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Abstract

:

This study focuses on the problem of corn yield prediction, and a novel prediction model based on a dynamic ensemble stacking regression algorithm is proposed. The model aims to achieve more accurate corn yield prediction based on the in-depth exploration of the potential correlations in multisource and multidimensional data. Data on the weather conditions, mechanization degree, and maize yield in Qiqihar City, Heilongjiang Province, from 1995 to 2022, are used. Important features are determined and extracted effectively by using principal component analysis and indicator contribution assessment methods. Based on the combination of an early stopping mechanism and parameter grid search optimization, the performance of eight base models, including a deep learning model, is fine-tuned. Based on the theory of heterogeneous ensemble learning, a threshold is established to stack the high-performing models, realizing a dynamic ensemble mechanism and employing averaging and optimized weighting methods for prediction. The results demonstrate that the prediction accuracy of the proposed dynamic ensemble regression model is significantly better as compared to the individual base models, with the mean squared error (MSE) being as low as 0.006, the root mean squared error (RMSE) being 0.077, the mean absolute error (MAE) being 0.061, and a high coefficient of determination value of 0.88. These findings not only validate the effectiveness of the proposed approach in the field of corn yield prediction but also highlight the positive role of multisource data fusion in enhancing the performance of prediction models.
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1. Introduction


The stability and growth of corn yields are crucial for food security and sustainable agricultural development. The rapid development of big data-based solutions in the agricultural sector has led to the emergence of new opportunities for corn yield prediction. However, the accurate prediction of corn yields is a challenging task due to the influence of multiple complex nonlinear factors. The traditional statistical methods and empirical equations are unable to handle multifactor nonlinear relationships. The emergence of machine learning (ML) and deep learning (DL) technologies offers new perspectives for crop yield prediction [1].



Some key points to consider when analyzing the state of the art in this field are as follows.



(1) The traditional ML methods have enabled significant progress in crop yield prediction, but they face different challenges, such as sensitivity towards the size of the training dataset.



In recent years, significant progress has been achieved in crop yield prediction based on traditional ML methods by primarily relying on historical observation data to train models. Early studies mostly employed linear and nonlinear regression models, but these suffered shortcomings, such as limited predictive capabilities, prompting scholars to explore more advanced ML techniques. There are different methods presented in the previous literature to enhance the prediction accuracy, such as Hu et al.’s Bayesian ensemble model [2], Shahhosseini et al.’s random forest (RF) assessment [3,4], Gaso et al.’s remote sensing data assimilation approach [5], and Yang et al.’s ML data assimilation framework [6]. Concurrently, researchers have utilized ML algorithms to assess the potential impacts of climate change on crop yields [7,8,9]. For instance, Islam et al. considered elevated CO2 concentrations [10], Tian et al. focused on low-scale seasonal precipitation [11], and Stephan Lammel et al. [12,13] and Tymoteusz et al. [14] found that changes in precipitation and temperature had direct effects on multiple crop indicators. Additionally, from the perspective of agricultural mechanization development [15,16], Ransom et al. [17] employed different ML algorithms to study the factors that influence crop yields. However, they still encountered an issue faced in other studies, i.e., focusing on only one or specific influencing factors, resulting in a failure to fully consider the combined effect of multiple factors and their potential impacts on crop yields. Although these research outcomes provide new ideas and methods for crop yield prediction and are expected to drive advancements in the agricultural sector, they highlight ongoing challenges, such as the varying sensitivities of models to the sizes of the training sets.



In this study, natural and mechanization factors are integrated with the aim of overcoming the limitations of previous research and creating a comprehensive prediction model. By integrating climate change and agricultural mechanization data and applying ML algorithms, we aim to gain a deeper understanding of the combined effects of multiple factors on crop yields, thus offering new perspectives to address issues such as models’ sensitivity to the sizes of datasets and contributing to sustainable agricultural development and precision agriculture practices. The challenges also encompass difficulties in data acquisition and processing, as well as limitations in model applicability and stability. Additionally, environmental factors and technological advancements exert significant influences on the accuracy of corn yield predictions.



(2) Compared to the traditional statistical methods and ML models, DL models often exhibit significant advantages in terms of prediction accuracy.



The unique ability of DL models to automatically learn feature representations from data greatly reduces the errors induced by human intervention. Shahhosseini et al. created a convolutional and deep neural network (CNN-DNN) and conducted a comparison between homogeneous and heterogeneous ensemble approaches [18]. The results showed that the optimized heterogeneous ensemble model effectively explained about 77% of the spatiotemporal variations in county-level corn yield predictions in the US Corn Belt. It is worth noting that both heterogeneous and homogeneous ensembles combining DL with ML surpassed the performance of an ensemble model consisting of five separate ML models. This finding further highlights the great potential of DL in enhancing the accuracy of crop yield predictions.



However, despite their significant advantages in terms of prediction accuracy, DL models also face some challenges and limitations. For instance, DL models often require a large amount of training data to avoid overfitting, which can be a limiting factor for practical applications. Additionally, the interpretability of DL models is relatively limited, which makes it difficult to understand and interpret the prediction results. Morales et al. combined convolutional neural networks in an innovative Hyper3DNetReg architecture that generated yield prediction maps by aggregating the overlapping yield prediction blocks obtained throughout the field, thus significantly improving the performance of yield prediction tasks [19]. Khadijeh Alibabaei et al. estimated crop yields using DL based on big climate data and irrigation scheduling [20].



These research results not only demonstrate the great potential of DL in the field of agricultural remote sensing but also provide new technical perspectives for crop yield prediction. These studies show that DL has great potential in crop yield prediction, but it is necessary to consider factors such as data acquisition and model interpretability, under the constraints of practical application scenarios, to achieve more accurate predictions and the wider adoption of such solutions.



(3) Ensemble learning (EL) significantly enhances the prediction accuracy and stability through the optimal combination of multiple base models.



As a powerful ML paradigm, EL significantly enhances the accuracy and stability of predictions by combining multiple base models and enabling the amalgamation of their results. When dealing with complex and nonlinear problems, such as corn yield prediction, EL approaches have demonstrated exceptional performance. For instance, Cheng et al. [21,22] leveraged variants of gradient boosting machines (GBM) like XGBoost to showcase their advantages. Cacho et al. [23] further validated the effectiveness of GBM by demonstrating prediction metrics, including R2 = 0.876, MAE = 351, and RMSE = 0.481. Shahhosseini et al. [18,24] achieved high prediction accuracy using an ensemble of RF models. Although EL has its advantages, its limitations cannot be ignored. For example, while being superior to multiple algorithms, the advanced ensemble regression model proposed by Sajid et al. [25] still requires improvements in its generalization ability. Additionally, EL has achieved significant results in other agricultural domains, as demonstrated by the single-weighted voting ensemble DL classification model created by Escorcia-Gutierrez et al. [26], the AdaBoost EL method described by Li et al. [27], the DL architecture ensemble method described by Novtahaning et al. [28], the method proposed by Olofintuyi et al. combining a residual neural network with long short-term memory [29], and the polarized hyperspectral component seed vigor prediction model presented by Hu et al. [30]. Ban et al. [31]. proposed a method to assimilate MODIS data into crop growth models. This method was also used to improve the accuracy of regional corn yield forecasts in Illinois (R2 was 0.78 and root mean square error was 0.75 t ha−1). These examples fully demonstrate EL’s extensive applications and great potential in the agricultural field.



In summary, EL has demonstrated remarkable performance in addressing complex and nonlinear problems related to corn yield prediction. However, despite the widespread application of ensemble models in the agricultural domain, the existing methods often lack a dynamic ensemble mechanism capable of adaptive adjustments. To fully leverage the advantages of the current technological advancements and systematically resolve the corn yield prediction challenges, in this study, an overall technical roadmap for crop yield prediction research is proposed and a novel ensemble learning method, as shown in Figure 1, namely the dynamic ensemble stacking regression algorithm (DESRA), is presented. By dselecting, optimizing, and stacking base models, DESRA aims to deeply explore the potential correlations within the data, thus enhancing the model’s generalization ability and prediction accuracy. This innovative algorithm not only fully leverages the strengths of EL, but also incorporates dynamic selection and stacking strategies, thus enabling the corresponding model to adaptively adjust depending on specific datasets and prediction tasks. This further enhances the accuracy and reliability of the prediction results, providing a systematic and scientific solution for corn yield prediction.




2. Materials and Methods


2.1. Dataset


The integrated framework designed for this study primarily considers data from two major aspects, namely natural factors, i.e., the climate, and socioeconomic factors, i.e., the level of mechanization. To ensure that all features are on the same scale and to facilitate subsequent feature extraction and model training, data normalization is performed.



Natural factors: Given the essential climatic elements for crop growth, in this paper, the focus lies primarily on weather data, including four indicators, i.e., the sunshine duration (Sun), precipitation (Pre), temperature (Tem), and accumulated temperature (ACT). Since the growing season in the study area is limited to between May and September, the average monthly data within the growing season are used as the annual values in this study. The weather data are obtained from the China Meteorological Data Center. These weather data comprise monthly meteorological records collected during the growing seasons in Qiqihar, Heilongjiang Province and were acquired during 1995 to 2022. These parameters comprehensively encompass the weather conditions within the study area during the crop growth cycle, providing a solid foundation for the in-depth analysis of the impact of the weather conditions on crop yields.



Socioeconomic factors: Socioeconomic factors constitute a complex system. We consider that the region under study is a city with a high level of mechanization in agriculture. In this paper, this factor is employed to reflect the impact of socioeconomic factors on crop yields under the assumption that agricultural producers are market-rational individuals with the primary goal of pursuing profits from agricultural production [16]. The selected data fully reflect the technological level and mechanization degree of agricultural production and provide a basis for the assessment of the potential impact of mechanization on crop yields. The data are derived from the statistical yearbooks over the years. Here, “A” represents the overall comprehensive level of mechanization development in the study area, which is composed of four compound indicators designated as A1–A4. These factors represent the degree of agricultural mechanization, agricultural water conservation works, the comprehensive agricultural activity support capacity, and the comprehensive benefits from agricultural activity, respectively. Each indicator among A1–A4 consists of several secondary indicators. All of the data ranges are normalized based on their maximum and minimum values. The specific meaning of each indicator is shown in Table 1. The corresponding relationship matrix is illustrated in Figure 2.



To visually present the distribution of the four weather indicators and fifteen mechanization indicators involved in the study, in this paper, a histogram combined with kernel density estimation (KDE) is employed to illustrate the data distribution characteristics of each indicator, including the degree of data concentration and dispersion and the presence of outliers. This approach provides an important foundation for data visualization for subsequent feature extraction and model training, as shown in Figure 3. Since statistical data for indicators A13 and A14 have only been available since 2016, the previous years’ values are set equal to the mean value to ensure data integrity.



Crop yield data: Corn yield data play an essential role in this study, as they constitute the empirical basis for the in-depth analysis of the combined impact of natural and socioeconomic factors on crop yields. As an area with a high level of mechanization, Qiqihar City features a wide range of farm sizes, including large farms operated by agricultural reclamation enterprises, medium-sized cooperatives, and family farms, as well as small farms and household-contracted land. The main corn varieties planted in this region include Fur 116, Fuxing 188, and Jinnuo 195, all of which are hybrid corn varieties that are widely planted due to their high quality and efficiency. Therefore, in this paper, the focus lies on the analysis of the yields and planted areas of these three varieties and their significant contributions to the total yield. The data are obtained from statistical yearbooks. A KDE plot using a Gaussian kernel function is generated to describe the data characteristics and distribution patterns more accurately, as shown in Figure 4. It can be observed that the sample quantity within the 0.6–0.8 yield range is the highest, and the peak of the KDE line shows a slightly left-skewed state, close to a normal distribution, which meets the standards for distribution analysis. These data samples contribute to the comprehensive understanding of the complex interactions between various factors and their influences on crop yields.




2.2. Data Preprocessing and Augmentation


To precisely determine the importance of the features, comprehensive data preprocessing and normalization operations are applied before training the model. Adhering to the principles of broad coverage and strong interpretability, the RF algorithm is initially employed to determine the importance scores of all features, as shown in Table 2. This process not only validates the results of the correlation matrix analysis but also further refines the ranking of the feature importance. Subsequently, principal component analysis is employed, combined with importance scores and Pearson correlation coefficients, and the contribution of each feature to the model error is compared using decision trees to further select and determine ten core features. These are ultimately used to create a new feature set suitable for yield explanation and prediction. This series of rigorous and practical data processing and feature engineering steps aims to achieve the precise prediction and in-depth analysis of crop yields, laying a solid foundation for the subsequent creation of ensemble models.



Additionally, in this study, the data are enhanced by the addition of Gaussian noise. The aim is to artificially increase the diversity and complexity of the dataset, thus enabling the model to learn more about the inherent characteristics and variations of the yield data. This enhances the model’s generalization ability, leading to stronger robustness and adaptability when analyzing new data samples.




2.3. Base Model Selection


Selecting diversified and individually reliable base learners is crucial in building high-performance ensemble models. At the outset of model creation and integration, in this study, multiple types of base models are integrated to formulate the ensemble model, including the fusion of DL and eight ML models. Their individual and combined performance is compared to determine the optimal ensemble strategy. These models, each with unique characteristics, capture the features from different perspectives, thereby enhancing the generalization ability of the overall model.



Specifically, the base models selected for this study consist of the following.



	
DL model (DL): A pre-trained, fully connected DL model is employed, which is fine-tuned for specific tasks to capture the nonlinear relationships within the data. This model is a fully connected neural network designed for regression tasks. It is capable of learning the complex mapping relationships between the corn yields and the selected natural and socioeconomic factors through a multilayer perceptron structure. The network weights are optimized using the back-propagation algorithm to improve the prediction accuracy.



	
Random forest (RF): RF models perform well when dealing with high-dimensional and missing data, reducing the risk of overfitting. In corn yield prediction, RF captures the interactions between different environmental variables and provides stable prediction results through a voting mechanism.



	
Support vector regression (SVR): The SVR model has advantages in dealing with small datasets and nonlinear problems. The SVR model can handle nonlinear relationships and map low-dimensional features to high-dimensional spaces through kernel functions, thereby improving the prediction accuracy. In this study, the radial basis function is selected as the kernel function and the hyperparameters are adjusted through cross-validation to optimize the model’s performance.



	
Ridge regression model: The ridge model is a variant of linear regression that smooths the coefficients by introducing L2 regularization terms to prevent overfitting. The ridge regression model handles collinearity issues among multiple variables effectively, thus enhancing the robustness of predictions.



	
LASSO regression model: LASSO regression is a variant of linear regression that uses L1 regularization to achieve feature selection. The LASSO regression model identifies and eliminates the variables that have a minimal impact on the prediction results, simplifying the model’s structure and improving the prediction efficiency.



	
Gradient boosting machine (GBM): GBM models perform well when dealing with complex and unbalanced datasets. A GBM gradually reduces the prediction errors and optimizes the prediction results by learning residuals. In this study, multiple GBM models are trained and the impact of different tree counts and learning rate settings on the prediction performance is compared.



	
K-nearest neighbors regression (KNN): The KNN model has advantages in dealing with local information and nonlinear relations. KNN can be used to analyze the historical yield data and environmental variable information to find the most similar historical records to the new growing season through distance metrics, thereby predicting the yield for the current growing season. In this paper, the impact of different values of K on the prediction results is analyzed and the optimal value is selected.



	
XGBoost (XGB): XGB is an optimized gradient lifting algorithm that improves the performance and stability of the model by introducing second-order derivatives and regularization terms. The XGB model performs well when dealing with large amounts of data and complex features. The prediction accuracy of the XGBoost model is optimized through the adjustment of parameters such as the tree depth and learning rate.






The differences in the design principles and methodologies of these base models give them advantages in dealing with different types of data and problems. By dynamically integrating them, this study makes full use of the strengths of each model to improve the accuracy and stability of the predictions. Through refined performance tuning and dynamic integration mechanisms, these base models are successfully integrated into DESRA to achieve the accurate prediction of the corn yield.




2.4. Performance Measurement Criteria


In this study, four performance indices are used to measure the prediction performance of the models, regardless of whether they are based on a single base learner, simple ensemble stacking regression, or dynamic ensemble stacking regression. The indices include the mean square error (MSE), the root mean square error (RMSE), the mean absolute error (MAE), and the mean absolute percentage error (MAPE).



Yi and Ŷi represent the true and predicted values of the i-th sample in the prediction data, respectively, and n represents the total number of samples.



The MSE is a commonly used metric that measures the average of the squared differences between the model predictions and the actual values. A smaller MSE value indicates higher prediction accuracy in the model. The MSE is mathematically expressed as follows:


  M S E =    1   n      ∑  i = 1   n      (  Y i − Ŷ i  )  2   



(1)







A smaller RMSE indicates that the difference between the model’s predicted values and the actual observed values is relatively small, which means that the model has a good fit. The RMSE is mathematically expressed as follows:


    R M S E =     1   n      ∑  i = 1   n      (  Y i − Ŷ i  )  2    



(2)







The MAE represents the average of the absolute errors between the predicted and the observed values. Generally, a smaller MAE value indicates that the model performs more consistently across different datasets, suggesting better stability. The MAE is mathematically defined as follows:


  M A E =    1   n          ∑  i = 1   n    | Y i − Ŷ i |      



(3)







The coefficient of determination (R2) is a metric used to assess the goodness of fit of a regression model and represents the proportion of variability in the dependent variable that can be explained by the model. A higher R2 value indicates a better model fit. The equation for the R2 is expressed as follows:


R2 = 1 − SSR/SST



(4)







In this equation, the sum of squared residual (SSR) refers to the sum of the squares of the differences between the model’s predicted values and the observed values. This metric is used to measure the variability in the part of the data that the model has not been able to explain. The sum of squared total (SST) represents the sum of the squares of the differences between the observed values and the mean value, and it is used to assess the overall variability in the data.





3. Simple and Dynamic Integrated Stack Regression Algorithm Design


The core concept of EL lies in “gathering the wisdom of the masses”, which involves integrating multiple learners based on a certain mechanism and combining their prediction results organically to reduce errors and enhance the overall performance. The formulation process of the dynamic ensemble stacking regression algorithm (DESRA) adopted in this study is as follows.



(1) Optimization of single models by combining early stopping mechanism with random search strategy



Before proceeding with the dynamic ensemble, we must ensure that the single models are in their optimal states. First, multiple parameter combinations are set for each single model. Then, using a random search, an RF model is trained for each set of parameter combinations, and validation data are used to calculate the model’s validation loss. Subsequently, an early stopping mechanism is applied to determine whether to continue training or stop early. The early stopping mechanism is a regularization method that prevents model overfitting by monitoring the validation loss. If the model does not improve within a set tolerance range, the early stopping mechanism is triggered, and the training process is halted.



Through this approach, while searching for the optimal parameter combinations, model overfitting is effectively prevented, thereby enhancing the model’s generalization ability. The execution process of this part is shown in Figure 5.



(2) Training of base models for optimal performance



Optimal performance refers to obtaining the best-state base model with optimized parameters based on step (1). The same operations and training process are repeated on all single models. The optimized results participate in the initial dynamic ensemble, which is referred to as the simple ensemble stacking process. The prediction results obtained using the test sets are then used to evaluate the ensemble.



(3) Implementation of DESRA



After completing the above preparatory steps, a simple ensemble dynamic stacking regression process has been accomplished. Now, a dynamic stacking ensemble is implemented.



Specifically, the average MSE is used as the evaluation benchmark for the selection of the best base learners. Based on the simple ensemble stacking output, a base model is recognized as a trainer with excellent performance and retained only when its MSE value is lower than a preset threshold. Ultimately, these models serve as key components for the creation of DESRA. This refined selection strategy ensures that only the best-performing base models are included in the final ensemble model, thus avoiding the negative impact of poor-performing learners on the overall prediction accuracy. Through this dynamic adjustment mechanism, not only is the effective screening of the base learners achieved but also the prediction accuracy and generalization ability of the ensemble model are further enhanced through averaging and optimized weighting. This innovative method not only optimizes the composition of the model but also improves its adaptability to unknown data, providing a new perspective and solution to address complex regression problems.



In summary, the DESRA method proposed in this study exhibits significant advantages at both the theoretical and practical levels and is expected to bring new breakthroughs in research and application in related fields.




4. Results and Discussion


The following section presents a comparison of the predicted and actual results for the years 2017–2022. The predictions are obtained using the base models, simple ensemble stacking regression, and DESRA. It also provides an in-depth comparative analysis of the best performance achieved by each of these three approaches.



4.1. Comparative Analysis of Predicted Values


4.1.1. Base Model Prediction Results


By combining the early stopping mechanism and grid search, parameter optimization is performed on eight individual base learners. The optimized best models are trained and used to obtain predictions. In this paper, the first 22 annual data series (1995–2016, or 79% of the total dataset) are used for training, while the last 6 years of data (2017–2022, 22% of the total dataset) are used to evaluate the performance of the models. The grid settings of each base model parameter are shown in Table 3.



The final prediction results are shown in Table 4.



To more clearly illustrate the prediction performance of each base model for different years, the data are converted into a chart, as shown in Figure 6.



Specifically, the stability of each model varies across different years. The DL model demonstrates relatively good prediction performance from 2017 to 2019 but performs moderately for other years. The SVR model exhibits high prediction accuracy in most of the years, with its predicted values in 2017 and 2020 being very close to the actual corn yields, thus indicating a good fit for the data of these two years. However, there is a significant deviation after 2020. Additionally, the KNN model also shows excellent performance in its predictions for 2022, with the predicted values being close to the actual ones, demonstrating its superior ability. The predictions performed using the LASSO model from 2019 onwards are closest to the actual values but exhibit a different trend after 2021. Similarly, models such as RF and GBM also exhibit varying prediction effects across different years. This suggests that the model selection and parameter optimization process should consider the characteristics of specific years, as data from different years may have different distributions and characteristics, which can affect the models’ performance.



The aforementioned results demonstrate that each individual base model only performs well on a portion of the dataset and fails to achieve ideal prediction results across the entire dataset. This finding further highlights the importance of EL, as it allows us to fully leverage the local advantages of each base model. Furthermore, different strategies can be used to integrate the base models and leverage their respective strengths, thus compensating for their individual weaknesses and thereby achieving more stable and accurate predictions across the entire dataset and enhancing the overall prediction performance.




4.1.2. Comparative Analysis of Prediction Results between Simple and Dynamic Ensemble Stacking Regression


In this section, an in-depth comparative analysis of the prediction results between the simple ensemble algorithm and DESRA is conducted, aiming to explore the differences in the performance of different ensemble strategies. In the process of formulating the dynamic ensemble model, four prediction results are obtained by the application of average and optimized weighting to the two ensemble models, including Ensemble_avg (simple ensemble with average weighting), Ensemble_opt (simple ensemble with optimized weighting), DESRA_avg (dynamic ensemble with average weighting), and DESRA_opt (dynamic ensemble with optimized weighting), as shown in Table 5 and Figure 7.



After analyzing the prediction results of the two ensemble algorithms with average and optimized weighting, it is observed that different ensemble algorithms exhibit certain prediction capabilities for data corresponding to different years. However, there are significant differences in the prediction effectiveness. Specifically, all four result sets show similar prediction trends from 2017 to 2019, with DESRA_opt performing the best. After 2019, the Ensemble_avg, DESRA_avg, and DESRA_opt methods exhibit relatively better prediction performance for the data of some years, while Ensemble_opt performs moderately and even shows a slightly contradictory prediction trend for the data of 2021 onwards. This indicates that, even if the optimal base models are selected for the ensemble, if the optimization method is inappropriate or not implemented properly, the results will be suboptimal.



The research results demonstrate that both simple and dynamic ensemble methods are valid approaches to a certain extent and are generally more effective than single models in predicting corn yields. However, the prediction effectiveness varies depending on the year and the method. DESRA_opt exhibits the best prediction performance. Additionally, its robustness and adaptability further contribute to its excellent predictive potential when faced with complex and changing data environments. This finding not only provides a new perspective for the application of EL algorithms, but also paves the way for the further optimization and customization of the prediction models to address the challenges of data corresponding to specific years. Future research can further explore the applicable scenarios of different ensemble strategies. At the same time, the introduction of more base learners and ensemble techniques can also be contemplated to further enhance the prediction performance of ensemble models.





4.2. Analysis of the Comprehensive Performance of Base and Ensemble Models


4.2.1. Performance Evaluation and Analysis of Base Models


The performance of the different base models and two ensemble models under both average and optimized weighting is compared using the same data as input. For the performance evaluations, four assessment metrics are utilized, namely the MSE, RMSE, MAE, and R2. The evaluation results for the eight base models are shown in Table 6.



When selecting and optimizing models, it is necessary to comprehensively consider multiple evaluation metrics. To visualize the data more clearly, a radar chart is used to display and compare the score levels of each base model according to different metrics, which helps to better illustrate their actual performance and compare their differences. The radar chart in Figure 8 shows the performance of the eight single models (DL, RF, SVR, Ridge, LASSO, GBM, KNN, XGB) based on four key evaluation metrics, i.e., the MSE, RMSE, MAE, and R2.



The performance of the different models based on the four key evaluation metrics of the MSE, RMSE, MAE, and R2 can be observed from the shape and area of the radar chart. The DL model excels, particularly in terms of the MSE and RMSE metrics, indicating that the deviation between the predicted and actual values is relatively small, thus demonstrating high prediction accuracy. At the same time, the DL model also shows a significant advantage in terms of the R2 metric, suggesting that it fits the data effectively and captures the underlying patterns. In comparison, although the RF, SVR, and ridge models exhibit slight differences in their performance in terms of various metrics, they are generally robust and each has its unique advantages and optimal application scenarios. The LASSO model stands out, particularly in terms of the MAE metric, indicating that the average absolute deviation between its predicted and actual values is relatively small, highlighting the model’s high stability and reliability. The GBM and XGB models, on the other hand, exhibit excellent performance in terms of the MSE, RMSE, and R2 metrics, demonstrating their superiority in terms of both their prediction performance and goodness of fit and indicating their capabilities in handling complex data and prediction problems effectively. In comparison, the KNN model’s performance based on various metrics was slightly inferior, but it still holds certain application value in specific scenarios.



In summary, the different models exhibit unique characteristics in their performance based on the four key evaluation metrics, each with its own advantages and applicable scenarios. In practical applications, we need to comprehensively consider the specific requirements of the problem and the characteristics of the data to select the most appropriate model for prediction and analysis. Therefore, in this paper, the different base models are combined and optimized to further enhance the prediction performance and goodness of fit.




4.2.2. Performance Evaluation of the Four Ensemble Models


Using the optimized stacked regression models, performance evaluations are conducted on an independent validation set to verify the effectiveness and generalization ability. The performance evaluation results for the four ensemble models obtained for two types of ensembles and two types of optimization are presented in Table 7.



The corresponding radar charts are shown in Figure 9.



From Figure 9, it is clear that there are differences in the performance of the four groups of models in terms of the four evaluation metrics, i.e., the MSE, RMSE, MAE, and R2. Ensemble_opt achieves the highest value of 79.9% for the R2 metric, indicating a good fit, but its performance in terms of the MSE, RMSE, and MAE metrics is relatively poor. DESRA_opt’s optimized weighting leads to better performance, with an MSE of 0.006, which is lower than the value of 0.015 obtained using the average weighting method. The RMSE and MAE are also reduced to 0.077 and 0.061, respectively, while the R2 reaches 88%, indicating that the DESRA with optimized weighting has better prediction performance and a better fit. On the other hand, Ensemble_ave and DESRA_ave are relatively inferior. It can be seen that, whether simple or dynamic ensemble stacking regression is adopted, the optimized weighting method is significantly better than the average method. It is noteworthy that even if the excellent base models of the ensemble model are averaged and optimized, their effect is not equal to that of the simple ensemble weighting method. This suggests that both excellent model ensembles and optimized weighting are needed to achieve the best results.



In summary, the optimized weighting method demonstrates clear advantages in improving the prediction accuracy and fit of the ensemble models. Whether simple ensemble stacking regression or dynamic ensemble stacking regression is adopted, using the optimized weighting method can generally lead to better performance.






5. Conclusions


In this paper, eight base models, namely DL, RF, SVR, ridge, LASSO, GBM, and XGBoost, are optimized through the combination of an early stopping mechanism and a grid search method. Predictions of corn yields are obtained using these optimized models. Compared to the actual corn yield data, all models demonstrate a predictive ability across different years, albeit with varying degrees of accuracy. Notably, SVR exhibits higher prediction accuracy, particularly in 2017 and 2020, where its predictions are very close to the actual values. Additionally, the KNN model shows outstanding prediction performance for the data corresponding to 2022. However, the stability of each model varies across different years, indicating that the model selection and parameter optimization process should further consider the specific characteristics of the data of each year.



Compared to the single models, the DESRA model proposed in this paper demonstrates significant advantages in terms of both prediction accuracy and stability. Through the effective integration of DL with traditional ML models, the DESRA model achieves excellent performance, with an MSE of 0.006, RMSE of 0.077, MAE of 0.061, and R2 value of 88%. This conclusion not only highlights the advantages of EL methods in the field of corn yield prediction, but also further verifies the important role of multi-model ensemble strategies in improving the prediction performance, thus providing strong support for precision agriculture.



In summary, this study is significant in advancing corn yield prediction techniques and enhancing the scientific nature and efficiency of agricultural production management. By formulating a corn yield prediction model based on DESRA, in this paper, an efficient, accurate, and practical solution is provided for corn yield prediction. This not only provides more scientific and precise support for agricultural production decision-making and promoting sustainable agricultural development, but also offers new ideas and methods for the application of ML in the agricultural field based on DESRA.



However, despite the significant results achieved by the DESRA model in predicting multidimensional input data, there still exist some limitations. For instance, while the model performed well on the test set, its generalization ability needs further improvement when dealing with more complex data or extreme cases. Moreover, to drive further development in prediction research, several areas can be considered. One is to integrate more diversified data sources, such as satellite remote sensing and social media, to provide more comprehensive and richer information support. Another is to develop more efficient algorithms and model structures to improve the prediction performance and computational efficiency, thus meeting the demands of practical applications. Finally, to strengthen interdisciplinary collaboration, agricultural knowledge can be incorporated into ML models to enhance the interpretability and applicability of the models, thereby promoting the practical application and promotion of corn yield prediction. Through the exploration and implementation of these innovative directions, we are confident that we can further enhance the accuracy and practicality of corn yield prediction, providing stronger support for effective agricultural production management.
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Figure 1. The technology roadmap presented in this work. 
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Figure 2. The correlation matrix diagram of the mechanization characteristics. 
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Figure 3. The feature distribution of the weather and mechanization data. 
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Figure 4. The corn yield distribution. 






Figure 4. The corn yield distribution.



[image: Agriculture 14 01829 g004]







[image: Agriculture 14 01829 g005] 





Figure 5. The flowchart of the combination of early stopping with random search. 
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Figure 6. A comparison of the prediction results of eight base models with the actual output. 






Figure 6. A comparison of the prediction results of eight base models with the actual output.



[image: Agriculture 14 01829 g006]







[image: Agriculture 14 01829 g007] 





Figure 7. A comparison of the simple and dynamic ensemble prediction results. 
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Figure 8. A comparative analysis of the performance of the eight base models. 
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Figure 9. A comparative analysis of the performance of four ensemble models. 
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Table 1. The explanations of the indicators.
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A

Overall Comprehensive Level of Mechanization




	
A1

Degree of Agricultural Mechanization

	
A2

Agricultural Water Conservation Works

	
A3

Comprehensive Agricultural Activity Support Capacity

	
A4

Comprehensive Benefits From Agricultural Activity




	
Indicator

	
Explanation

	
Indicator

	
Explanation

	
Indicator

	
Explanation

	
Indicator

	
Explanation






	
A11

	
Degree of cultivated land mechanization

	
A21

	
Irrigation mechanization

	
A31

	
Large and medium-sized agricultural equipment matching ratio

	
A41

	
Per capita output value of labor force




	
A12

	
Mechanization of planting and sowing

	
A22

	
Drainage and irrigation mechanization

	
A32

	
Small farm equipment matching ratio

	
A42

	
Proportion of agricultural output value in agriculture, forestry, husbandry, and fishery




	
A13

	
Harvesting equipment mechanization

	

	

	
A33

	
Ratio of motorized rice transplanters

	
A43

	
Planted area per capita of agricultural labor force




	
A14

	
Plant protection equipment mechanization

	

	

	
A34

	
Average power of agricultural machines in seeding area

	
A44

	
Proportion of agricultural labor force in the city




	

	

	

	

	
A35

	
Proportion of agricultural technicians

	

	











 





Table 2. The feature importance scores in the random forest regression model.
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	Characteristic Name
	Importance Rating
	Characteristic Name
	Importance Rating
	Characteristic Name
	Importance Rating





	Sun
	0.047987
	A14
	0.000827
	A35
	0.011758



	Pre
	0.206573
	A21
	0.018255
	A41
	0.245429



	Tem
	0.009168
	A22
	0.012277
	A42
	0.095924



	Act
	0.021672
	A31
	0.027068
	A43
	0.066387



	A11
	0.009887
	A32
	0.023721
	A44
	0.019266



	A12
	0.142966
	A33
	0.026053
	
	



	A13
	0.000955
	A34
	0.013827
	
	







Note: The above table presents the importance scores of various features when using a random forest regression model to predict corn yields. Higher scores indicate that the respective feature has a greater impact on the prediction results.













 





Table 3. Base model parameter grids.
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	Model
	Grid Parameter Setting





	DL
	Sequential (), Dense: (256,128,64,32,1), Dropout: (0.2), optimizer: ’adam’



	RF
	n_estimators: [100,500,800], max_depth: [None,15,30],

in_samples_split: [2,4,6]



	SVR
	‘C’: [1, 10, 100], ‘kernel’: [‘rbf’, ‘linear’],

‘epsilon’: [0.01, 0.1, 1]



	Ridge
	‘alpha’: [0.1, 1, 10, 100],

‘solver’: [‘auto’, ‘svd’, ‘cholesky’, ‘lsqr’, ‘sparse_cg’, ‘sag’, ‘saga’]



	Lasso
	‘alpha’: [0.01, 0.1, 1, 10],      ‘max_iter’: [1000, 5000, 10000]



	GBM
	‘n_estimators’: [300, 500, 1000],    ‘learning_rate’: [0.01, 0.1, 0.001],

‘max_depth’: [2, 3, 5],         ‘subsample’: [0.8, 0.9, 1.0]



	KNN
	‘n_neighbors’: [3, 5, 7],        ‘weights’: [‘uniform’, ‘distance’]



	XGB
	‘learning_rate’: [0.01, 0.1, 0.001],  ‘max_depth’: [2, 3, 5],

‘colsample_bytree’: [0.8, 0.9, 1.0],  ‘n_estimators’: [300, 500, 1000]










 





Table 4. The predictions obtained using eight base models.
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	Model
	2017
	2018
	2019
	2020
	2021
	2022





	CornYield
	0.753
	0.080
	0.627
	0.547
	0.578
	0.721



	DL
	0.590
	0.219
	0.612
	0.375
	0.642
	0.641



	RF
	0.698
	0.521
	0.662
	0.651
	0.648
	0.602



	SVR
	0.817
	0.303
	0.684
	0.729
	0.792
	0.617



	Ridge
	0.692
	0.359
	0.765
	0.636
	0.703
	0.747



	LASSO
	0.624
	0.555
	0.659
	0.611
	0.649
	0.676



	GBM
	0.728
	0.430
	0.694
	0.638
	0.696
	0.637



	KNN
	0.725
	0.455
	0.735
	0.696
	0.714
	0.765



	XGB
	0.706
	0.507
	0.718
	0.694
	0.711
	0.558










 





Table 5. The prediction results of four models.
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	Model
	2017
	2018
	2019
	2020
	2021
	2022





	Ensemble_avg
	0.698
	0.419
	0.691
	0.629
	0.694
	0.656



	Ensemble_opt
	0.712
	0.295
	0.637
	0.648
	0.608
	0.740



	DESRA_avg
	0.707
	0.328
	0.689
	0.595
	0.708
	0.661



	DESRA_opt
	0.598
	0.095
	0.641
	0.583
	0.651
	0.650










 





Table 6. Performance evaluation results for eight base models.
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	Base Learner
	MSE
	RMSE
	MAE
	R2





	DL
	0.014
	0.120
	0.106
	0.711



	RF
	0.038
	0.195
	0.137
	0.234



	SVR
	0.024
	0.157
	0.141
	0.508



	Ridge
	0.021
	0.145
	0.120
	0.580



	Lasso
	0.042
	0.206
	0.136
	0.146



	GBM
	0.026
	0.162
	0.123
	0.473



	KNN
	0.033
	0.181
	0.140
	0.342



	XGB
	0.043
	0.208
	0.168
	0.133










 





Table 7. The performance evaluation results of four ensemble models.
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	Ensemble Mode
	MSE
	RMSE
	MAE
	R2





	Ensemble_ave
	0.024
	0.156
	0.120
	0.509



	Ensemble_opt
	0.010
	0.100
	0.069
	0.799



	DESRA_ave
	0.015
	0.123
	0.099
	0.697



	DESRA_opt
	0.006
	0.077
	0.061
	0.880
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