Inclusion of Dried Black Soldier Fly Larvae in Free-Range Laying Hen Diets: Effects on Production Efficiency, Feed Safety, Blood Metabolites, and Hen Health
Abstract
:1. Introduction
2. Materials and Methods
2.1. Source of DBSFL
2.2. Experimental Design
2.3. Diet Formulation and Feed Nutrient Analysis
Ingredients (% w/w) | Diets | ||
---|---|---|---|
0% DBSFL 2 | 10% DBSFL | 18% DBSFL | |
Chopped DBSFL | 0 | 10 | 18 |
Soybean meal | 20 | 10 | 0 |
Sunflower meal | 14.3 | 12.3 | 15 |
Soybean oil | 4.95 | 0.5 | 0.5 |
Ground Corn | 49.5 | 41.5 | 30 |
Barley | 0 | 3.16 | 10 |
Wheat | 0 | 9 | 4 |
Wheat bran | 0 | 1 | 10 |
Dehydrated alfalfa meal | 1 | 3 | 3.4 |
DL-Methionine | 0.15 | 0 | 0 |
Limestone | 8.65 | 8.12 | 7.7 |
Dicalcium phosphate | 0.5 | 0.5 | 0.5 |
Common Salt | 0.35 | 0.32 | 0.3 |
Vitamin Mineral Premix | 0.4 | 0.4 | 0.4 |
Choline | 0.1 | 0.1 | 0.1 |
Phytase Enzyme | 0.1 | 0.1 | 0.1 |
Calculated composition | |||
Dry matter (%) | 91.13 | 91.24 | 91.83 |
M.E. (Kcal/g) | 2.79 | 2.79 | 2.79 |
Crude protein (%) | 17.02 | 17.02 | 17.02 |
Ether extract (%) | 7.9 | 6.73 | 9.9 |
Calcium (%) | 3.52 | 3.53 | 3.53 |
Na (%) | 0.18 | 0.18 | 0.18 |
Total phosphorus (%) | 0.54 | 0.51 | 0.59 |
2.4. Experimental Protocols and Production Performance Data
2.5. Blood Chemistry and White Blood Cells (WBC) Differential Counts
2.6. Fecal Microbial Analysis
2.7. Health and Welfare Parameters of Laying Hens
2.8. Post-Mortem Examination of the Gastrointestinal Tract
2.9. Statistical Analysis
- CRD with repeated subsampling was used when measurements were conducted repeatedly during the experiment on hens (i.e., subsamples) within each trainer (i.e., experimental unit), e.g., blood biochemistry, WBC differential, and hen weight.
- CRD repeated in time were used when measurements were conducted repeatedly on the trailers without any subsampling, e.g., feed intake, HDEP, egg weight, and FCR.
3. Results
3.1. Feed Composition Analyses
3.1.1. Metal Profiles of Diets
3.1.2. Amino Acid Profiles of Diets
3.1.3. Fatty Acids Profiles of Diets
3.2. Hen Weight
3.3. Feed Intake
3.4. Hen-Day Egg Production (HDEP)
3.5. Egg Weight
3.6. Feed Conversion Ratio (FCR)
3.7. Blood Metabolites
3.7.1. Blood Biochemistry
3.7.2. WBC Differential Counts
3.8. Fecal Microbial Analysis
3.9. Health and Welfare Parameters
3.10. Post-Mortem Examination of Gastrointestinal Tract
4. Discussion
- The 18% DBSFL diet was 30% bulkier than the other two diets because of the addition of 10% wheat bran to balance the nutrient provision with the high lipid content of DBSFL in the diet. The bulkiness of a diet impacts the amount of feed consumed (see Waldroup et al. [43]). Leeson et al. [44] reported increased feed intake because of nutrient dilution in bulky feed, which resulted in lower weight gain in layers. Oku et al. [45] demonstrated the inhibitory role of unavailable carbohydrates on the intestinal Ca absorption caused by the loss of Ca-binding protein when large quantities of undigested ingredients transit the gastrointestinal tract. Pelleting bulky diets reduces their bulkiness [46]. This solution can be applied to reduce the volume of full-fat DBSFL diets when using a bulkier ingredient (e.g., wheat bran) is necessary to balance the diets.
- The exoskeleton of the chopped larvae and the tissue sheltered inside may pass through the digestive system without being digested, resulting in the loss of some nutrients. Despines and Axtell [47] reported observations of undigested larval exoskeletons in the excreta of turkey pullets when they were fed darkling beetle larvae, and Zuidhof et al. [48] had similar observations in feeding house fly larvae to turkey pullets. The form of DBSFL (whole, chopped, or ground) therefore affects digestion and absorption of its nutrients [23,24]. Although crude protein levels were similar in the control and 18% BSFL diets, the plasma protein concentration was lower in 18% DBSFL hens, probably because of the lower digestibility and absorption of the nutrients in DBSFL considering the presence of the exoskeleton. Plasma proteins are good indicators of health and contribute to gluconeogenesis, maintenance of colloid osmotic pressure, production of enzymes and immunoglobulins, and transport of minerals and hormones [49]. Kerstetter et al. [50,51] reported the negative impact of low-dietary protein on Ca absorption in the gut. Plasma protein and Ca concentrations declined with increases in DBSFL levels in the present study. The 18% BSFL hens also had thinner egg shells compared to the control eggs [52]. Short-term studies and studies using old or low egg production hens may not be able to detect such Ca deficiency, and this may explain the inconsistency in the results reported from different studies.
- Another potential factor affecting the Ca digestion and absorption of the 18% DBSFL hens could be related to the use of full-fat DBSFL. Using full-fat DBSFL to fully replace soybean meal and the majority of the soybean oil in the diet resulted in a high lipid content in the feed. The negative impact of the higher fatty acid concentrations in feed on the absorption of some nutrients, especially Ca, is well documented [53,54] because Ca can combine with fatty acids in the gastrointestinal tract to form insoluble soaps, which prevent its absorption. The availability of a high level of digestible Ca is crucial for egg production. Although the Ca concentrations were higher than the recommended level in all three experimental diets, the Ca present in the exoskeleton of the whole or chopped DBSFL could have a low bioavailability (see point 4 below). This may result in a faster depletion of the medullary bone Ca a few weeks after the beginning of egg production [55]. The drop in egg production of the 18% DBSFL hens contributed to the FCR calculation. In addition to the drop in egg production, the egg weights of the 18% DBSFL hens were also significantly lighter than the control eggs after the first 4 weeks of the experiment. Further research to determine the digestibility of the Ca in the DBSFL exoskeleton for laying hens may be worthwhile.
- The total percent oil concentrations (crude fat) of the three experimental diets exceeded the fat requirements [30]. However, the plasma triglycerides of the 18% DBSFL hens were lower than those of the control hens, and Marono et al. [42] reported similar results. Avian energy reserves are mostly stored as lipids, specifically triglycerides [56]. Serum triglyceride concentrations are the most sensitive blood metabolites to feed or water deprivation [57]. Hossain and Blair [58] also reported that serum triglyceride concentrations were significantly lower in the birds fed diets containing chitin compared to the control birds. Lower plasma triglycerides in the 18% DBSFL hens may indicate that they were not absorbing the optimally required nutrients.
- Finke [23] reported that the chitin content of the BSFL is 2-3% on an “as-is” basis (i.e., 5 to 7.5% on a dry-matter basis). Marono et al. [42] calculated that full replacement of soybean meal with 17% of BSFL meal (with 5.4% chitin content on a dry-matter basis) resulted in the provision of 1.02 g chitin/day/hen. The presence of chitin in the exoskeleton of DBSFL may influence the digestibility and bioavailability of its nutrients [59,60]. Chitin is insoluble in most solvents and has limited digestibility in poultry diets, and the inclusion of chitin in broiler feed significantly reduced the apparent digestibility of protein and the serum triglyceride concentration [58]. Chitin may also result in a slight overestimation of the crude protein content of the feed because it contains an N-acetyl group in its structure [61]. Biasato et al. [62] documented higher feed intake in diets containing high levels of chitin.
- The results of the present study showed that the 18% DBSFL hens had a heavier duodenum (percent of the digestive tract) than the control hens. Johnson [55] indicated that Ca absorption formation occurs in the duodenum and upper jejunum. Biasato et al. [62] reported that inclusion of the yellow mealworm larvae in broiler chicken diets resulted in shorter villi and deeper crypts in the duodenum. This, in turn, decreased the digestibility and absorption of nutrients and caused poor performance in the birds. The full replacement of the soybean meal with BSFL meal resulted in a higher villi height in the duodenum but a lower villi height in the jejunum and the ileum in laying hens, as well as a change in the enzymatic activities of the brush border membrane [42,63]. The effects of the inclusion of BSFL on the digestibility of nutrients and intestinal enzymatic activities require further investigation.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Falcon, W.P.; Naylor, R.L.; Shankar, N.D. Rethinking global food demand for 2050. Popul. Dev. Rev. 2022, 48, 921–957. [Google Scholar] [CrossRef]
- Bikker, P.; Jansman, A.J.M. Composition and utilization of feed by monogastric animals in the context of circular food production systems. Animal 2023, 17, 100892. [Google Scholar] [CrossRef] [PubMed]
- Ravindran, V.; Blair, R. Feed resources for poultry production in Asia and the Pacific. III. Animal protein sources. World’s Poult. Sci. J. 1993, 49, 219–235. [Google Scholar] [CrossRef]
- Jędrejek, D.; Levic, J.; Wallace, J.; Oleszek, W. Animal by-products for feed: Characteristics, European regulatory framework, and potential impacts on human and animal health and the environment. J. Animal Feed Sci. 2016, 25, 189–202. Available online: http://oa.fins.uns.ac.rs/handle/123456789/56 (accessed on 7 August 2023). [CrossRef]
- Sapkota, A.R.; Lefferts, L.Y.; McKenzie, S.; Walker, P. What do we feed to food-production animals? A review of animal feed ingredients and their potential impacts on human health. Environ. Health Perspect. 2007, 115, 663. [Google Scholar] [CrossRef] [PubMed]
- National Standard of Canada. Canadian General Standards Board guidelines for Organic production systems (CAN/CGSB-32.310-2015). Amended 2021. Available online: https://www.tpsgc-pwgsc.gc.ca/ongc-cgsb/programme-program/normes-standards/internet/032-310/032-310-eng.html (accessed on 10 August 2023).
- Früh, B.; Schlatter, B.; Isensee, A.; Maurer, V.; Willer, H. Report on organic protein availability and demand in Europe. Research Institute of Organic Agriculture: Frick, Switzerland, 2014. Available online: https://orgprints.org/id/eprint/28067/3/FINAL-REPORT-ICOPP-2015-02-08.pdf (accessed on 13 May 2023).
- FAO. Tackling food loss and waste: A triple win opportunity. 2022. Available online: https://www.fao.org/newsroom/detail/FAO-UNEP-agriculture-environment-food-loss-waste-day-2022/en (accessed on 5 September 2023).
- Sogari, G.; Oddon, S.B.; Gasco, L.; van Huis, A.; Spranghers, T.; Mancini, S. Recent advances in insect-based feeds: From animal farming to the acceptance of consumers and stakeholders. Animal 2023, 17, 100904. [Google Scholar] [CrossRef] [PubMed]
- Sverguzova, S.V.; Shaikhiev, I.H.; Sapronova, Z.A.; Fomina, E.V.; Makridina, Y.L. Use of fly larvae Hermetia illucens in poultry feeding: A review paper. J. Water Land Dev. 2021, 49, 95–103. [Google Scholar] [CrossRef]
- Alagappan, S.; Rowland, D.; Barwell, R.; Mantilla, S.M.O.; Mikkelsen, D.; James, P.; Yarger, O.; Hoffman, L.C. Legislative landscape of black soldier fly (Hermetia illucens) as feed. J. Insects Food Feed 2022, 8, 343–355. [Google Scholar] [CrossRef]
- Moula, N.; Detilleux, J. A meta-analysis of the effects of insects in feed on poultry growth performances. Animals 2019, 9, 201. [Google Scholar] [CrossRef]
- Diener, S.; Zurbrügg, C.; Tocknera, K. Conversion of organic material by black soldier fly larvae–Establishing optimal feeding rates. Waste Manag. Res. 2009, 27, 603–610. [Google Scholar] [CrossRef]
- Tran, G.; Gnaedinger, C.; Mélin, C. Black soldier fly larvae (Hermetia illucens). Feedipedia, a programme by INRA, CIRAD, AFZ and FAO. 2015. Available online: http://www.feedipedia.org/node/16388 (accessed on 12 August 2023).
- Belghit, I.; Liland, N.S.; Gjesdal, P.; Biancarosa, I.; Menchetti, E.; Li, Y.; Waagbø, R.; Krogdahl, Å.; Lock, E.-J. Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar). Aquaculture 2019, 503, 609–619. [Google Scholar] [CrossRef]
- Borgogno, M.; Dinnella, C.; Iaconisi, V.; Fusi, R.; Scarpaleggia, C.; Schiavone, A.; Monteleone, E.; Gasco, L.; Parisi, G. Inclusion of Hermetia illucens larvae meal on rainbow trout (Oncorhynchus mykiss) feed: Effect on sensory profile according to static and dynamic evaluations. J. Sci. Food Agric. 2017, 97, 3402–3411. [Google Scholar] [CrossRef] [PubMed]
- Driemeyer, H. Evaluation of black soldier fly (Hermetia illucens) larvae as an alternative protein source in pig creep diets in relation to production, blood and manure microbiology parameters. Ph.D. Thesis, Stellenbosch University, Stellenbosch, South Africa, 2016. [Google Scholar]
- Kroeckel, S.; Harjes, A.G.; Roth, I.; Katz, H.; Wuertz, S.; Susenbeth, A.; Schulz, C. When a turbot catches a fly: Evaluation of a pre-pupae meal of the Black Soldier Fly (Hermetia illucens) as fish meal substitute—Growth performance and chitin degradation in juvenile turbot (Psetta maxima). Aquaculture 2012, 364, 345–352. [Google Scholar] [CrossRef]
- Lopez, Z.P.; Purnamasari, L.; dela Cruz, J.F. A review: Evaluation of black soldier fly (Hermetia illucens) larvae meal as a dietary protein source in poultry diets. Biotropika J. Trop. Biol. 2022, 10, 191–202. [Google Scholar] [CrossRef]
- Sealey, W.M.; Gaylord, T.G.; Barrows, F.T.; Tomberlin, J.K.; McGuire, M.A.; Ross, C.; St-Hilaire, S. Sensory analysis of rainbow trout, Oncorhynchus mykiss, fed enriched black soldier fly prepupae, Hermetia illucens. J World Aquac Soc. 2011, 42, 34–45. [Google Scholar] [CrossRef]
- St-Hilaire, S.; Cranfill, K.; McGuire, M.A.; Mosley, E.E.; Tomberlin, J.K.; Newton, L.; Sealey, W.; Sheppard, C.; Irving, S. Fish offal recycling by the black soldier fly produces a foodstuff high in omega-3 fatty acids. J. World Aquac. Soc. 2007, 38, 309–313. [Google Scholar] [CrossRef]
- Stadtlander, T.; Stamer, A.; Buser, A.; Wohlfahrt, J.; Leiber, F.; Sandrock, C. Hermetia illucens meal as fish meal replacement for rainbow trout on farm. J. Insects Food Feed. 2017, 3, 165–175. [Google Scholar] [CrossRef]
- Finke, M.D. Complete nutrient content of four species of feeder insects. Zoo Biol. 2013, 32, 27–36. [Google Scholar] [CrossRef]
- Blair, R. Nutrition and Feeding of Organic Poultry; CABI: Wallingford, UK, 2008. [Google Scholar]
- Erickson, M.C.; Islam, M.; Sheppard, C.; Liao, J.; Doyle, M.P. Reduction of Escherichia coli O157: H7 and Salmonella enterica serovar enteritidis in chicken manure by larvae of the black soldier fly. J. Food Prot. 2004, 67, 685–690. [Google Scholar] [CrossRef]
- Lalander, C.; Diener, S.; Magri, M.E.; Zurbrügg, C.; Lindström, A.; Vinnerås, B. Faecal sludge management with the larvae of the black soldier fly (Hermetia illucens)—From a hygiene aspect. Sci. Total Environ. 2013, 458, 312–318. [Google Scholar] [CrossRef]
- Carpenter, K.J.; Clegg, K.M. The metabolizable energy of poultry feeding stuffs in relation to their chemical composition. J. Sci. Food Agric. 1956, 7, 45–51. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Poultry, 9th ed.; The National Academies Press: Washington, DC, USA, 1994. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International; Latimer, G.W., Ed.; AOAC International: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Novogen. Management Guide Commercial Layers—NovoGen Brown; NovoGen: Quintin, France, 2015. [Google Scholar]
- Novogen. Production Targets Commercial Layers—Alternative Systems—NOVOgen Brown; NovoGen: Quintin, France, 2015. [Google Scholar]
- Tauson, R.; Kjaer, J.; Maria, G.A.; Cepero, R.; Holm, K.E. Applied scoring of integument and health in laying hens. Animal Sci. Pap. Rep. 2005, 23 (Suppl. S1), 153–159. [Google Scholar]
- Turk, D.E. The anatomy of the avian digestive tract as related to feed utilization. Poult. Sci. 1982, 61, 1225–1244. [Google Scholar] [CrossRef] [PubMed]
- Schank, J.C.; Koehnle, T.J. Pseudoreplication is a pseudoproblem. J. Comp. Psychol. 2009, 123, 421–433. [Google Scholar] [CrossRef] [PubMed]
- Olejnik, S.; Algina, J. Generalized eta and omega squared statistics: Measures of effect size for some common research designs. Psychol. Methods 2003, 8, 434–447. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Monteiro dos Santos, D.K.; Santana, T.M.; de Matos Dantas, F.; Farias, A.B.D.S.; Epifânio, C.M.F.; Prestes, A.G.; da Fonseca, F.A.L.; Parisi, G.; Viegas, E.M.M.; Gonçalves, L.U. Defatted black soldier fly larvae meal as a dietary ingredient for tambaqui (Colossoma macropomum): Digestibility, growth performance, haematological parameters, and carcass composition. Aquac. Res. 2022, 53, 6762–6770. [Google Scholar] [CrossRef]
- Ruhnke, I.; Normant, C.; Campbell, D.L.; Iqbal, Z.; Lee, C.; Hinch, G.N.; Roberts, J. Impact of on-range choice feeding with black soldier fly larvae (Hermetia illucens) on flock performance, egg quality, and range use of free-range laying hens. Anim Nutr. 2018, 4, 452–460. [Google Scholar] [CrossRef]
- Kawasaki, K.; Hashimoto, Y.; Hori, A.; Kawasaki, T.; Hirayasu, H.; Iwase, S.I.; Hashizume, A.; Ido, A.; Miura, C.; Miura, T.; et al. Evaluation of black soldier fly (Hermetia illucens) larvae and pre-pupae raised on household organic waste, as potential ingredients for poultry feed. Animals 2019, 9, 98. [Google Scholar] [CrossRef]
- Tahamtani, F.M.; Ivarsson, E.; Wiklicky, V.; Lalander, C.; Wall, H.; Rodenburg, T.B.; Tuyttens, F.A.M.; Hernandez, C.E. Feeding live Black Soldier Fly larvae (Hermetia illucens) to laying hens: Effects on feed consumption, hen health, hen behavior, and egg quality. Poult. Sci. 2021, 100, 101400. [Google Scholar] [CrossRef]
- Maurer, V.; Holinger, M.; Amsler, Z.; Früh, B.; Wohlfahrt, J.; Stamer, A.; Leiber, F. Replacement of soybean cake by Hermetia illucens meal in diets for layers. J. Insects Food Feed. 2015, 2, 83–90. [Google Scholar] [CrossRef]
- Marono, S.; Loponte, R.; Lombardi, P.; Vassalotti, G.; Pero, M.E.; Russo, F.; Gasco, L.; Parisi, G.; Piccolo, G.; Nizza, S.; et al. Productive performance and blood profiles of laying hens fed Hermetia illucens larvae meal as total replacement of soybean meal from 24 to 45 weeks of age. Poult. Sci. 2017, 96, 1783–1790. [Google Scholar] [CrossRef] [PubMed]
- Waldroup, P.W.; Mitchell, R.J.; Payne, J.R.; Johnson, Z.B. Characterization of the response of broiler chickens to diets varying in nutrient density content. Poult. Sci. 1976, 55, 130–145. [Google Scholar] [CrossRef]
- Leeson, S.; Summers, J.D.; Caston, L.J. Response of layers to low nutrient density diets. J. Appl. Poult. Res. 2001, 10, 46–52. [Google Scholar] [CrossRef]
- Oku, T.; Konishi, F.; Hosoya, N. Mechanism of inhibitory effect of unavailable carbohydrate on intestinal calcium absorption. J. Nutr. 1982, 112, 410–415. [Google Scholar] [CrossRef] [PubMed]
- Senkoylu, N.; Dale, N. Sunflower meal in poultry diets: A review. World’s Poult. Sci. J. 1999, 55, 153–174. [Google Scholar] [CrossRef]
- Despines, J.L.; Axtell, R.C. Feeding behaviour and growth of turkey poults fed larvae of darkling beetle Alphitobius diaperinus. Poult. Sci. 1994, 73, 1526–1533. [Google Scholar] [CrossRef]
- Zuidhof, M.J.; Molnar, C.L.; Morley, F.M.; Wray, T.L.; Robinson, F.E.; Khan, B.A.; Al-Ani, L.; Goonewardene, L.A. Nutritive value of house fly (Musca domestica) larvae as a feed supplement for turkey poults. Anim. Feed Sci. Tech. 2003, 105, 225–230. [Google Scholar] [CrossRef]
- Crespo, R.; Shivaprasad, H.L. Interpretation of Laboratory Results and Values. In Backyard Poultry Medicine and Surgery: A Guide for Veterinary Practitioners; Greenacre, C.B., Morishita, T.Y., Eds.; John Wiley and Sons: Ames, IA, USA, 2014; pp. 283–296. [Google Scholar]
- Kerstetter, J.E.; O’Brian, K.O.; Insogna, K.L. Dietary protein affects intestinal calcium absorption. Am. J. Clin. Nutr. 1998, 68, 859–865. [Google Scholar] [CrossRef]
- Kerstetter, J.E.; O’Brien, K.O.; Insogna, K.L. Dietary protein, calcium metabolism, and skeletal homeostasis revisited. Am. J. Clin. Nutr. 2003, 78, 584S–592S. [Google Scholar] [CrossRef]
- Bejaei, M.; Cheng, K.M. The effect of including full-fat dried black soldier fly larvae in laying hen diet on egg quality and sensory characteristics. J. Insects Food Feed. 2020, 6, 305–314. [Google Scholar] [CrossRef]
- Gacs, G.; Barltrop, D. Significance of Ca-soap formation for calcium absorption in the rat. Gut 1977, 18, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Bouvarel, I.; Nys, Y.; Lescoat, P. Hen nutrition for sustained egg quality. In Improving the Safety and Quality of Eggs and Egg Products; Nys, Y., Bain, M., Van Immerseel, F., Knovel, A., Eds.; Woodhead Pub: Oxford, UK, 2011; pp. 261–299. [Google Scholar]
- Johnson, A.L. Reproduction in the female. In Sturkie’s Avian Physiology; Whittow, G.C., Ed.; Academic Press: Cambridge, MA, USA, 1999; pp. 569–596. [Google Scholar]
- Blem, C.R. Energy Balance. In Sturkie’s Avian Physiology; Whittow, G.C., Ed.; Academic Press: Cambridge, MA, USA, 1999; pp. 327–342. [Google Scholar]
- Huff, W.E.; Bayyari, G.R.; Roth, N.C.; Balog, J.M. Effect of feed and water withdrawal on green liver discoloration, serum triglycerides, and hemoconcentration in turkeys. Poult. Sci. 1996, 75, 59–61. [Google Scholar] [CrossRef] [PubMed]
- Hossain, S.M.; Blair, R. Chitin utilisation by broilers and its effect on body composition and blood metabolites. Br. Poult. Sci. 2007, 48, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Razdan, A.; Pettersson, D. Effect of chitin and chitosan on nutrient digestibility and plasma lipid concentrations in broiler chickens. Br. J. Nutr. 1994, 72, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Marono, S.; Piccolo, G.; Loponte, R.; Di Meo, C.; Attia, Y.A.; Nizza, A.; Bovera, F. In vitro crude protein digestibility of Tenebrio molitor and Hermetia illucens insect meals and its correlation with chemical composition traits. Ital. J. Anim. Sci. 2015, 14, 338–343. [Google Scholar] [CrossRef]
- Finke, M.D. Nutrient content of insects. In Encyclopedia of Entomology; Springer: Dordrecht, The Netherlands, 2008; pp. 2623–2646. [Google Scholar]
- Biasato, I.; Gasco, L.; De Marco, M.; Renna, M.; Rotolo, L.; Dabbou, S.; Capucchio, M.T.; Biasibetti, E.; Tarantola, M.; Sterpone, L.; et al. Yellow mealworm larvae (Tenebrio molitor) inclusion in diets for male broiler chickens: Effects on growth performance, gut morphology, and histological findings. Poult. Sci. 2018, 97, 540–548. [Google Scholar] [CrossRef]
- Cutrignelli, M.I.; Messina, M.; Tulli, F.; Randazzo, B.; Olivotto, I.; Gasco, L.; Loponte, R.; Bovera, F. Evaluation of an insect meal of the Black Soldier Fly (Hermetia illucens) as soybean substitute: Intestinal morphometry, enzymatic and microbial activity in laying hens. Res. Vet. Sci. 2018, 117, 209–215. [Google Scholar] [CrossRef]
- Zhang, F.; Li, Y.; Yang, M.; Li, W. Content of heavy metals in animal feeds and manures from farms of different scales in Northeast China. Int. J. Environ. Res. Public Health 2012, 9, 2658–2668. [Google Scholar] [CrossRef]
Metal (ppm on Dry Matter Basis) | Diets | ||
---|---|---|---|
0% DBSFL | 10% DBSFL 1 | 18% DBSFL | |
Aluminum | 134.53 | 186.13 | 180.43 |
Antimony | <5.00 | <5.00 | <5.00 |
Arsenic | <2.50 | <2.50 | <2.50 |
Barium | 3.97 | 4.78 | 6.51 |
Boron | 11.48 | 7.56 | 5.96 |
Cadmium | <0.50 | <0.50 | <0.50 |
Calcium | 41,087.08 | 48,163.13 | 44,186.61 |
Chromium | 7.17 | 7.22 | 6.07 |
Cobalt | <1.00 | <1.00 | <1.00 |
Copper | 25.49 | 26.34 | 20.29 |
Iron | 269.29 | 300.03 | 261.39 |
Lead | <2.50 | <2.50 | <2.50 |
Magnesium | 1941.29 | 2052.45 | 2546.60 |
Manganese | 162.56 | 154.13 | 181.21 |
Mercury | <10.00 | <10.00 | <10.00 |
Molybdenum | 0.99 | 1.00 | 0.88 |
Phosphorus | 5439.80 | 5080.56 | 6159.70 |
Potassium | 9695.40 | 8287.59 | 8569.54 |
Selenium | <10.00 | <10.00 | <10.00 |
Sodium | 2285.62 | 1984.66 | 1701.78 |
Sulfur | 2808.74 | 2450.27 | 2421.97 |
Thallium | <10.00 | <10.00 | <10.00 |
Zinc | 156.16 | 160.13 | 161.46 |
Feed Intake | HDEP | Egg Weight | FCR | ||||||
---|---|---|---|---|---|---|---|---|---|
F Ratio | p-Value (Power) | F Ratio | p-Value (Power) | F Ratio | p-Value (Power) | F Ratio | p-Value (Power) | ||
Fixed Effect Tests | Treatment | 12.48 | 0.04 (1.00) | 1.75 | 0.31 (1.00) | 73.99 | <0.01 (1.00) | 17.31 | 0.02 (1.00) |
Time | 2.73 | 0.01 (0.94) | 2.88 | 0.01 (0.95) | 17.52 | <0.0001 (1.00) | 1.42 | 0.20 (0.81) | |
Interaction | 1.92 | 0.04 (0.93) | 4.19 | <0.0001 (1.00) | 1.82 | 0.05 (0.91) | 4.64 | <0.0001 (1.00) | |
Diets | Experi. weeks | LS Mean | Sig. level | LS Mean | Sig. level | LS Mean | Sig. level | LS Mean | Sig. level |
0% DBSFL | 4 | 123.33 | ABCDEF | 0.98 | ABCDE | 56.89 | HIJK | 2.21 | ABCDEFGH |
5 | 123.33 | ABCDEF | 0.97 | ABCDE | 59.52 | CDEFGHIJ | 2.13 | CDEFGHI | |
6 | 122.33 | ABCDEF | 0.97 | ABCDE | 60.70 | ABCDEFG | 2.07 | DEFGHI | |
7 | 120.33 | CDEF | 0.99 | ABCD | 62.28 | ABCDEF | 1.95 | GHI | |
8 | 121.67 | BCDEF | 0.97 | ABCDE | 62.50 | ABCD | 2.01 | EFGHI | |
9 | 121.33 | BCDEF | 0.98 | ABCDE | 63.05 | AB | 1.96 | GHI | |
10 | 118.67 | EF | 0.99 | ABCDE | 63.12 | A | 1.91 | GHI | |
11 | 120.00 | CDEF | 0.97 | ABCDE | 62.31 | ABCDE | 1.99 | FGHI | |
12 | 118.33 | EF | 0.97 | ABCDE | 62.58 | ABC | 1.96 | GHI | |
13 | 114.67 | F | 1.00 | ABC | 62.86 | ABC | 1.82 | I | |
14 | 126.00 | ABCDEF | 0.99 | ABCD | 63.16 | A | 2.01 | EFGHI | |
15 | 127.00 | ABCDEF | 0.98 | ABCDE | 62.55 | ABC | 2.07 | DEFGHI | |
16 | 119.33 | DEF | 1.00 | ABC | 63.22 | A | 1.89 | HI | |
10% DBSFL | 4 | 126.67 | ABCDEF | 0.98 | ABCDE | 55.43 | K | 2.34 | ABCDEFGH |
5 | 125.33 | ABCDEF | 0.97 | ABCDE | 56.18 | IJK | 2.30 | ABCDEFGHI | |
6 | 124.00 | ABCDEF | 0.94 | ABCDE | 57.09 | HIJK | 2.30 | ABCDEFGH | |
7 | 127.67 | ABCDEF | 0.97 | ABCDE | 59.49 | CDEFGHIJ | 2.22 | ABCDEFGHI | |
8 | 134.00 | ABCDEF | 0.97 | ABCDE | 58.77 | EFGHIJK | 2.35 | ABCDEFGH | |
9 | 134.00 | ABCDEF | 0.98 | ABCDE | 59.92 | ABCDEFGH | 2.28 | ABCDEFGHI | |
10 | 127.00 | ABCDEF | 0.97 | ABCDE | 58.98 | DEFGHIJ | 2.23 | ABCDEFGHI | |
11 | 127.67 | ABCDEF | 0.99 | ABCDE | 60.17 | ABCDEFGH | 2.15 | CDEFGHI | |
12 | 124.67 | ABCDEF | 0.95 | ABCDE | 59.93 | ABCDEFGH | 2.19 | BCDEFGHI | |
13 | 127.33 | ABCDEF | 0.99 | ABCDE | 60.22 | ABCDEFGH | 2.15 | CDEFGHI | |
14 | 130.00 | ABCDEF | 0.97 | ABCDE | 59.50 | BCDEFGHIJ | 2.25 | ABCDEFGHI | |
15 | 131.67 | ABCDEF | 0.97 | ABCDE | 60.12 | ABCDEFGH | 2.25 | ABCDEFGHI | |
16 | 129.67 | ABCDEF | 0.97 | ABCDE | 60.38 | ABCDEFGH | 2.22 | ABCDEFGHI | |
18% DBSFL | 4 | 125.33 | BCDEF | 0.98 | ABC | 55.99 | JK | 2.28 | BCDEFGHI |
5 | 131.67 | ABCDEF | 1.01 | A | 57.43 | GHIJK | 2.27 | CDEFGHI | |
6 | 129.67 | ABCDEF | 1.00 | AB | 57.32 | GHIJK | 2.27 | CDEFGHI | |
7 | 132.00 | ABCDEF | 0.97 | ABCD | 57.59 | GHIJK | 2.36 | ABCDEFGH | |
8 | 136.00 | ABCDE | 0.98 | ABC | 58.74 | FGHIJK | 2.36 | ABCDEFG | |
9 | 141.33 | AB | 0.98 | ABCD | 58.13 | GHIJK | 2.49 | ABCD | |
10 | 137.33 | ABCDE | 0.97 | ABCDE | 58.01 | GHIJK | 2.45 | ABCDEF | |
11 | 135.00 | ABCDE | 0.95 | ABCDE | 57.46 | GHIJK | 2.47 | ABCDE | |
12 | 142.33 | A | 0.91 | DE | 58.63 | GHIJK | 2.67 | A | |
13 | 139.00 | ABCD | 0.93 | BCDE | 58.02 | GHIJK | 2.58 | ABC | |
14 | 140.00 | ABC | 0.91 | CDE | 58.35 | GHIJK | 2.63 | AB | |
15 | 139.00 | ABCD | 0.94 | BCDE | 58.03 | GHIJK | 2.55 | ABC | |
16 | 142.33 | A | 0.90 | E | 59.51 | BCDEFGHI | 2.66 | A | |
SE | 3.38 | 0.02 | 0.60 | 0.08 |
Plasma Parameters | Age | SEM | F Ratio | p-Value | |
---|---|---|---|---|---|
20 Weeks | 35 Weeks | ||||
Glucose (mmol/L) | 4.27 | 9.73 | 0.46 | 27.73 | 0.01 |
Urea (Bun) (mmol/L) | 0.32 | 0.68 | 0.04 | 20.69 | 0.01 |
Uric acid (mmol/L) | 437.06 | 149.5 | 21.05 | 176.07 | 0.001 |
Calcium (mmol/L) | 6.28 | 4.77 | 0.15 | 57.64 | 0.005 |
Sodium/Potassium ratio | 39.50 | 26.17 | 0.67 | 640.00 | 0.0001 |
Chloride (mmol/L) | 118.56 | 124.17 | 0.86 | 37.09 | 0.01 |
Total protein (g/L) | 49.89 | 42.61 | 0.96 | 16.74 | 0.03 |
Albumin (g/L) | 17.94 | 14.83 | 0.33 | 50.58 | 0.006 |
Aspartate Transaminase (IU/L) | 141.5 | 200.56 | 4.61 | 134.86 | 0.001 |
Gamma GT (IU/L) | 10.78 | 51.00 | 4.28 | 60.43 | 0.004 |
Cholesterol (mmol/L) | 2.87 | 2.14 | 0.12 | 18.31 | 0.02 |
Triglycerides (mmol/L) | 13.53 | 9.04 | 0.65 | 17.88 | 0.02 |
Bile acids (μmol/L) | 36.87 | 6.91 | 1.72 | 961.11 | <0.0001 |
Plasma Parameters 1 | Diets | F Ratio | p-Value | |||
---|---|---|---|---|---|---|
0% DBSFL 2 | 10% DBSFL | 18% DBSFL | SEM | |||
Total protein (g/L) | 49.25a | 46.67a | 42.83b | 0.60 | 28.68 | 0.01 |
Albumin (g/L) | 17.92a | 16.17ab | 15.08b | 0.44 | 10.77 | 0.04 |
Triglycerides (mmol/L) | 13.05a | 12.19ab | 8.62b | 0.64 | 13.40 | 0.03 |
Diets | |||||||||
---|---|---|---|---|---|---|---|---|---|
Plasma Parameters 1 | 0% DBSFL 2 | 10% DBSFL | 18% DBSFL | SEM | F Ratio | p-Value | |||
Week 2 3 | Week 17 | Week 2 | Week 17 | Week 2 | Week 17 | ||||
Creatinine (μmol/L) | 14.33 | 15.00 | 14.83 | 11.33 | 12.17 | 8.67 | 1.31 | 12.50 | 0.04 |
Potassium (mmol/L) | 3.77b | 6.15a | 3.85b | 5.88a | 3.90b | 5.65a | 0.15 | 1850 | <0.0001 |
Amylase (IU/L) | 387.50ab | 385.50ab | 422.33a | 332.00ab | 397.50a | 277.50b | 16.16 | 10.66 | 0.04 |
Creatine Kinase (IU/L) | 613.33c | 1904.00ab | 721.17c | 2336.33a | 663.67c | 1552.83b | 64.19 | 20.52 | 0.02 |
WBC Differential | Age | SEM | F Ratio | p-Value | |
---|---|---|---|---|---|
20-Week-Old | 35-Week-Old | ||||
WBC count (×109/L) | 26.19 | 16.18 | 1.65 | 10.43 | 0.046 |
Hematocrit or packed cell volume (L/L) | 0.30 | 0.26 | 0.006 | 56.97 | 0.004 |
Basophils (%) | 1.24 | 2.57 | 0.53 | 26.97 | 0.02 |
Heterophils (%) | 27.14 | 42.96 | 2.04 | 54.19 | 0.005 |
Lymphocytes (%) | 63.17 | 50.58 | 1.26 | 25.54 | 0.01 |
Lymphocytes absolute (×109/L) | 16.68 | 7.89 | 0.77 | 41.00 | 0.006 |
Heterophil:lymphocyte ratios (H:L ratio) | 0.54 | 0.96 | 0.05 | 23.74 | 0.02 |
Monocytes (%) | 7.36 | 2.55 | 0.50 | 24.33 | 0.01 |
Monocytes absolute (×109/L) | 1.91 | 0.45 | 0.13 | 38.75 | 0.007 |
Diets | Replication (Trailer) | Direct Exam 1 | ||
---|---|---|---|---|
Gram-Negative Bacilli | Gram Positive Bacilli | Gram Positive Cocci | ||
0% DBSFL 2 | 1 | Moderate | Moderate | Many |
2 | Moderate | Scant | Moderate | |
10% DBSFL | 1 | Moderate | Moderate | Many |
2 | Moderate | Scant | Moderate | |
18% DBSFL | 1 | Moderate | - | Moderate |
2 | Moderate | Moderate | Many |
DI Weights 1 | Diet | |||||
---|---|---|---|---|---|---|
0% DBSFL | 10% DBSFL | 18% DBSFL | ||||
Mean | SEM | Mean | SEM | Mean | SEM | |
Hen Live weight (kg) | 1.93 | 0.08 | 1.73 | 0.04 | 1.73 | 0.10 |
Total DI Weight (g) | 109.77 | 6.05 | 107.03 | 2.88 | 110.11 | 6.39 |
DW % BW 2 | 5.73 | 0.33 | 6.19 | 0.11 | 6.43 | 0.43 |
Proventriculus % BW 2 | 0.34 | 0.02 | 0.34 | 0.01 | 0.38 | 0.02 |
Proventriculus % DW 3 | 5.87 | 0.12 | 5.52 | 0.12 | 5.96 | 0.08 |
Gizzard % BW | 1.50 | 0.08 | 1.66 | 0.08 | 1.68 | 0.15 |
Gizzard % DW | 26.27 | 0.69 | 26.90 | 1.15 | 26.03 | 0.90 |
Duodenum % BW | 0.49 | 0.03 | 0.55 | 0.03 | 0.59 | 0.03 |
Duodenum % DW | 8.48b | 0.22 | 8.93ab | 0.47 | 9.28a | 0.20 |
Jejunum % BW | 0.55 | 0.06 | 0.69 | 0.04 | 0.69 | 0.08 |
Jejunum % DW | 9.45 | 0.57 | 11.19 | 0.59 | 10.59 | 0.66 |
Ileum % BW | 0.38 | 0.03 | 0.49 | 0.02 | 0.48 | 0.06 |
Ileum % DW | 6.65 | 0.28 | 7.98 | 0.30 | 7.39 | 0.51 |
Ceca % BW | 0.39 | 0.03 | 0.38 | 0.01 | 0.37 | 0.03 |
Ceca % DW | 6.81 | 0.29 | 6.19 | 0.32 | 5.80 | 0.20 |
Colon % BW | 0.21 | 0.02 | 0.20 | 0.02 | 0.17 | 0.01 |
Colon % DW | 3.69 | 0.27 | 3.24 | 0.30 | 2.66 | 0.18 |
Liver % BW | 1.69 | 0.09 | 1.69 | 0.06 | 1.88 | 0.10 |
Liver % DW | 29.65 | 0.38 | 27.26 | 0.77 | 29.47 | 1.01 |
Pancreas % BW | 0.18 | 0.01 | 0.17 | 0.01 | 0.18 | 0.01 |
Pancreas % DW | 3.16 | 0.14 | 2.80 | 0.16 | 2.83 | 0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bejaei, M.; Cheng, K.M. Inclusion of Dried Black Soldier Fly Larvae in Free-Range Laying Hen Diets: Effects on Production Efficiency, Feed Safety, Blood Metabolites, and Hen Health. Agriculture 2024, 14, 31. https://doi.org/10.3390/agriculture14010031
Bejaei M, Cheng KM. Inclusion of Dried Black Soldier Fly Larvae in Free-Range Laying Hen Diets: Effects on Production Efficiency, Feed Safety, Blood Metabolites, and Hen Health. Agriculture. 2024; 14(1):31. https://doi.org/10.3390/agriculture14010031
Chicago/Turabian StyleBejaei, Masoumeh, and Kimberly M. Cheng. 2024. "Inclusion of Dried Black Soldier Fly Larvae in Free-Range Laying Hen Diets: Effects on Production Efficiency, Feed Safety, Blood Metabolites, and Hen Health" Agriculture 14, no. 1: 31. https://doi.org/10.3390/agriculture14010031
APA StyleBejaei, M., & Cheng, K. M. (2024). Inclusion of Dried Black Soldier Fly Larvae in Free-Range Laying Hen Diets: Effects on Production Efficiency, Feed Safety, Blood Metabolites, and Hen Health. Agriculture, 14(1), 31. https://doi.org/10.3390/agriculture14010031