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Abstract: The tetrazolium (TZ) test is a reliable but destructive method for identifying viable seeds.
In this study, a non-destructive seed viability analysis method for Allium ulleungense was developed
using multispectral imaging and stacking ensemble learning. Using the Videometerlab 4, multispec-
tral imaging data were collected from 390 A. ulleungense seeds subjected to NaCl-accelerated aging
treatments with three repetitions per treatment. Spectral values were obtained at 19 wavelengths
(365–970 nm), and seed viability was determined using the TZ test. Next, 80% of spectral values were
used to train Decision Tree, Random Forest, LightGBM, and XGBoost machine learning models, and
20% were used for testing. The models classified viable and non-viable seeds with an accuracy of
95–91% on the K-Fold value (n = 5) and 85–81% on the test data. A stacking ensemble model was
developed using a Decision Tree as the meta-model, achieving an AUC of 0.93 and a test accuracy of
90%. Feature importance and SHAP value assessments identified 570, 645, and 940 nm wavelengths
as critical for seed viability classification. These results demonstrate that machine learning-based
spectral data analysis can be effectively used for seed viability assessment, potentially replacing the
TZ test with a non-destructive method.

Keywords: seed viability test; multispectral imaging; stacking ensemble learning; Allium

1. Introduction

Non-destructive methods of selecting viable seeds represent a promising alternative
to traditional methods, such as seed selection, germination tests, and destructive anal-
ysis, used in breeding and cultivation processes, which are often time-consuming and
labor-intensive. Advancements in spectrometric device capabilities and data processing
techniques, including machine learning, have led to significant research interest in the
development of non-destructive seed viability assessment methods using spectrometric
analysis for applications in the agricultural sector [1,2].

Non-destructive analysis of seed viability is a primary area of research, because most
conventional methods are destructive. A prominent example of conventional methods is
the tetrazolium (TZ) test, in which seeds are treated with tetrazolium solution, which stains
all live tissues red but leaves dead tissues unstained [3]. While the TZ test enables visual
assessment of seed viability, it is a subjective and destructive method, requiring the seeds
to be destroyed for analysis.

Multispectral imaging (MSI), a non-destructive technique, is being utilized to over-
come the drawbacks of conventional methods. MSI combines computer vision and spec-
troscopy and provides data on the texture, color, shape, size, and chemical composition of
seeds [4]. Not only does MSI minimize seed resource consumption and damage through
multispectral data analysis, but it also enhances objectivity and reduces subjectivity during
evaluation, thereby improving existing seed viability assessment methods.
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Videometerlab 4 (Videometer A/S, Hørsholm, Denmark) is an MSI analyzer that
precisely evaluates seed quality factors based on LED technology, enabling rapid, non-
destructive analysis of large quantities of seeds. Videometerlab 4 combines LED lamps,
a color camera, and optical filters [5], which enable seed-surface mold detection, seed
identification, maturity determination, varietal differentiation, and pest detection with high
accuracy [6].

Recent studies have successfully applied MSI and machine learning techniques to
assess seed viability and quality in various crop species. Mihailova et al. [7] demonstrated
the use of MSI for distinguishing between Arabica and Robusta coffee beans through
discriminant and regression analysis. Zhang et al. [8] achieved 92.9% and 97.8% accuracy in
classifying alfalfa seeds based on maturity and harvest year, respectively, by employing MSI
and machine learning for morphological and multispectral data collection and multivariate
analysis. Olesen et al. [9] determined the viability of Ricinus communis L. seeds with
92% accuracy through principal component analysis of multispectral data. These studies
highlight the utility of MSI as a non-destructive means of seed classification and viability
assessment, but they predominantly focus on crop seeds. However, research on applying
MSI and machine learning techniques to wild plant seeds is limited. Wild plant species
are crucial for biodiversity conservation and ecological balance, but their seed viability
assessment often faces challenges due to limited seed availability and the destructive nature
of conventional methods [10]. Applying MSI and machine learning to wild plant seeds
could provide a non-destructive, efficient method for assessing seed viability, aiding in
conservation efforts and habitat restoration projects.

MSI analyzers, such as Videometerlab 4, enable rapid and accurate analysis of large
quantities of seeds, significantly reducing the time and labor involved. The current study
advances the field using machine learning techniques for processing and analyzing multi-
spectral data to evaluate seed viability and identify key wavelengths for classification.

While Videometerlab 4 can analyze seeds using 19 spectral wavelengths ranging from
365 nm to 970 nm, not all spectral wavelengths are essential for classification. Instead, the
identification of wavelengths that provide significant information for characteristic-based
classification of seeds is crucial [11]. This study uses machine learning algorithms to classify
seeds as viable or non-viable based on spectral data and conducts feature importance
analysis with 19 spectral wavelengths as variables to identify significant wavelengths
for classification.

Four machine learning algorithms were employed in this study including Decision
Tree, Random Forest, Light Gradient Boosting Machine (LightGBM), and Extreme Gradient
Boosting (XGBoost). The Decision Tree algorithm learns explicit rules from the data to clas-
sify and predict targets [12]; Random Forest constructs multiple decision trees through data
learning to classify targets [13]; XGBoost optimizes performance and prevents overfitting
through parallel processing, tree pruning, and regularization [14]; and LightGBM provides
accurate learning outcomes using techniques such as Gradient-based One-Side Sampling
(GOSS) and Exclusive Feature Bundling (EFB) [15]. Additionally, ensemble learning was
applied to overcome the limitations of single machine learning models, thus enhancing
classification accuracy.

Although machine learning and ensemble learning have been applied to MSI data
analysis in previous studies, most have focused on crop seeds for maturity, harvest year, and
viability classifications. Research on replacing the destructive TZ test with non-destructive
seed viability classification using machine learning and ensemble learning for wild plant
seeds is still limited.

Therefore, this study aims to (1) develop a classification model for non-destructive
viability analysis of viable and non-viable seeds of the wild plant Allium ulleungense using
machine learning and ensemble learning and (2) identify critical wavelengths for classifying
viable and non-viable seeds through feature importance analysis of spectral wavelengths
used in machine learning classification. By focusing on wild plant species, this research ex-
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tends MSI and machine learning applications beyond crop seeds, highlighting the potential
for broader applications in biodiversity conservation and ecological studies.

2. Materials and Methods
2.1. Plant Material

This study used Allium ulleungense as the plant material for seed viability analy-
sis. Seeds were collected on 31 August 2021 from the Nari Basin in Ulleung County,
Gyeongsangbuk-do, Republic of Korea and stored at −20 ◦C under 40% relative humid-
ity in the Seed Bank of Baekdudaegan National Arboretum. Multispectral and viability
data were obtained from 130 seeds subjected to the saturated sodium chloride (NaCl)-
accelerated aging test, with three repetitions per treatment. The experiment was conducted
over 3 months, from 1 August to 13 October 2023.

2.2. Saturated Sodium Chloride (NaCl)-Accelerated Aging Test

To obtain multispectral and viability data from seeds in various viability states, an
accelerated aging (AA) test was conducted. According to the method of Meriaux et al. [16],
500 mL of NaCl solution was prepared by dissolving 380 g of NaCl in 1 L of triple-distilled
water and poured into the AA test box. Seeds were placed in glass Petri dishes (26 seeds
per Petri dish), ensuring they did not touch the solution, and were exposed to 40 ◦C and
75% relative humidity for different durations: 1, 2, 3, 5, and 7 days. Each exposure duration
was treated as a separate experimental condition, with three repetitions conducted for each
day. Thus, multispectral and viability data were collected from a total of 390 A. ulleungense
seeds (26 seeds × 5 days × 3 repetitions).

2.3. MSI

Multispectral data were obtained from A. ulleungense seeds using VideometerLab 4
(Videometer A/S, Hørsholm, Denmark). Seeds were placed under the device, and color
calibration and light diffusion were performed before capturing the multispectral images.
Seeds were exposed to uniform LED light at 19 specific wavelengths (365, 405, 430, 450, 470,
490, 515, 540, 570, 590, 630, 645, 660, 690, 780, 850, 880, 940, and 970 nm) for 5–10 s, and high-
resolution multispectral images (2054 × 2054 pixels) were captured using a 5-megapixel
CCD camera. The obtained multispectral images consisted of grayscale images captured at
each of the 19 wavelengths and RGB images that combined pixel values of the red, green,
and blue channels.

After acquiring multispectral images, seeds were separated from the background using
the VideometerLab 3.18 software, and each seed was designated as a Region of Interest
(ROI). The average spectral reflectance values of seeds within the ROI were calculated at
each of the 19 wavelengths, and the data were saved in Microsoft Excel 2021 (Figure 1).
Viable and non-viable seeds were scored as ‘1’ and ‘0’, respectively.
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Figure 1. Acquisition process of multispectral imaging and spectral data.

2.4. Seed Viability Test

After obtaining the multispectral data, the TZ test was conducted to determine seed
viability. Briefly, A. ulleungense seeds were soaked in distilled water for 18 h and then sliced
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to expose the embryo. The sliced seeds were then soaked in TZ solution and incubated at
30 ◦C in the dark. Viability was determined based on the staining of the embryo, according
to ISAT guidelines [3]. Digital images of viable and non-viable seeds were obtained using
an optical microscope (DVM6, Leica MicroSystems GmbH„ Wetzlar, Germany) (Figure 2).
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2.5. Data Analysis

Based on the TZ test results, seeds were divided into two classes: viable and non-viable.
To prevent class imbalance during machine learning training, SMOTE oversampling was
applied. Of the collected data, 80% was used for training the machine learning models, and
20% was used for model evaluation. K-Fold cross-validation (Fold = 5) was applied to the
training data to prevent overfitting. K-Fold cross-validation, a common validation method,
divides the data into N folds and repeats the training and validation processes N times,
averaging the results for evaluating model performance [17].

2.6. Machine Learning Models and Ensemble Learning

This study utilized classification-specific machine learning models, including Deci-
sion Tree, Random Forest, LightGBM, and XGBoost. The Decision Tree model generates
decision rules based on data features, providing intuitive insights into data patterns [18].
Random Forest uses ensemble learning with multiple decision trees to reduce overfitting
and improve prediction performance [19]. LightGBM offers fast learning speeds and high
efficiency, making it suitable for large datasets [20]. XGBoost enhances learning speed and
prediction accuracy through advanced regularization and parallel processing [14]. Each
model was trained individually, and several stacking models were constructed using each
base model (Decision Tree, Random Forest, LightGBM, XGBoost) as the meta-model. The
predictions from the other base models were used as input features for these meta-models.
This approach allowed for comparing the performance of different meta-models within
the stacking framework. This two-stage process enabled the ensemble models to leverage
the complementary strengths of the base models, leading to improved prediction accuracy
and overall performance compared to any single model [21]. The training and evalua-
tion of machine learning models were conducted in a virtual environment using Google
Colaboratory (Colab).

2.7. Evaluation Metrics and Model Interpretation

Evaluation metrics for the classification models were determined based on the agree-
ment between the actual results and predicted results using a new test dataset rather than
the data used for model training. Five metrics, namely accuracy, precision, recall, specificity,
and F1-score, were calculated using a confusion matrix comprising the numbers of True
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Positive (TP) cases (i.e., when the model correctly predicted a sample as positive), False
Positive (FP) cases (i.e., when the model incorrectly predicted a sample as positive), False
Negative (FN) cases (i.e., when the model incorrectly predicted a sample as negative), and
True Negative (TN) cases (i.e., when the model correctly predicted a sample as negative).
The description of each performance metric and the formulae used to calculate these metrics
are provided in Figure 3.
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2.8. Feature Importance Evaluation

To identify the wavelengths providing significant information for seed viability classifica-
tion, feature importance analysis was conducted on the 19 spectral wavelengths (365–970 nm)
used as variables in the machine learning classification models. Feature importance analysis
was performed using the ‘feature_importance_’ attribute within each algorithm.

2.9. SHAP (Shapley Additive Explanations) Analysis

To gain deeper insights into how each wavelength influenced the model’s predictions,
SHAP analysis was employed. SHAP values offer a consistent and interpretable means to
evaluate the contribution of each feature to the classification outcomes. The SHAP evalu-
ation was conducted using the SHAP library [22] in Python within Google Colaboratory
(Colab), which facilitated efficient computation and visualization.

3. Results
3.1. Spectroscopic Analysis of A. ulleungense Seeds

Before conducting the TZ test, the average spectral reflectance values of 200 viable and
180 non-viable seeds were compared at 19 different wavelengths (365, 405, 430, 450, 470, 490,
515, 540, 570, 590, 630, 645, 660, 690, 780, 850, 880, and 970 nm) using multispectral images
captured with VideometerLab 4. The average reflectance values of A. ulleungense seeds
increased with increasing wavelengths (from 13.719 at 365 nm to 32.448 at 970 nm for viable
seeds, and from 9.246 at 365 nm to 20.490 at 970 nm for non-viable seeds), although the
average reflectance values of viable seeds were greater than those of non-viable seeds at the
different wavelengths (Figure 4). An independent t-test showed that differences between
the average reflectance values of viable and non-viable seeds were highly significant at all
wavelengths (p < 0.01), with the differences becoming more pronounced at wavelengths
above 850 nm.
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Next, Linear Discriminant Analysis (LDA), a dimensionality reduction technique
for supervised classification, was used to classify viable and non-viable seeds using the
19 spectral wavelengths as variables. Non-viable seeds were primarily located at negative
values along the LDA1 axis, while viable seeds were concentrated at positive values,
indicating that certain spectral wavelengths were closely associated with seed viability. The
clear separation of viable and non-viable seeds along the LDA1 axis suggested that the two
groups could be effectively distinguished based on spectral data. Except for some overlap
near the center, most data points were well separated, demonstrating the utility of spectral
data for classifying viable and non-viable seeds (Figure 5).
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The results of the independent t-test and LDA showed that different wavelengths hold
different levels of significance for viability assessment. These findings suggest that spectral
analysis can serve as a valuable non-destructive method for evaluating seed viability. Based
on these results, a classification model was developed to automatically distinguish between
viable and non-viable seeds using spectral data collected through machine learning.

3.2. Machine Learning Training and Evaluation

To classify viable and non-viable seeds, 80% of the data were used for model training
and 20% for model evaluation. To prevent overfitting on the training data, K-Fold cross-
validation (k = 5) was applied and the average evaluation results for each fold were
obtained. All models were re-trained and evaluated using optimal hyperparameters
identified through Grid Search (Table 1).

Table 1. Tuned hyperparameter results of machine learning models.

Model Tuned Hyperparameter

Decision Tree ‘criterion’: ‘gini’, ‘max_depth’: 20, ‘min_samples_split’: 5

Random Forest ‘max_depth’: 10, ‘min_samples_leaf’: 1, ‘min_samples_split’: 2,
‘n_estimators’: 50

LightGBM ‘boosting_type’: ‘dart’, ‘learning_rate’: 0.5, ‘num_leaves’: 31

XGBoost ‘subsample’: 0.7, ‘n_estimators’: 400, ‘max_depth’: 8,
‘learning_rate’: 0.2, ‘colsample_bytree’: 0.9

Four machine learning models with optimal hyperparameters, including Decision
Tree, Random Forest, LightGBM, and XGBoost, were comprehensively evaluated using the
training dataset (n = 320), test dataset (n = 80), and K-Fold cross-validation. The evaluation
metrics included accuracy, precision, recall, specificity, and F1-score.

The Random Forest model achieved the highest performance on the training dataset,
with an accuracy of 99.7%, recall of 100%, precision of 99.4%, specificity of 93.7%, and
F1-score of 99.7%. These results indicate that the Random Forest model could effectively
distinguish between positive and negative classes, demonstrating high predictive power
despite a tendency towards overfitting.

To further validate the models and prevent overfitting, K-Fold cross-validation (k = 5)
was performed. The Random Forest model exhibited the most stable performance, with
an average accuracy of 95.17%, followed by XGBoost (94.86%), Decision Tree (92.6%), and
LightGBM (91.3%) (Table 2).

Table 2. Analysis of model classification performance on training and test data with K-Fold validation
by calculation of accuracy, precision, recall, specificity, and F1-score based on spectral features.

Prediction Decision Tree Random Forest LightGBM XGBoost

Training
(n = 320)

Accuracy 0.959 0.997 0.959 0.950
Precision 0.940 0.994 0.941 0.929

Recall 0.981 1.000 0.981 0.975
Specificity 0.937 0.994 0.937 0.925
F1-score 0.936 0.997 0.961 0.952

Test
(n = 80)

Accuracy 0.850 0.825 0.850 0.813
Precision 0.846 0.791 0.805 0.811

Recall 0.846 0.872 0.892 0.790
Specificity 0.846 0.781 0.814 0.833
F1-score 0.854 0.829 0.847 0.800

K-Fold
(n = 320)

Accuracy 0.9260 ± 0.0363 0.9517 ± 0.0339 0.9131 ± 0.0364 0.9486 ± 0.0342
Precision 0.8660 ± 0.0722 0.9123 ± 0.0490 0.8335 ± 0.0666 0.9126 ± 0.0537

Recall 0.9389 ± 0.0467 0.9563 ± 0.0499 0.9355 ± 0.0618 0.9480 ± 0.0515
Specificity 0.9207 ± 0.0415 0.9499 ± 0.0275 0.9013 ± 0.0252 0.9500 ± 0.0318
F1-score 0.8993 ± 0.0483 0.9335 ± 0.0463 0.8804 ± 0.0580 0.9293 ± 0.0461
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On the test dataset, both the LightGBM and Decision Tree models achieved the highest
accuracy (85%). LightGBM demonstrated high performance in identifying positive samples,
with a recall of 89.2%. All four models showed a slight decrease in performance on the
test dataset compared with the training and validation datasets (Figure 6A,B). To better
understand the variation in performance across different datasets, the classification ratios
of positive and negative classes were analyzed using confusion matrices.
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Figure 6. Star plot of model classification performances on test data with overall accuracy, precision,
specificity, sensitivity, and F1-score based on spectral features. (A) Training data and (B) test data.

The confusion matrix for the Decision Tree model showed TP 35, FP 6, TN 33, and FN
6 (Figure 7A), indicating that this model consistently and evenly classified viable and non-
viable seeds. The Random Forest model showed TP 32, FP 9, TN 34, and FN 5 (Figure 7B),
demonstrating high classification accuracy for viable seeds and the best predictive power
for positive samples among the four models. The LightGBM model showed TP 35, FP 8,
TN 33, and FN 4 (Figure 7C), indicating strong predictive power for classifying non-viable
seeds, similar to the Decision Tree model. The XGBoost model showed TP 35, FP 7, TN 30,
and FN 8 (Figure 7D), demonstrating high efficacy for classifying non-viable seeds but the
lowest performance for classifying viable seeds among the four models.
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Overall, single models based on spectral wavelengths showed higher performance
in classifying non-viable seeds than viable seeds. The K-Fold cross-validation (k = 5)
used to prevent overfitting on the training data showed high accuracy for all four models
(91.3–95.1%), but accuracy decreased to 81–85% on the test data. This approximately 10%
decrease in accuracy indicates that the models were overfitting to the training data and had
reduced generalization ability for new data like the test dataset. To address this overfitting
issue, “Stacking”, an ensemble technique that combines the predictions of individual
models to generate a final prediction, was applied.

3.3. Stacking Ensenble Learning Training and Evaluation

The stacking model is an ensemble method, similar to voting, bagging, and boosting,
that improves predictive performance using the predictions from several base models as
inputs for a meta-model, which makes the final prediction. By combining the strengths
of various models, the stacking model achieves higher accuracy than a single model and
effectively reduces overfitting to specific training data. The four previously trained models,
namely Decision Tree, Random Forest, LightGBM, and XGBoost, were integrated into
a stacking model, and their performances were compared by selecting each one as the
meta-model.

The stacking model showed the highest performance when the Decision Tree was
chosen as the meta-model. Therefore, the stacking model was built with the Decision
Tree as the meta-model and Random Forest, LightGBM, and XGBoost as the base models,
and its performance was then evaluated on the test data. The stacking model with the
Decision Tree as the meta-model achieved an accuracy of 0.9, precision of 0.9268, recall
of 0.8837, specificity of 0.927, and F1-score of 0.9045 on the test data, demonstrating high
performance (Figure 8A). Thus, the values of evaluation metrics obtained using the stacking
model were higher than those obtained using a single model, indicating that the stacking
model effectively prevents overfitting and shows better performance than a single machine
learning model in classifying viable and non-viable seeds based on spectral data.
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The confusion matrix for the stacking model using test data showed TP, FP, TN, and
FN values of 38, 3, 34, and 5, respectively, indicating that the stacking model improved
prediction and classification abilities for non-viable seeds and maintained high performance
for viable seeds compared with single models (Figure 8B).

Additionally, the ROC curve and Area Under the Curve (AUC) were evaluated as
metrics to assess the predictive performance of the model across different thresholds. The
ROC curve is a graphical representation of the relationship between the true positive rate
(TPR, along the Y-axis) and false positive rate (FPR, along the X-axis); the closer the ROC
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curve is to the top left corner, the better the performance, while a curve close to the diagonal
indicates poor classification performance. The AUC summarizes the performance of a
model as a value between 0.5 and 1; a value closer to 1 indicates better performance, while
a value near 0.5 indicates poor and inconsistent classification performance.

Analysis of the ROC curve and AUC revealed that the stacking model with the Deci-
sion Tree as the meta-model achieved high recall and low FPR, effectively distinguishing
between positive and negative samples with minimal misclassification. The proximity
of the ROC curve to the top left corner indicated excellent model performance, and the
AUC value of 0.93 suggested consistently high performance across various threshold set-
tings (Figure 9). Together, these two metrics indicated that the stacking model provides
reliable predictions.
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3.4. Machine Learning Feature Importance Analysis

A feature importance evaluation was conducted to understand the contribution of
19 spectral wavelengths to the predictive power of the four machine learning models for
classifying viable and non-viable seeds. This evaluation identifies the variables that have
the most significant impact on model predictions, enhancing the understanding of how the
models operate. Analysis of the importance of features allows the determination of which
predictors the models rely on during training. Additionally, understanding each feature’s
relative importance helps improve model performance by reducing the risk of overfitting
via removing less important features.

In this analysis, feature importance was evaluated using all four models, i.e., Decision
Tree, Random Forest, LightGBM, and XGBoost, to gain crucial insights into how feature
importance varies across different algorithms and to identify whether certain features
consistently appear important across multiple models or if their importance is specific
to particular models. Feature importance was measured through each algorithm’s ‘fea-
ture_importance_’ attribute, showing the relative weights assigned to each feature and
their influence on model predictions. The importance of each feature was depicted using
bar graphs, where longer bars indicated higher importance, while shorter bars indicated
lower importance.

In the Decision Tree model, the 970 nm wavelength showed the highest importance,
with a value above 0.10, indicating significant influence on the decision-making process of
the model. The next most important features were 880 nm and 940 nm, with importance
values of approximately 0.08 and 0.07, respectively, while the 430 nm wavelength showed
the lowest importance (Figure 10A).
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In the Random Forest model, the 940 nm wavelength had the highest importance
(approximately 0.08), followed by 970 nm at 0.075 and 570 nm (0.067), with the 590 nm
wavelength being the least important. The Random Forest model also relied heavily on the
top features for predictions, but the importance of the less critical features was more evenly
distributed in the Random Forest model than in the Decision Tree model (Figure 10B).

In the LightGBM model, the 645 nm wavelength showed the highest importance
(0.09), indicating significant impact on model predictions. The importance values of 570
and 365 nm wavelengths (0.06 and 0.055, respectively) followed those of the 645 nm
wavelength, while the 540 nm wavelength showed the lowest importance. These results
suggest that LightGBM heavily depends on the top features (Figure 10C).

Lastly, in the XGBoost model, the 540 nm wavelength showed the highest importance
(0.16), followed by 940 nm and 570 nm (0.13 and 0.11, respectively), with the 690 nm
wavelength being the least important. Similar to the Decision Tree model, XGBoost assigned
significant weight to certain features (Figure 10D).

Thus, feature importance analysis across all four primary machine learning mod-
els allowed us to understand how each model responds to different features in the data.
Common features with the top 50% importance across all models were the 570, 645, and
940 nm wavelengths. Although some features showed varying importance across differ-
ent models, this variation was likely due to differences in their learning algorithms and
decision mechanisms.
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Together, the above results indicate that comparison of the impact of specific features
on model predictions can enhance model performance by highlighting key features and
removing unnecessary ones, leading to more efficient models and improving their inter-
pretability and transparency. However, feature importance analysis alone could not clearly
identify universally important variables across all models. Therefore, to gain a deeper
understanding of the model’s decision-making process, SHAP analysis was conducted.

3.5. Machine Learning SHAP Analysis

Through SHAP analysis, the mean absolute SHAP values were calculated, and a bar
graph was constructed to indicate the average impact of each feature (wavelength) on the
model’s predictions, with the length of the bars representing the magnitude of the SHAP
values. This approach allowed for a quantitative assessment of each feature’s influence on
the model’s predictive power.

In the Decision Tree model, the 970 nm wavelength had a SHAP value of 0.223217,
showing a dominant influence over other wavelengths. The 365, 570, and 645 nm wave-
lengths were among the top 50% of important features (Figure 11A).

In the Random Forest model, the 645 nm wavelength was the most important (SHAP
value = 0.0416), followed by the 570 nm wavelength (SHAP value = 0.0327). Other relatively
important wavelengths included 365, 880, and 940 nm (Figure 11B).

In the LightGBM model, the 645 nm wavelength was identified as the most important
(SHAP value = 1.1090). The 570 nm wavelength also showed high importance (SHAP
value = 0.8600). The 365 and 880 nm wavelengths were among the top 50% of important
features (Figure 11C).

In the XGBoost model, the 645 and 940 nm wavelengths showed the highest SHAP val-
ues of 1.8190 and 1.5268, respectively. Other important features included the wavelengths
of 365, 570, and 880 nm (Figure 11D).
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Overall, SHAP analysis of the four primary machine learning models allowed us to
understand how each model responds to different features in the data. Common features
with the top 50% importance across all models were the 365, 570, 645, 880, and 940 nm
wavelengths. Feature importance analysis also highlighted 570, 645, and 940 nm as impor-
tant wavelengths across all models. Combining these results, it is evident that 570, 645, and
940 nm wavelengths consistently showed high importance across all models.

3.6. Establishing Classification Criteria Based on Key Wavelengths Using the ROC Curve

Using the ROC curve to evaluate the performance of the ensemble model, the optimal
threshold c (where the FPR and TPR were maximized) was determined to be 0.823. Thus,
the ensemble model classified seeds as viable if the predicted probability was >0.823 and
non-viable if the predicted probability was <0.823 (Figure 9).

For data points above the optimal threshold, the average spectral values of the 570, 645,
and 940 nm wavelengths were analyzed because these were identified as highly important
through feature importance and SHAP analyses. The average spectral values of 570, 645,
and 940 nm wavelengths were 17.779, 18.327, and 28.305, respectively. Using these spectral
values as thresholds and classifying seeds with values above the threshold as viable and
those below the threshold as non-viable, an overall classification accuracy of 0.85 was
achieved. The model demonstrated an accuracy of 85%, indicating that the spectral values
at 570, 645, and 940 nm are reliable indicators for seed viability classification.

4. Discussion

The current study developed a classification model using machine learning to differ-
entiate between viable and non-viable A. ulleungense seeds based on spectral data. The
most influential spectral wavelengths contributing to model performance were identified
through feature importance and SHAP analyses. While individual machine learning mod-
els achieved an accuracy of 95–99% on the training data, their accuracy on the test data
was lower (81–85%). Additionally, all models showed relatively lower performance in
classifying viable seeds than non-viable seeds (Figure 7).
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A stacking ensemble model was developed to enhance model performance and tackle
overfitting in the classification of viable seeds, with a Decision Tree as a meta-model.
This stacking model displayed improved performance on the training data, achieving an
accuracy of 0.9, precision of 0.9268, recall of 0.8837, specificity of 0.927, and an F1-score of
0.9045. Compared with individual models, the stacking model also reduced classification
errors for viable and non-viable seeds (Figure 8).

These results suggest that the machine learning-based stacking model can serve as
an effective tool for seed viability classification, with an accuracy of approximately 90%.
This performance is similar to the 92% accuracy in seed viability classification achieved by
Olesen et al. [7] using principal component analysis of spectral wavelengths. Furthermore,
the optimal threshold analysis of the ensemble model confirmed that the critical spectral
wavelengths identified by feature importance and SHAP analyses, namely 570 nm, 645 nm,
and 940 nm, are effective for seed viability classification.

Among the three critical wavelengths, the 570 nm wavelength falls within the green
spectrum and is known to influence the inhibition of seed dormancy release [23]. The
645 nm wavelength falls within the red spectrum, critical for promoting seed germination
and breaking dormancy [24,25]. The 940 nm wavelength falls within the near-infrared
(NIR) spectrum, which may not directly impact seed germination and dormancy but is
widely used for seed quality evaluation [26] and varietal classification [27]. Further detailed
analysis of NIR wavelengths is required to elucidate their roles in plants.

5. Conclusions

This study demonstrates that a stacking model using spectral data can effectively and
non-destructively distinguish between viable and non-viable seeds, with an accuracy of
approximately 90%. Identifying critical wavelengths (570, 645, and 940 nm) provides a
reliable basis for assessing seed viability. The results of this study align with previous
research, confirming the potential of machine learning-based approaches in this field.

Unlike previous studies primarily focused on crop seeds, our research indicates that
spectral-based non-destructive seed viability analysis models apply to wild plant seeds.
Based on these findings, we plan to expand the model’s applicability by including three
additional wild plant species within the Allium genus, thereby increasing data volume and
enhancing model robustness. This expansion aims to improve the model’s performance
and validate its utility across wild plant seeds.

In conclusion, while this study presents a promising approach for non-destructive
seed viability assessment, further validation of the model across different species and larger
datasets will be critical to ensure its broader applicability. Future research will incorporate
autofluorescence spectral images collected with VideometerLab 4 to improve classification
accuracy further and expand the model’s capabilities. This approach will increase the
number of wavelengths from 19 to 50, allowing a more detailed exploration of spectral data.
Addressing the uncertainties observed in the model’s performance, particularly regarding
the classification of viable seeds, will be a crucial focus of future work.
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