
Citation: Wei, L.; Liu, X.; Sun, W.;

Zhao, W.; Li, H.; Zhang, H.; Li, H.;

Liang, J.; Li, Y.; Zhou, Y.; et al. Design

and Testing of an Integrated Corn

Stubble Residual Film-Recycling

Machine. Agriculture 2024, 14, 1809.

https://doi.org/10.3390/

agriculture14101809

Academic Editor: Simone Bergonzoli

Received: 23 September 2024

Revised: 8 October 2024

Accepted: 10 October 2024

Published: 14 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agriculture

Article

Design and Testing of an Integrated Corn Stubble Residual
Film-Recycling Machine
Le Wei 1, Xiaolong Liu 1,*, Wei Sun 1 , Wuyun Zhao 1, Hui Li 1, Hua Zhang 1, Hongling Li 1, Jiadong Liang 2,
Yongzhi Li 1, Yuhang Zhou 1 and Ningning Zhao 1

1 College of Mechano-Electronic Engineering, Gansu Agricultural University, Lanzhou 730070, China;
wl1570738261@163.com (L.W.)

2 Wuwei Xingdong Machinery Co., Wuwei 733000, China
* Correspondence: liuxiaol@gsau.edu.cn; Tel.: +86-189-1908-8968

Abstract: The existing residual film-recycling machines struggle to efficiently recover and separate
film stubble in a single operation. With roller-type film-rolling device unloading difficulties and other
problems, in order to improve the recovery efficiency of film stubble and the separation effect while
reducing human labor and to improve work efficiency, we designed an automatic hydraulic unloading
film stubble-recycling integrated residual film-recycling machine. The angle of the membrane lifting
device was determined by theoretical calculations using the method of coupled simulation of EDEM
and ANSYS Workbench. We analyzed the amount of resistance as well as the maximum stress and
deformation during the working process of the membrane-lifting device and focused on the design
of the membrane–soil separating device and membrane-rolling device. The depth of the film shovel,
the forward speed of the machine, and the rotational speed of the driving wheel of the jogging chain
were selected as the test factors, and the residual film recovery rate was taken as the evaluation
index. A three-factor, three-level test was designed by applying the principles of the Box–Behnken
experimental design. The results show that when the forward speed is 1.36 m/s, the soil depth is
147.16 mm, and the rotational speed of the driving wheel of the shaking chain is 77.89 r/min, the
recovery rate of the residual film is 87.56%, and the relative error between the experimental value
and the optimized value is 2.73%. The experimental results can provide a theoretical basis for the
design of the residual film-recycling machine.

Keywords: residual film recycler; design; film-lifting mechanism; performance testing; optimization

1. Introduction

Mulching planting technology has the obvious effects of temperature increase, water
conservation, moisture retention, and weed suppression, and is therefore commonly used in
arid and semiarid areas [1,2]. China, as the country with the largest use of mulch, uses more
than 1.5 × 106 t of mulch per year [3,4]. China’s use of film is mainly based on polyethylene
materials. In natural conditions, this film takes 200 to 400 years to degrade [5,6]. Residual
used mulch in farmland damages the soil structure and reduces soil fertility, resulting
in crop yield reduction, and the residual film itself also has a strong flexibility and is
easy to entangle with the crop roots in the tillage layer, inhibiting the normal growth
of crop roots [7]. There are a number of viruses and pests in the soil, and root stubble
can be a breeding ground for them; if left untreated, this can have an impact on the crop
afterward [8,9]. In recent years, with the increase in the area of mulching and the amount
of film used, if not cleaned up in a timely manner, more and more film will be left in the
soil of farmland, causing many problems for agricultural production and the ecological
environment [8,10–12].

In recent years, for the planting of corn, cotton, potatoes, and other crops, the residual
film-recycling machine pickup mechanism has been used with different structures, which
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are mainly divided into shovel sieve type, drum type, bullet tooth type, toothed belt, and
rake tooth type residual film-recycling machineries [13–17]. Mechanized residual film
recycling plays an important role in environmental protection, but the current residual
film-recycling machines have some problems in practical application, such as low recycling
efficiency and a low degree of miscellaneous separation. In the process of the operation,
residue will be entangled in the machine parts, which easily causes clogging damage, etc.,
to the equipment. In this paper, for the Gansu Hexi irrigation area, a corn land residual
film-recycling machine is used for picking up film, unloading film, recycling stubble from
coordinated operations, designing a set of film, picking up film, rolling film, unloading
film, and recycling stubble with residual film-recycling equipment. By adjusting the height
of the depth-limiting wheel, the machine makes the film-lifting device enter into the tillage
layer. The shaking chain separates part of the soil in the film–stubble mixture from the gap
of the chain bar. Most of the film is rolled up and recovered by the film-rolling device, and
a small amount of broken film falls into the stubble box along with the root stubble, which
can effectively recycle residual film and stubble in the tillage layer and reduce the amount
of manpower needed. The corn stubble residual film-recycling machine designed in this
paper is expected to contribute to solving the problems of environmental pollution and
resource wastage existing in current agricultural production, promoting the sustainable
development of agriculture, enhancing the economic benefits of farmers, and realizing
the requirements of modern society regarding environmental protection and resource
utilization.

2. Materials and Methods
2.1. Whole-Machine Structure

A corn stubble film-recycling machine mainly consists of a three-point suspension
mechanism, a deceleration commutator, a film-starting device, a side film shovel, a chain
drive system, a shaking delivery chain, a depth-limiting wheel, a film-rolling mechanism, a
stubble collection box, and other parts of the structure of the machine, as shown in Figure 1.
This machine is mainly used for the residual film-recycling operation after spring corn
harvesting and straw crushing and returning to the field, and the operating parameters are
shown in Table 1.
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Figure 1. Whole-machine structure. 1. Three-point suspension mechanism. 2. Deceleration commuta-
tor. 3. Film starting device. 4. Side film shovel. 5. Chain drive system. 6. Hydraulic multiway valve.
7. Shake feeding chain. 8. Depth-limiting wheel. 9. Hydraulic motor. 10. Film-rolling device. 11.
Stubble collection box.



Agriculture 2024, 14, 1809 3 of 18

Table 1. Main technical parameters of corn plastic film stubble recycling integration.

Parameters Numerical Value

Size of the whole machine (mm × mm × mm) 3070 × 1920 × 1690
auxiliary power/kW ≥60
operating depth/mm 80~150
Working width/mm 1400

working speed (km·/h) 3.5~6

2.2. Principle of Operation

The integrated corn stubble residual film-recycling machine adopts a three-point
suspension connection driven by tractor traction. When in operation, the implement
moves forward under the tractor’s pull. At the same time, the power output from the
tractor’s power output shaft is transferred to the chain drive device through the deceleration
commutator. The chain drive device then drives the film–soil separating device, causing it
to move. The membrane lifting device conveys a mixture of soil, residual film, stubble straw,
and other materials from a soil depth of 150 mm. This mixture is lifted and transported
by the nail teeth located on the chain bar of the film–soil separating device. During the
conveying process, the shaking wheels on the film–soil separating device shake the surface
soil, causing it to fall back to the ground. During transportation, the soil on the surface of
the membrane is shaken by the shaking wheel of the membrane–soil separating device,
which separates the soil and deposits it on the ground. A hydraulic motor drives the film
rollers, causing them to rotate. As the residual film falls, it is pulled by the nail teeth of the
film rollers, which wrap it around their surface due to their rotary movement. Under the
force of gravity, the corn stubble and some straw fall into the stubble collection box. The
stubble collection box drum then rotates to further separate the corn stubble from the soil.
In addition, the stubble box is equipped with hydraulic cylinders on both sides that can be
extended for easy unloading.

3. Design of Key Components
3.1. Design and Simulation of Membrane Lifting Device
3.1.1. Structure Design of the Stubble Lifting Spade

The film starting device works at a certain depth of film and crop stubble, and together,
residual film and crop stubble and a small amount of straw in the field can be raised along
the surface of the film shovel into a certain angle upward movement. Excess soil and fine
impurities fall through the film starting device loosened in the gaps between the filtration.
The actual working width of the film device is 1400 mm, with eight independent shovel
bodies bolted to the square steel. The minimum gap is 85 mm. During the test, the spacing
will not let the stubble out of the corn fall through the gap to the field. It can let the soil
block pass through smoothly, and will not produce a soil clogging phenomenon. The
film shovel surface and the ground are positioned at a certain inclination, to enhance the
performance of the soil and to increase the efficiency of the machine on the residual film
pick-up. This is shown in Figure 2.
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3.1.2. Design of the Angle of Entry into the Ground

The film stubble shovel entry angle directly affects the efficiency of the machine. The
force analysis of the shovel surface of the film and debris can be indirectly deduced from
the theoretical value of the film shovel entry angle α, as shown in Figure 3.
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Since the film stubble shovel is not subjected to forces parallel to and perpendicular to
the shovel surface, a balance equation can be established as follows:

Pcos a − F − Gsin a = 0 (1)

N − Gcos a − Psin a = 0 (2)

F = µN (3)

Here,
P—Working resistance of the film lifting shovel (N);
N—Pressure of the membrane mixture on the shovel surface (N);
G—Gravity of membrane mixtures on the shovel surface;
F—Friction of membrane mixtures on shovel surface;
µ—Friction factor between the shovel surface and the membrane-hybrid mixture.
These can be derived from Equations (1)–(3):

a = arctan
P − µG
G + µP

(4)

From Equation (4), it can be concluded that if the angle of entry is too large, the film
starting device may be congested with miscellaneous film mixtures on the surface of the
shovel body in the process of moving forward, which will increase the working resistance;
it was found in the test process that if the angle of entry is too small, the effect of crushing
the soil will deteriorate, and the lifted film will be accompanied by a large amount of
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soil with a large number of slabs, which will affect the separation of the miscellaneous
film. According to the literature [18], the best effect of the film shovel is when the angle of
entering the soil is 10~35◦, and the final angle of film stubble shovel is α = 26◦, as deduced
after many field experiments and discrete element simulation.

3.1.3. Simulation Analysis of Membrane Lifting Device

In the film starting device, for both the film and stubble functions, the material is 65Mn,
and using the film starting device in the tillage layer will cause a certain resistance to the
forward movement of the equipment. The resistance calculation is more complex and does
not form a specific formula, mostly deduced from the test. For this reason, in this paper,
based on the coupling of EDEM and ANSYS Workbench, the operational resistance of the
membrane lifting device when working is derived in EDEM and imported into ANSYS for
the static analysis of the membrane lifting device. The simplified processed membrane film
starting device is shown in Figure 4. In order to make the simulation results more accurate,
the simulation parameters were set according to the contact model of soil particles in the
dry zone of Northwest China, studied by previous researchers [19–21], as shown in Table 2.
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We used SolidWorks to build a three-dimensional model of the film-starting device
and import it into EDEM 2022.3 software in stl format, and set the geometric position and
relevant contact parameters for it to simulate the force condition of the film starting device
in the soil when it is working. In order to simplify the simulation model and reduce the
simulation running time, the soil particles were set as spherical particles with a radius of
5 mm, and considering the adhesion between soil particles. It was more realistic to use the
Hertz–Mindlin with JKR contact model, and the depth of soil penetration was determined
to be 140 mm according to the literature on the distribution of maize stubble in various
depths of the soil [22]. The simulation speed was set to be 1.3 m/s.

Post-processing of the discrete element simulation results was performed by coloring
the soil particles with different colors for different speeds, observing the speeds obtained
by the soil particles during the work of the film starting device, and then analyzing the
motion of the soil particles, intercepting the speed of the soil particles over time, as shown
in Figure 5.
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Table 2. Discrete element simulation parameters.

Parameters Numerical Value

Soil particle density/(kg·m−3) 2680
Poisson’s ratio of soil particles 0.3

Soil particle shear modulus 0/Pa 1 × 108

65Mn steel density ρ/(kg·m−3) 7861
65Mn steel Poisson’s ratio 0.29
65Mn steel shear modulus 7.9 × 1010

Soil–soil recovery factor 0.3
Soil–soil kinetic friction factor 0.3
Soil–soil static friction factor 0.5

Soil–65Mn steel recovery factor 0.6
Soil–65Mn steel dynamic friction factor 0.11

Soil–65Mn steel static friction factor 0.4
JKR surface energy (J/m2) 5.4

Dimensions of virtual soil tank (L × W × H)/mm × mm × mm 2000 × 1600 × 200
Advance speed of the film lifter m/s 1.3

Simulation time/s 3
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Analysis of the speed of soil particles can be obtained. When the film device just is
in the soil, the film device forward speed is similar to 1.43 m/s. When the film device is
completely in the soil, the particles from the shovel surface along with the adjacent shovel
blade gap are between the outflow, so that the speed increases to the maximum speed of
1.99 m/s. When the membrane lifting device completely leaves the soil, the velocity of the
particles decreases obviously, but, due to the existence of inertia, there is still a small part of
the soil with a certain velocity, and the rest of the particles have a velocity close to zero.

The simulation operation can be seen in Figure 6. In the process of advancing into the
soil, the film starting device is in contact with the soil after 1 s. Through the post-processing
function of EDEM software it can be seen that the maximum resistance suffered by the film
starting device is 11,915.2 N, and the average resistance of the entire film-lifting device
between 1 s in the soil and 2.2 s out of the soil is 9767.38 N.
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After exporting the relevant files containing force data from EDEM, the stress–strain
analysis can be carried out in ANSYS, and the coupling between EDEM and ANSYS is
successful, as shown in Figure 7. After completing the coupling, the force data exported
from EDEM are valid in ANSYS, and the deformation of the membrane film starting device
is shown in Figure 8.
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From the figure, it can be seen that the largest deformation of the film starting device
is located in the position of the shovel tip, and the size of deformation is 2.56 mm, which
is due to the fact that the shovel tip is always out of the deepest part of the soil in the
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process of machine operation, and is subjected to the greatest resistance, which leads to the
deformation of the film lifting device.

The stress distribution of the membrane film starting device when it is subjected to
external load is shown in Figure 9.
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From the stress distribution cloud diagram of the film removal device, it can be seen
that during the forward movement of the machinery, stress concentration occurs at the
connection between the film stubble shovel and the square steel. The maximum stress
value is 226.37 MPa, which is lower than the allowable stress of 65Mn, meeting the material
strength requirements.

3.2. Design and Analysis of Membrane Soil Separation Unit

The membrane soil separation device mainly consists of a guide wheel, spike teeth,
shaking delivery chain, hoisting wheel, drive wheel, and so on, and its structure is shown
in Figure 10. The main function of the film–soil separator is to convey the film, stubble,
and part of the straw shoveled up by the film-raising device to the film-rolling and stubble-
collecting device. There are six spike teeth distributed on each chain bar on the shaking
feed chain, and the distance between every two chain bars is 50 mm. There is a chamfer
on the end surface of each spike tooth to ensure that the residual film and corn stubble
will not be dislodged during the conveying process. The diameter of the driving wheel is
170 mm, and the shape of the shaking wheel is designed as an oval, which interacts with
the shaking chain to produce a certain frequency of amplitude, in order to separate the soil,
small straw and other impurities on the residual film. The residual film is rolled up by the
film-rolling device along with the movement of the shaking chain to the highest place, and
the root stubble and straw fall into the stubble box under the action of their own gravity,
completing the whole film pickup work.
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The installation inclination angle β of the shaking delivery chain in the membrane soil
separation device is too large to make the residual film mixture slide downward under the
action of gravity, and the installation inclination angle is too small to increase the length
of the delivery chain, which increases the size and weight of the whole machine, so the
installation inclination angle β of the delivery chain needs to be calculated by the force
analysis to ensure that the value is reasonable. We take the root stubble straw residual film
mixture as the research object to carry out force analysis.

mcgsin β ≤ X (5)

X = µcY (6)

Y = mcgcos β (7)

These can be derived from Equations (5)–(7):

β ≤ arctgµc (8)

Here,
mc—Mass of root stubble straw residue film mixtures (kg);
µc—Friction factor between the heterofilm mixture and the shaking chain;
X—Friction between the heterofilm mixture and the shaking chain, (N);
Y—Stress of heterogeneous membrane mixtures on the jogging chain, (N).
Based on subsequent field trials and the literature [23], it was determined that the best

film pickup results were achieved when the jigger chain was installed with an inclination
angle β of 30◦.

3.3. Design and Analysis of Film Winding Device
3.3.1. Structural Design of the Film Winding Unit

The film-rolling device mainly consists of a hydraulic motor, left and right film-rolling
rollers, opposite hydraulic cylinder group, film-rolling bullet teeth, film-rolling bracket,
hanging lugs, guiding bushings, and hydraulic cylinders 1, 2, and so on, and its structure
is shown in Figure 11a. When working, the hydraulic cylinder 1, 2 resets, then will roll
the film elastic teeth out, then the hydraulic motor 1, 2 drive the chains and drive the left
and right film roll rotation. When the left and right film roll on the residual film winding
diameter reaches the maximum rotary diameter of the elastic teeth, we start to unload the
film.
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elastic teeth. 7. Film-rolling bracket. 8. Hydraulic cylinder 1. 9. Right film-rolling roll. 10. Guiding
sleeve. 11. Left film-rolling roll. 12. Guiding shaft. 13. Hydraulic cylinder 2.

Determining how to unload the film quickly and saving labor in mechanized residual
film recovery is a key link in the research, especially in the collection device with rotary
winding residual film, which directly affects the working efficiency of the machine. In this
paper, an automatic hydraulic film unloading device is designed based on the deficiencies
in this link, as shown in Figure 11b. The guiding shaft sleeve and the two opposite hydraulic
cylinders are fixed between the two side plates of the implement by welding. When the
film rollers are wrapped with a certain amount of residual film, the film unloading area
is stopped in the field, and the hydraulic cylinders control the elastic teeth on the left and
right film rollers to retract. The guiding shaft is mounted inside the guiding shaft sleeve by
clearance fit, and the guiding shaft is connected with the opposite hydraulic cylinders by
the pin in the hole of the lugs, and the opposite hydraulic cylinder is stretched out when
it is extended. When the opposite hydraulic cylinder group extends, the lugs drive the
guiding shaft and then drive the components above the whole support to perform linear
movement to both sides of the side plate of the implement. In this process, the side plate of
the implement is equivalent to acting as scrapers, and the residual film wrapped around
the film rollers is scraped down by the side plate to the designated film unloading area in
the farmland.

3.3.2. Design of Rotational Speed of Film Rollers

In the normal operation of the machine, in order to make sure the residual film is
smoothly wound to the film rollers, the film-rolling teeth have the role of backward pulling
auxiliary winding. The speed of the film rollers directly affects the effect of the film. If the
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speed is too low, the residual film is prone to falling off during the winding process; if the
speed is too high, the residual film is likely to break and be stretched into strips, so we
must design the speed of the film rollers.

The force analysis of the film-winding elastic teeth is shown in Figure 12. In order
to ensure that the residual film does not fall off from the elastic teeth during the winding
process, it is necessary to make the centrifugal force on the residual film less than the
friction force, i.e.,

mtg
(

cosθ1 +
Rn2

g
sinθ2

)
≤ µbmtg(sinθ1 +

Rn2

g
cosθ2) (9)
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Here,
µb—Friction factor between the film reel teeth and the residual film;
mt—Total residual film mass, (kg);
FN—Inertial force on the residual membrane, (N);
R—Distance of the residual film on the tooth from the center of rotation of the tooth;

(m)
θ1—The angle between the direction of gravity and the teeth, (◦);
θ2—The angle between the inertial force on the residual film and the supporting force,

(◦).
In order to ensure that the residual film is not torn during the winding process, the

force of the nail teeth on the residual film needs to meet the tensile strength of the residual
film.

mt(n dr
dt )

A
≤ [σ] (10)

Here,
r—Radius of gyration of the tip of the tooth, m;
A—Contact area of the residual film with the elastic tooth, m2;
[σ]—Permissible tensile force of residual film, MPa.
According to Equations (9) and (10), the working speed of the film rollers can be

derived as √
g(cosθ1 − µbsinθ1)

R(µbcosθ2 − sinθ2)
≤ n ≤ [σ]Adt

mtdr
(11)

From Equation (11), it can be seen that the rotational speed of the film winding roller is
related to the angle of the film winding elastic teeth and the residual film performance. The
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higher the allowable stress, the higher the working speed of the rollers, and the higher the
efficiency of film rolling within a certain period of time. Tests have shown that the working
speed of the rollers is 120~150 rad/min, which is the best for film rolling [24].

3.4. Design of Self-Loading Stubble Collectors

The self-discharging stubble collection device is located in the back of the residual
film-recycling machine, mainly composed of a side plate, rotating roller, frame, hydraulic
cylinder, bearing with seat, sprocket and other components. Its structure is shown in
Figure 13.
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Figure 13. Schematic diagram of the structure of a stubble collection box. 1. Side plate. 2. Rotating
roller. 3. Frame. 4. Hydraulic cylinder. 5. Seated bearing. 6. Sprocket. 7. Chain.

The rotating roller realizes isotropic rotation through the chain drive. When working,
the crop stubble separated by the shaking and sending chain falls into the stubble box.
The rotating roller rotates and drives the crop stubble to roll repeatedly in the stubble box,
further separating the soil attached on the stubble. The separated soil falls down from the
gap of the rollers, further completing the separation and ensuring that the organic matter
in the soil is not wasted. When the amount of crop stubble reaches a certain level, the
hydraulic multiway valve is controlled so that the hydraulic cylinder extends, driving the
stubble collection box rotation and the crop stubble unloading.

4. Results
4.1. Test Conditions

The test site was selected as a spring harvested corn field at the test base of Gansu
Agricultural University in Wuwei City, Gansu Province. The terrain of the test field was
relatively flat, and the soil type was sandy soil. The average moisture content of the surface
soil was 9.79%, and the film thickness was 0.01 mm. A Dongfanghong tractor with a rated
power of 90 kW was used as the supporting power. The main test equipment included a
60-m tape measure, an electronic balance scale with an accuracy of 0.01 g, a stopwatch with
an accuracy of 0.01 s, and a tachometer. The field operation of the machine is shown in
Figure 14.
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Figure 14. Field test of operation performance of residual film-recycling machine.

4.2. Test Factors and Test Indicators

According to the structure and operating parameters of the integrated corn stubble
recovery machine, three key parameters affecting the pickup effect were selected as the
main influencing factors of this test. According to the previous theoretical analysis and the
expected test, the forward speed X1, the depth of soil entry X2, and the rotation speed of
the driving wheel of the shaking delivery chain X3 were selected as the influencing factors
to carry out the response surface experimental research, and the residual film recovery rate
Y1 was selected as the response value according to the actual situation in the field. The test
factors and levels are shown in Table 3.

Table 3. Factors and levels of experiment.

Levels Moving Speed
v/(m·s−1)

Depth into Soil
h·mm−1

Jitter Conveyor Chain Drive
Wheel Speed n/(r·min−1)

−1 1 80 60
0 1.3 115 90
1 1.6 150 120

The test was designed with reference to the provisions of the GB/T 25412-2021 [25]
residual film-recycling machine. Seventeen areas in the field were selected as experimental
zones, each of which was 50 m in length, and five sample collection points of 1 m2 in size
were arbitrarily selected within each experimental zone. Before the test, the residual film
within 150 mm below the surface was collected, cleaned, and dried, and then weighed, and
the average value of M1 (g) was recorded for each group. After the completion of the test,
the residual film was collected within the depth of 150 mm of the plow layer, and the test
samples were cleaned, dried, and weighed, and the average value M2 (g) was recorded for
each group of values. The ratio of the values measured before and after the test gives the
residual film recovery rate η (%) as follows:

η = (1 − M2

M1
)× 100% (12)

4.3. Test Results and Analysis
4.3.1. Test Results

A three-factor, three-level test was designed according to the principles of the Box–
Behnken test, and the design scheme of the test as well as the results of the test response
values are shown in Table 4.
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Table 4. Experimental scheme design and response value.

Number Moving Speed X1 Depth into Soil X2
Jitter Conveyor

Chain Drive
Wheel Speed X3

Rate of Recovery
Y/%

1 1 0 −1 86.15
2 0 1 1 82.62
3 −1 1 0 85.79
4 0 1 −1 86.25
5 0 −1 −1 82.20
6 0 −1 1 79.05
7 0 0 0 85.77
8 0 0 0 86.05
9 1 −1 0 83.68
10 −1 0 1 79.31
11 −1 0 −1 82.81
12 1 1 0 85.95
13 0 0 0 86.87
14 0 0 0 86.29
15 −1 −1 0 80.41
16 1 0 1 80.79
17 0 0 0 85.93

4.3.2. Experimental Regression Analysis

Based on the data samples in Table 4, the multiple regression fitting analysis was
performed by Design-Expert software to find the optimal solutions of the parameters.
The experimental results in Table 4 were analyzed by ANOVA and shown in Table 5.
The recovery in the response surface model Y1 had a p < 0.0001, which indicates that
the regression model is highly significant. The misfit term p = 0.361 indicates that the
regression equation has a high degree of fit; its coefficient of determination R2 is 0.9871,
which indicates that this data model can explain more than 98% of the evaluation indicators.
Therefore, the working parameters of this machine can be optimized by this model.

Table 5. Variance analysis of regression equation.

Source
Recovery Rate of Residual Film

Sum of Squares Degree of
Freedom F Significant Level

Model 115.81 9 59.34 <0.0001 **
X1 8.51 1 39.23 0.0004 **
X2 29.15 1 134.40 <0.0001 **
X3 30.58 1 140.99 <0.0001 **

X1X2 2.42 1 11.15 0.0124 *
X1X3 0.86 1 3.99 0.0860
X2X3 0.058 1 0.27 0.6222
X1

2 6.52 1 30.08 0.0009 **
X2

2 4.04 1 18.64 0.0035 **
X3

2 30.07 1 138.64 <0.0001 **
Residual 1.52 7

Lack of fit 0.78 3 1.42 0.3610
Pure error 0.74 4

Total 117.33 16
Note: p < 0.01 (highly significant, **); p < 0.05 (significant, *).

The optimized regression equation is obtained by removing the insignificant regression
terms in the model:

Y1 = 86.18 + 1.03X1 + 1.91X2 − 1.96X3 − 0.78X1X2 − 1.24X1
2 − 0.98X2

2 − 2.67X3
2

4.4. Analysis of the Influence of Interaction Factors on the Working Performance of the Machines

According to the results of the regression equation analysis, 3D-surface response
surface plots were drawn using Design-Expert 8 software, and the effects of forward speed,
depth of penetration, and rotation speed of jogging chain drive wheels on the recovery
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rate Y1 are shown in Figure 15. The influence effects of the three influencing factors were
jogging chain driving wheel speed > depth of entry > forward speed. Figure 15a shows the
surface plot of the interaction response between the forward speed of the implement and
the depth of entry on the recovery rate for a determined speed of the drive wheel of the
jitter feed chain. As can be seen from the figure, with the increase in the forward speed and
the depth of the soil, the residual film recovery rate first rises sharply and then gradually
tends to stabilize. This is due to the fact that it is not possible to lift part of the residual film
below the surface of the ground when the film lifting device is at a shallow depth. The
residual film below the surface can be shoveled up when it reaches a certain depth, and,
thus, the recovery rate stabilizes. From Figure 15b, it can be seen that for a defined depth of
entry, the recovery rate first increases and then levels off as the forward speed increases. As
the rotational speed of the jigger chain drive wheel increases, the recovery rate first rises
and then falls sharply; this is because the higher the rotational speed of the driving wheel,
the higher the linear speed of the shaking chain. Too high a linear speed will cause the
residual film by the chain rod to be shredded on the nail teeth. Shredded residual film is
not easily rolled up by the machine’s film-rolling device; a part of the residual film will
fall into the film miscellaneous box, and the other part of the residual film will drift to the
farmland, bringing about inconvenience. Figure 15c shows the impact of the interaction
response between the depth of entry and the rotational speed of the jogging chain drive
wheel on the residual film recovery rate. When determining the forward speed, the residual
film recovery increases with depth of penetration, and when the depth of the soil is about
130 mm, the growth rate of the recovery rate tends to flatten out. The drive wheel speed
first rises and then falls sharply, which indicates that the drive wheel speed cannot be too
high or too low. When it is too high, the nail teeth will tear the residual film, and the film
miscellaneous mixtures stay in the chain tooth mechanism for too short a period of time.
This cannot be effective in the screening and separation. If the shaking delivery chain line
speed is too low, there will be a congestion phenomenon, which will increase the forward
resistance.
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influence of various factors on the recovery rate of residual film.



Agriculture 2024, 14, 1809 16 of 18

4.5. Parameter Optimization and Experimental Validation

To achieve the best performance of the machine, it is necessary to optimize the influ-
encing factors in the test. Based on the analysis of the orthogonal test results, these factors
were chosen to obtain the optimal combination: a forward speed of 1.36 m/s, a soil entry
depth of 147.16 mm, and a chain drive wheel shaking speed of 77.89 r/min. At this point,
the residual film recovery rate reached 87.558%.

To verify the accuracy of the optimization results, three replicated experiments were
conducted in the experimental area of Gansu Agricultural University in Wuwei City, Gansu
Province, China. Based on the previous results and considering the feasibility of the field
test, the forward speed was set to 1.4 m/s according to the tractor gear. The transmission
ratio was adjusted by replacing the sprocket wheel to change the rotational speed of the
shaking chain’s drive wheel, which was ultimately determined to be 80 r/min. The depth
of entry was controlled by adjusting the height of the depth-limiting wheel. According
to the response surface analysis, when the depth of entry is approximately 140 mm, the
recovery rate tends to stabilize. A deeper entry would increase the forward resistance of
the machine; therefore, the depth of entry was set to 140 mm for the test, and the results are
shown in Table 6.

Table 6. Optimization results and experiment verification results.

Sports Event Residual Film Recovery Rate/%

Test average 84.83
Optimal value 87.56
Relative error 2.73

Through this analysis, it can be seen that the relative error between the average value
of experimental verification and the theoretical optimization value is less than 5%, which
proves that the optimization of parameters is reliable. The average recovery rate of residual
film is measured to be 84.83% when the forward speed of the machine is 1.4 m/s, the depth
of entry into the soil is 140 mm, and the rotation speed of the jogging chain driving wheel
is 80 r/min during the operation of the machine on field.

5. Conclusions

(1) We designed a residual film-recycling equipment that can complete a series of opera-
tions such as film lifting, film pickup, film rolling, film unloading, etc., and realize
film stubble recycling and separation. The design parameters of the film lifting device
and film soil separation device were determined.

(2) We took the forward speed of the machine, the depth of the soil, and the rotational
speed of the driving wheel of the shaking feed chain as the test factors, and took the
residual film recovery rate as the index to carry out the test. We used the Design-
Expert software to carry out the response surface analysis on the test results, and the
results show that the order of the influence of each factor on the residual film recovery
rate is as follows, from large to small: the rotational speed of the driving wheel of the
shaking feed chain, the depth of the soil, and the forward speed.

(3) Using the data optimization function of Design-Expert software, with the residual
film recovery rate as the optimization objective, the best working parameters were
determined as follows: the forward speed was 1.36 m/s, the depth of entry was 147.16
mm, the rotational speed of the driving wheel of the jogging chain was 77.89 r/min,
and the residual film recovery rate was 87.56%. The field test was carried out after the
parameters were adjusted according to the actual conditions of the machine and the
limitations of the transmission system, and the results of the field test showed that
the recovery rate of the residual film was 84.83%, and the relative error between the
average value of the test and the optimized value of the result was 2.73%, which was
less than 5%, indicating that the model reliability was relatively high.
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(4) In this paper, the experiment was carried out on the maize field that had been har-
vested in the spring at the experimental base of Gansu Agricultural University in
Wuwei City, Gansu Province, but there were some shortcomings due to the limitations
of the weather and testing conditions. The limitations and influences of the climatic
conditions and the harvesting time, such as fluctuations in the temperature, rainfall,
and illumination, may lead to uncertainty of the experimental results. The machine’s
operating trips were short, the data samples collected were small, and only the theo-
retical operating productivity was determined. The implements in this trial and the
manufacturers will work closely together and will gradually carry out demonstration
and promotion activities in a number of regions in order to enhance the adaptability
and reliability of the implements.
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