
walnuts in the natural environment, there will be more problems such as omission or misde-
tection. In order to meet the demand for accurate recognition of green walnuts, this paper
proposes an improved UNet3+ network model. The model introduces the channel and
spatial mechanism (convolutional block attention module, CBAM) module in the encoder
module, focuses on the edge features of the green walnut image, suppresses unnecessary
regional responses, and suppresses irrelevant noise information such as illumination. The
model realizes the accurate segmentation of green walnut, provides a technical reference
for the automatic detection of green walnut, and provides a new solution to the problem of
target detection and recognition in agricultural automation, and the main conclusions are
as follows:

1. The CBAM module focuses on the edge features of the green walnut image, sup-
presses the unnecessary regional response, and suppresses the noise information
that is irrelevant, such as illumination, etc., and the model is able to realize accurate
segmentation, and the segmentation accuracy of the model is as high as 91.82%, which
is an improvement of 3.11 percentage points compared with the UNet3+ model that
does not use the CBAM.

2. The research method in this paper is feasible in green walnut image segmentation,
and the accuracy, IOU value, and F1 value on the test set reach 91.82%, 88.36%, and
93.70%, respectively, with high extraction accuracy. Compared with other classical
deep learning models for green walnut, the improved UNet3+ model shows better
extraction effect in green walnut segmentation, and the detection time of a single
green walnut is in the order of “seconds” to meet the detection requirements, which
can meet the practical application level.
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