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Abstract: Identifying drivable areas between orchard rows is crucial for intelligent agricultural
equipment. However, challenges remain in this field’s accuracy, real-time performance, and gen-
eralization of deep learning models. This study proposed the SwinLabNet model in the context of
jujube orchards, an innovative network model that utilized a lightweight CNN-transformer hybrid
architecture. This approach optimized feature extraction and contextual information capture, effec-
tively addressing long-range dependencies, global information acquisition, and detailed boundary
processing. After training on the jujube orchard dataset, the SwinLabNet model demonstrated signifi-
cant performance advantages: training accuracy reached 97.24%, the mean Intersection over Union
(IoU) was 95.73%, and the recall rate was as high as 98.36%. Furthermore, the model performed
exceptionally well on vegetable datasets, highlighting its generalization capability across different
crop environments. This study successfully applied the SwinLabNet model in orchard environments,
providing essential support for developing intelligent agricultural equipment, advancing the identifi-
cation of drivable areas between rows, and laying a solid foundation for promoting and applying
intelligent agrarian technologies.

Keywords: drivable area identification; SwinLabNet network model; jujube orchard environment;
agricultural Intelligence

1. Introduction

Forestry and fruit industries play a crucial role in China’s rural economy, with jujube
being one of the main varieties, significantly boosting farmers’ income. However, due
to the complex orchard environment and variability in plant structure, the harvesting
process faces challenges such as low mechanization, high labor intensity, and high costs [1].
Therefore, addressing these technical challenges and enhancing the applicability and
efficiency of intelligent harvesting equipment in jujube production is an urgent issue. The
intelligentization of agricultural machinery is essential for improving productivity and
economic returns. In particular, visual navigation technology, representing the cutting-edge
trend in intelligent agricultural machinery, guides robots to work efficiently through image
processing, reducing labor intensity [2–5].

Currently, most research directions combine Global Navigation Satellite Systems
(GNSS), Light Detection and Ranging (LiDAR), and visual sensors, along with multi-sensor
fusion navigation methods [6]. The accuracy of existing GNSS positioning technology is
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limited in obstructed environments such as orchards [7]. LiDAR-based navigation sys-
tems face limitations in agricultural applications due to high costs and the complexity
of data processing [8]. Machine vision has become a key research focus, given visual
sensors’ cost-effectiveness, flexibility, and ability to mimic the human eye. Accurate seg-
mentation of drivable areas is fundamental to achieving precise navigation in orchard
environments [9,10]. Traditional image segmentation techniques first enhance features
through image preprocessing, using color, texture, or shape to distinguish scenes. Al-
gorithms are then applied to segment meaningful regions of the image [11], ultimately
enabling the identification of navigation paths and understanding of the environment,
which guides orchard machinery to move safely and efficiently in complex settings [12,13].
However, in the unstructured environment of jujube orchards, traditional methods struggle
to achieve accurate segmentation due to factors such as the irregularity of jujube bands,
varying lighting conditions, and complex backgrounds. In recent years, the rapid develop-
ment of deep learning technology has led to its widespread application in navigation path
recognition [14–16]. Deep convolutional neural networks have demonstrated exceptional
performance in image classification, object detection, and semantic segmentation [17–20].
In particular, deep learning-based semantic segmentation has become one of the critical
methods for analyzing and recognizing complex image scenes [21]. Semantic segmentation
assigns each pixel in an image to a corresponding semantic category, enabling a fine-grained
understanding of the image [22]. This approach not only extracts deep features of the image
but also captures high-level semantic information, resulting in more accurate recognition
in complex scenarios [23].

Yu et al. [24] studied five deep learning-based computer vision methods for field navi-
gation line extraction across different field scenarios, achieving an average segmentation
accuracy of 84.87%. Zhang et al. [25] proposed the Fast-Unet model, which effectively
enhanced the recognition accuracy of multiscale features through an encoder-decoder
structure and ASPP module. This model was trained on a peach dataset and successfully
transferred to orange and kiwi datasets, with mean Intersection over Union (MIoU) val-
ues of 97.9%, 98.7%, and 95.6%, respectively. Zheng et al. [26] introduced an improved
lightweight YOLOX-Nano architecture for detecting jujube tree root points, achieving an
mAP of 84.08%, making it suitable for embedded deployment. Yang et al. [27] proposed a
visual navigation path extraction method based on neural networks and pixel scanning.
The study showed that segmentation accuracy exceeded 92% under different lighting con-
ditions. Li et al. [28] proposed a fast U-net model, where the improved model reduced
parameters by 65.86% and enhanced prediction performance by 97.39%. Cao et al. [29]
introduced an improved Enet model that effectively utilized residual flow to extract low-
dimensional boundary information, significantly improving boundary localization and
segmentation accuracy between crop rows in fields. Zhang et al. [30] proposed an enhanced
semantic segmentation method, utilizing a modified ResNet network as the backbone,
combined with stripe pooling and hybrid pooling modules, achieving 95.6% accuracy and
77.6% MIoU. Baheti et al. [31] introduced an enhanced DeepLabV3+ method, using a low
dilation rate ASPP module for dense flow prediction and expanding the Xception net-
work as the backbone for feature extraction. On the Indian Driving Dataset, this approach
achieved MIoU scores of 68.41 and 86.75 for unknown test data with Level 3 and Level 1
labels, respectively. Although these studies have achieved some success in image semantic
segmentation at the pixel level using deep convolutional neural networks, they struggle to
accurately segment the entire drivable area when dealing with long-distance jujube belt
datasets with blurred boundaries and irregular shapes [32]. This presents challenges for
the subsequent extraction of navigation lines.

To address the issues identified in the earlier studies, this paper focuses on the jujube
belt area (drivable area) in unstructured jujube orchards. It proposes a segmentation
algorithm model based on a lightweight CNN-Transformer architecture for drivable area
identification. The contributions of this paper are primarily concentrated in the following aspects:
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(1) A lightweight CNN-Transformer hybrid architecture, SwinLabNet, is proposed, which
includes both encoding and decoding structures.

(2) The SwinASPP feature extraction module is introduced to enhance the fine-grained
segmentation of drivable areas in jujube belts by expanding the receptive field and
capturing more contextual semantic information, effectively adapting to the complex
orchard environment.

(3) The improved model effectively extracts drivable areas in jujube belts and demon-
strates good generalization performance on vegetable datasets.

The structure of this paper is organized as follows: Section 1 is the Introduction,
Section 2 covers the Materials and Methods; Section 3 describes the Experiment and Result
Analysis; and Section 4 concludes the paper.

2. Materials and Methods
2.1. Experimental Equipment and Parameter ConFigureuration

The experimental environment used Windows 10, with a CPU of AMD Ryzen 7 5800H
and a GPU of NVIDIA GeForce RTX 3050 (Lenovo’s Legion series, Beijing, China). Based
on the preliminary experimental results. The initial learning rate was set to 0.01, with a
weight decay coefficient of 0.007, a batch size of 4, and 100 iterations. During training, the
network model was updated using Stochastic Gradient Descent (S.G.D.) to learn and adjust
network parameters with a cosine annealing learning rate decay. The Adam optimization
algorithm was employed to optimize the weight updates.

2.2. Semantic Segmentation of Drivable Areas Based on Neural Network
2.2.1. Dataset Acquisition

The experimental data were collected in November 2023 from a dwarf dense planting
jujube orchard in Kunyu, Xinjiang. During the data collection, a stabilized camera was used
to simulate the normal working state of a vehicle. To capture the multi-angle features of the
jujube and ensure comprehensive and complete data collection, images were taken at angles
of 10◦, 30◦, and 45◦. The image resolution was 1920 × 1080, with a frame rate of 60 fps.
The video was converted into images using OpenCV 4.3.3. The programming language
was Python 3.6, and the code was edited in PyCharm Community Edition 2022.3.2. The
program was executed on the Windows 10 operating system.

In line with the research objectives, this study collected only image data from the
drivable areas between orchard rows, excluding the orchard headlands. To enhance sample
diversity, we collected images of the jujube belt between orchard rows under various
working conditions and lighting scenarios to better reflect natural environments. After
processing, a total of 1550 jujube belt images were obtained.In the experiment, the drivable
areas of the jujube belt in the orchard were annotated using Labelme software 3.16.7. The
drivable areas were marked in red, with other regions labeled as background. Figure 1
shows the annotation results from different times and angles.

2.2.2. Dataset Augmentation

To validate the model’s robustness and generalization ability and to reduce its sensitiv-
ity to noise, varying perspectives, and lighting changes, it is necessary to preprocess images
to augment the dataset, enhance model performance, and prevent overfitting. The same
jujube belt region exhibits variations in size, position, orientation, and brightness under
different shooting conditions. To improve the generalization ability of the network model,
data augmentation is applied to the dataset. The dataset was augmented by horizontal
mirroring, color transformations (contrast, brightness), and adding Gaussian and salt-
and-pepper noise to improve the model’s robustness and accuracy, as shown in Figure 2.
Mirroring aids in determining the navigation path between orchard rows, while random
noise helps the model adapt to uneven natural lighting conditions. The augmented dataset
contains a total of 3800 images, which were split into training and test sets in a 9:1 ratio.
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2.3. Construction of a Model for Identifying Drivable Areas between Rows in Unstructured
Jujube Orchards

The extraction of drivable jujube belts in unstructured jujube orchards involves two
labels: jujube belts and background. Due to the characteristics of the jujube belt regions,
such as long and blurred boundaries, complex and dispersed information, and irregular
shapes and sizes, researchers have proposed several CNN-based neural network models to
address the multiscale segmentation problem and to extract drivable jujube belt regions of
varying sizes and shapes [33,34]. However, these models, which rely on local information
from surrounding pixels, fail to establish dependencies between features or capture dense
contextual information, making them ineffective in achieving satisfactory results when
dealing with jujube belt regions that have extended, irregular boundaries and require
global consistency or long-range contextual understanding for accurate classification in
complex scenarios. This study proposes the SwinLabNet model based on a lightweight
CNN-Transformer hybrid architecture. SwinLabNet enhances segmentation accuracy by
combining high-level semantic information with low-level spatial details through feature
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aggregation in the encoder-decoder structure, integrating upsampling and downsampling
information. By incorporating the lightweight MobileNetV3 backbone, the innovative
SwinASPP module, and focal loss optimization, SwinLabNet achieves efficient and high-
precision semantic segmentation, excelling in capturing multiscale contextual information
and detailed features. The model structure is shown in Figure 3.
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The jujube belt images are first processed through the improved lightweight back-
bone, MobileNetV3-ECA, to extract high-level and low-level features. Subsequently, the
high-level features are processed by the modified SwinASPP module: a Swin Transformer
with a window size of 2 (W-MSA) is used to extract multiscale information and capture
dependencies between distant pixels; dilated convolution with a dilation rate of 12 is
employed for mid-scale feature extraction to enhance contextual information; and a Swin
Transformer with a window size of 7 (SW-MSA) achieves cross-window information ex-
change through window shifting, further enriching the contextual information. Replacing
traditional dilated convolution with Swin Transformers of window sizes 2 and 7 expands
the receptive field. It enhances the model’s ability to capture long-range dependencies and
global semantic information, leading to more refined and accurate results in segmenting
drivable areas in densely planted dwarf jujube orchards.

Finally, the high-level features processed by the improved SwinASPP module are fused
with the low-level features, and the resulting feature maps are input into the prediction
module to achieve the segmentation of drivable areas in the jujube belt. The following will
introduce the structural framework and principles of each module separately.

2.3.1. Lightweight Backbone Network MobileNetV3-ECA Module

To meet the real-time navigation and subsequent edge deployment requirements in
unstructured jujube orchards while ensuring segmentation accuracy and reducing model
complexity and parameter count, this study employs a lightweight MobileNetV3 network
as the backbone in the feature extraction module, as illustrated in Figure 4. Considering the
blurred boundaries of the jujube belt images in the target area, the presence of a complex
background, and detailed features, the Efficient Channel Attention (ECA) module was
used to replace the Squeeze-and-Excitation (SE) module in the model. This improves the
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network’s ability to extract target feature maps and focus on continuous regional features.
Particularly for images with high noise, significant viewpoint variations, and differing
lighting conditions, this mechanism helps the model concentrate on key features of the
jujube belt navigable area segmentation task, reducing the impact of interference.This
allows the network to adaptively learn the inter-channel correlations during training and
apply them to channel weighting in each feature map.
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Unlike the S.E. attention mechanism, the core idea of the E.C.A. module is to effectively
capture global correlations between channels to emphasize important channel information
while avoiding high computational cost and increased model complexity. Figure 5 shows
the structure of the E.C.A. module. This module uses a 1 × 1 convolution layer after
the global average pooling layer, eliminating the fully connected layer, thereby avoiding
dimensionality reduction and effectively capturing cross-channel interaction information.
The E.C.A. module employs a 1D convolution layer followed by the σ activation function to
enhance the model’s ability to interact with cross-channel details to generate the attention
weight vector A. The vector A is then multiplied element-wise with the original feature map
χ to adjust the channel attention, resulting in the recalibrated feature map�cij, calculated
as follows:

A = σ(Conv1D(GPA(χ))) (1)

Bcij = Ac·χcij
∀c ∈ {1, .., C}, i ∈ {1, .., H}, j ∈ {1, .., W} (2)

In the equation, A represents the attention weight vector; Conν1D denotes the 1D
convolution layer; GAP stands for global average pooling; χ represents the original feature
vector; Bcij is the recalibrated feature map; Ac refers to the element in the attention vector A
corresponding to the c-th channel; χcij represents the value of the original input feature map
χ at the c-th channel and position (i,j); and Bcij represents the value at the same position
after channel attention adjustment.

The convolution kernel size in the E.C.A. module adaptively changes based on a
function, allowing layers with more channels to perform more extensive cross-channel
interactions. The adaptive 1D convolution primarily adjusts the size of the input channel C
through the parameter K. The specific functional relationship is as follows:

K = φ(C) =

∣∣∣∣ log2 C + b
γ

∣∣∣∣
odd

(3)

In this equation, |t|odd represents the nearest bizarre number to t, and γ and b are
user-defined parameters with default values of 2 and 1, respectively [35].
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During the segmentation process, the network can better focus on continuous jujube
belt region features while suppressing background interference, enabling adaptive feature
mapping to the target channels. Consequently, even under varying lighting conditions
and complex backgrounds, the network can effectively capture the visual features of the
Jujube belt region, resulting in more transparent and distinct segmentation boundaries and
improved accuracy in segmenting the Jujube belt area. The Hard-Swish activation function
is also introduced to reduce computational load and enhance performance. The definition
of this activation function is as follows:

h − swish[x] = x
ReLU6(x+3)

6
(4)
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2.3.2. SwinASPP

For the segmentation task of jujube belt image datasets in dwarf densely planted jujube
Orchards, this paper proposes a new SwinASPP module to address the challenges of low
segmentation accuracy due to the small proportion, narrow shape, blurred boundaries, and
complex internal information of the segmented regions in jujube belt images. In existing
ASPP models, atrous convolution is limited to local areas when extracting contextual
information, making it difficult to fully capture dense contextual semantic information,
which affects the correlation of jujube belt image features and segmentation accuracy.
Moreover, high dilation rates in atrous convolutions within higher-level network structures
significantly reduce sampling density, potentially causing the “checkerboard effect”. The
dilated convolutions with different dilation rates lack dynamic interaction, making it
difficult to effectively extract deep semantic content from low-resolution feature maps,
which hinders the segmentation of complex jujube belt regions.

To address the abovementioned issues, this paper introduces an improved ASPP
module by incorporating the Swin Transformer structure, as illustrated in Figure 6. The
SwinASPP module includes a Swin Transformer block with a window size of 2 for extracting
local details such as edges and textures. A dilated convolution layer with a dilation rate of
12 is used to extract medium- to large-scale contextual features through a larger receptive
field, which aids in capturing the overall shape of objects and background information.
Additionally, a Swin Transformer block with a window size of 7 captures the global structure
and correlations in the jujube belt images.
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The Swin Transformer block is a hierarchical structure that employs sliding windows
to capture dependencies between distant pixels. This approach is efficient for images
like those in the jujube belt dataset, where segmentation regions have extended, blurred
boundaries and complex textures. By leveraging spatial information, the block improves
segmentation accuracy. The specific structure is shown in Figure 7. The SwinASPP module
refines the boundary features of the jujube belt region using W-MSA and SW-MSA self-
attention mechanisms, enabling parallel extraction and cascading integration of features
at different scales. Each module focuses on feature extraction at different scales, and
by exchanging information across windows, it captures and integrates more extensive
contextual information, leading to more accurate segmentation of the jujube belt region
from the background. The model effectively leverages multiscale feature information in the
jujube belt images by cascading or parallelly combining these modules within the network.
The specific structure is shown in Figure 8. Based on this shifted window partitioning
method, consecutive Swin Transformer blocks can be represented as follows:

Ẑι
= W − MSA(LN(zι−1)) + zι−1, (5)

Zι = MLP(LN(ẑι)) + ẑι, (6)

Ẑι+1
= SW − MSA(LN(zι)) + zι, (7)

Ẑι+1
= MLP(LN(ẑι+1)) + ẑι+1, (8)
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The window partitioning mechanism enables the SwinASPP module to handle com-
plex segmentation tasks in unstructured jujube orchards, including drivable areas and
background segmentation. This approach enhances segmentation accuracy and boundary
clarity. It demonstrates strong perception and generalization capabilities, even when deal-
ing with challenges such as extended, blurred boundaries, complex information, dispersed
distribution, and irregular shapes of the jujube belt regions.

2.3.3. Loss Function Design

The dataset contains significantly more background pixels than drivable area pixels in
this study. This imbalance biases the loss function toward the background pixels, leading
the model to misclassify the drivable area as background, thus reducing the accuracy of the
jujube belt segmentation.

Considering the characteristics of the jujube belt dataset in dwarf dense jujube or-
chards, this study is based on the multi-head attention mechanism. It improves the loss
function by introducing a Combined Loss (C.L). This Combined Loss integrates Focal
Loss (F.L.) [36] and Cross-Entropy Loss (CE Loss) [37], aiming to enhance the model’s
classification performance on imbalanced datasets. Focal Loss, based on cross-entropy, uses
a dynamic scaling factor to reduce the weight of easily classified samples, thereby focusing
attention on harder-to-classify samples. The specific function is expressed as follows:

LCE = −∑N
i=1 yi log(pi) (9)

LFocal = −α(1 − pi)
γ log(pi) (10)

LCombined = −λCE · LCE + λFocal · LFocal (11)

LCE represents the Cross-Entropy Loss, LFocal denotes the Focal Loss, and LCombined
indicates the Combined Loss. In this context, yi represents the accurate label, pi is the
model’s predicted probability, α is the balancing factor used to balance positive and negative
samples, γ is the modulating factor used to control the weight of easy and hard samples,
λCE is the weight of the Cross-Entropy Loss, and λFocal is the weight of the Focal Loss.

The improved hybrid loss function combines Cross Entropy Loss and Focal Loss. It
preserves the stability of Cross-Entropy Loss across the dataset while using Focal Loss to
enhance focus on hard-to-classify samples during training. Cross-Entropy Loss applies a
higher loss value to easily distinguishable samples to ensure correct classification, while
Focal Loss assigns a lower weight to these samples, minimizing their impact on the overall
Loss. For difficult samples, Cross-Entropy Loss generates a loss value, while Focal Loss
further amplifies this loss, increasing its weight in the overall loss. This helps the model to
better handle challenging samples.

3. Experiment and Result Analysis
3.1. Evaluation Metrucs

This experiment aims to evaluate the model’s performance in the jujube belt segmen-
tation task, using the following metrics for assessment and comparison: Mean Intersection
over Union (MIoU), Precision (Pr), and Recall (Re). The specific formulas for these calcula-
tions are shown below:

MIoU =
1

k + 1

k

∑
i=0

TP
FN + FP + TP

(12)

Pr =
TP

TP + FP
(13)

Re =
TP

TP + FN
(14)
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3.2. Influence of Different Loss Functions on Experimental Results in an Improved Model

To investigate the impact of the improved loss function on the performance of the
SwinLabNet network in the navigable area segmentation task, we compared the improved
Combined Loss with CE Loss and Focal Loss. Under the same training conditions, the
model was trained for 100 epochs with only the loss function changed. The comparison
results are shown in Figure 9. As shown in the figure, with the increase in iterations, the
loss function of the training set gradually decreases. The Combined Loss demonstrates a
faster convergence speed and smoother convergence range compared to CE Loss and Focal
Loss. Furthermore, the final convergence loss values of the three loss functions indicate
that, in cases of class imbalance, the Combined Loss is better suited as the loss function for
the model.

Agriculture 2024, 14, x FOR PEER REVIEW 11 of 17 
 

 

faster convergence speed and smoother convergence range compared to CE Loss and Fo-

cal Loss. Furthermore, the final convergence loss values of the three loss functions indicate 

that, in cases of class imbalance, the Combined Loss is better suited as the loss function 

for the model. 

 

Figure 9. Comparison of loss values between three loss functions in the same conditions. 

3.3. Comparison of Lightweight Backbone Network Performance 

This study employs MobileNetV3 to replace the original backbone network, Xcep-

tion, to achieve lightweight model improvements. To validate the effectiveness of the 

method, comparative experiments were conducted using four representative backbone 

networks: Xception, GhostNet, MobileNetV3, and MobileNetV3-ECA, under the same 

conditions. Aside from the changes in the backbone network, other parameters remained 

constant, and the original loss function was utilized for testing. Detailed experimental re-

sults are presented in Table 1. 

As shown in the table, compared to the MobileNetV3 backbone network, the im-

proved MobileNetV3-ECA backbone network achieved increases of 3.3 percentage points 

in MIoU and 2.22 percentage points in Recall. At the same time, its parameter count is only 

one-tenth that of the Xception network. Although GhostNet has slightly fewer parameters 

than the improved backbone network, MobileNetV3-ECA demonstrates superior segmen-

tation performance from a comprehensive perspective. Considering the complexity of ju-

jube belt image shape characteristics, such as blurred boundaries, uneven spatial distribu-

tion, and diverse and irregular forms and sizes, MobileNetV3-ECA is selected as the opti-

mal choice for feature extraction due to its superior performance. 

Table 1. Performance comparison of backbone networks. 

Method MIoU/% Pr/% Re/% Size/M 

Xception 81.51 83.62 86.32 209 

GhostNet 84.27 86.47 84.37 24 

MobileNetV3 86.36 90.33 87.81 31.2 

Our 89.66 90.22 90.03 31.2 

3.4. Ablation Study 

An ablation study was conducted to validate the impact of the proposed Mo-

bilenetv3-ECA and SwinASPP modules at different positions on the model’s segmenta-

tion performance. The baseline model used DeepLabV3+ with the original Xception and 

ASPP modules. Due to the class imbalance issue in the jujube belt dataset, MIoU was used 

as the evaluation metric in the ablation study. As shown in Table 2, replacing the backbone 

network with Mobilenetv3-ECA increased the dataset’s MIoU by 5.99 percentage points 

compared to the baseline model. After replacing the ASPP module with SwinASPP, the 

dataset’s MIoU increased by 7.67 percentage points compared to the baseline model. 

Figure 9. Comparison of loss values between three loss functions in the same conditions.

3.3. Comparison of Lightweight Backbone Network Performance

This study employs MobileNetV3 to replace the original backbone network, Xception,
to achieve lightweight model improvements. To validate the effectiveness of the method,
comparative experiments were conducted using four representative backbone networks:
Xception, GhostNet, MobileNetV3, and MobileNetV3-ECA, under the same conditions.
Aside from the changes in the backbone network, other parameters remained constant,
and the original loss function was utilized for testing. Detailed experimental results are
presented in Table 1.

As shown in the table, compared to the MobileNetV3 backbone network, the improved
MobileNetV3-ECA backbone network achieved increases of 3.3 percentage points in MIoU
and 2.22 percentage points in Recall. At the same time, its parameter count is only one-tenth
that of the Xception network. Although GhostNet has slightly fewer parameters than the
improved backbone network, MobileNetV3-ECA demonstrates superior segmentation
performance from a comprehensive perspective. Considering the complexity of jujube belt
image shape characteristics, such as blurred boundaries, uneven spatial distribution, and
diverse and irregular forms and sizes, MobileNetV3-ECA is selected as the optimal choice
for feature extraction due to its superior performance.

Table 1. Performance comparison of backbone networks.

Method MIoU/% Pr/% Re/% Size/M

Xception 81.51 83.62 86.32 209
GhostNet 84.27 86.47 84.37 24
MobileNetV3 86.36 90.33 87.81 31.2
Our 89.66 90.22 90.03 31.2

3.4. Ablation Study

An ablation study was conducted to validate the impact of the proposed Mobilenetv3-
ECA and SwinASPP modules at different positions on the model’s segmentation per-
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formance. The baseline model used DeepLabV3+ with the original Xception and ASPP
modules. Due to the class imbalance issue in the jujube belt dataset, MIoU was used as
the evaluation metric in the ablation study. As shown in Table 2, replacing the backbone
network with Mobilenetv3-ECA increased the dataset’s MIoU by 5.99 percentage points
compared to the baseline model. After replacing the ASPP module with SwinASPP, the
dataset’s MIoU increased by 7.67 percentage points compared to the baseline model. When
both modules were replaced simultaneously, the dataset’s MIoU improved by 11.06 percent-
age points relative to the baseline model. In summary, replacing both modules significantly
enhanced the segmentation performance on the jujube belt dataset.

Table 2. Ablation study results SwinLabNet.

Structure MIoU/%

Xception + ASPP 84.67
Mobilenetv3-ECA + ASPP 90.66
Xception + SwinASPP 92.34
Mobilenetv3-ECA + SwinASPP 95.73

3.5. Comparative Analysis of Different Model Performances

To ensure the fairness of the experiments, all experiments in this chapter utilized the
same training, validation, and test sets. The parameter settings for the comparative experi-
ments were based on the optimal results from their respective preliminary experiments.
To validate the effectiveness of the proposed method for semantic segmentation of jujube
belt images, we conducted training comparisons under the same conditions using repre-
sentative mainstream semantic segmentation models, including Enet [38], Bisenetv2 [39],
IRASPP [40], U-Net [41], PSPNet [42], FCN [43], and DeepLabV3+ [44] (with MobileNetv2
as the backbone). Performance comparisons were made using the Mean Intersection over
Union (MIoU) metric, which effectively balances precision and recall, making it suitable for
assessing the overall performance of segmentation models.

As shown in the Table 3, under the same experimental conditions, the improved
SwinLabNet model proposed in this paper outperforms the original and other mainstream
segmentation models in performance metrics. The MIoU improved by 5.3% compared
to the original DeepLabV3+ model. The experiments demonstrate the effectiveness and
superiority of this method, which better accomplishes the segmentation of drivable areas
in the jujube belt, providing a foundation for precise navigation in future applications
(Table 3).

Table 3. Results of different semantic segmentation models.

Model MIoU/%

Enet 84.90
Bisenetv2 84.36
IRASPP 88.84
U-Net 92.58

PSPNet 90.83
FCN 70.3

DeepLabV3+ 90.57
Our 95.73

As shown in Figure 10, the segmentation results of various semantic segmentation
methods selected in this study are displayed on test images, covering multiple scenarios
at different times of the day. The figure shows that the ENet and BiseNetV2 methods can
only detect partial jujube belt targets in the images. The IRASPP method performs well
in the morning but struggles with long-distance jujube belt images and under low-light
conditions in the evening. U-Net, PSPNet, and DeepLabV3+ can accurately detect the
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jujube belt target regions with good performance, but they struggle with long-distance
detection and are relatively large models. FCN. has the poorest detection performance,
failing to adequately detect the jujube belt regions. In contrast, the proposed model achieves
the best segmentation across different times of the day and long distances, outperforming
DeepLabV3+ while significantly reducing the number of parameters.
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3.6. Analysis of Visualization Results

To validate the superiority of the proposed model in long-distance jujube belt segmen-
tation, it is compared with the previously effective models, Unet and Deeplabv3+.

This paper employed the Grad-CAM [45] heatmap visualization method to highlight
the regions in the images that contribute significantly to classification. Figure 10 presents
some of the results. In the heatmaps of the jujube belt dataset, red indicates the location and
intensity of the target, with higher intensity signifying greater impact on the model’s detec-
tion outcomes. As shown in the figure, under strong lighting and background interference
conditions (Figure 11a,b), the comparison models focus on the jujube belt area, but due to
the strong lighting, the texture distinction of the jujube belt becomes unclear, and shadows
from trees and leaves cause misclassification. Under low-light conditions (Figure 11c),
the low contrast of the jujube belt images results in blurred edge and texture features,
causing the comparison models to lose some detail information during training and fail to
capture the overall context effectively. In contrast, the SwinLabNet model is able to resist
irrelevant background interference and focus more accurately on the navigable area. The
experimental results demonstrate that the improved model focuses more effectively on the
jujube belt area. The darker regions nearly cover the entire jujube belt, with higher intensity
at the corresponding pixels and fewer misclassifications.
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3.7. Model Generalization

This section uses the vegetable dataset [24] for testing to validate the model’s ro-
bustness and generalization performance. As shown in Figure 12, the improved model
demonstrated strong robustness and stability across five complex field road scenarios,
including a greenhouse strawberry garden, a mulched vegetable field, and environments
with shadows, darkness, and intense light.
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4. Conclusions

This paper presents SwinLabNet, an algorithm to identify drivable areas in jujube
orchards in unstructured environments. It addresses the challenges of long and blurred
jujube belt boundaries, complex and dispersed information, and highly irregular shapes
and sizes. The models Enet, Bisenetv2, IRASPP, U-Net, PSPNet, FCN, and DeepLabV3+
were selected for comparative testing under the same training conditions, leading to the
following conclusions:

(1) First, MobileNetV3-ECA was used in the feature extraction stage, significantly reduc-
ing the model’s parameters. Second, the Swin Transformer was introduced to enhance
the model’s ability to capture contextual semantic information, addressing the issue of
weak correlations between long-distance features. Finally, a mixed loss function was
employed to handle the class imbalance problem, enabling the efficient extraction of
abundant semantic information with a simple training method and fewer parameters.

(2) Regarding accuracy, the experimental results show that the improved model achieved
an MIoU of 95.73%, a precision of 97.24%, and a recall of 98.36%. Compared to the
original DeepLabV3+ network, these metrics improved by 5.22%, 3.62%, and 2.04%,
respectively. When handling the jujube belt dataset, characterized by long and blurred
boundaries, complex information, and discrete distribution, the proposed method
demonstrated superior segmentation performance compared to other mainstream
models. It also shows strong robustness and stability on vegetable datasets.

(3) Regarding lightweight design, this model uses MobileNetV3-ECA as the backbone
network, with the number of parameters reduced to less than one-tenth of the original
model. This provides better adaptability for deployment on edge devices.

Future research directions include optimizing the proposed MobileNetV3-ECA and
SwinASPP modules and applying them to other neural networks. Further improvements
will be made to the jujube belt image dataset in dwarf densely planted jujube orchards
under varying light intensities and environmental conditions.
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