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Abstract: As the global climate changes and droughts become more frequent, understanding the
characteristics and propagation dynamics of drought is critical for monitoring and early warning.
This study utilized the Standardized Precipitation Evapotranspiration Index (SPEI), Vegetation Con-
dition Index (VCI), and Groundwater Drought Index (GDI) to identify meteorological drought (MD),
agricultural drought (AD), and groundwater drought (GD), respectively. Sen’s slope method and
Mann–Kendall trend analysis were used to examine drought trends. The Pearson correlation coef-
ficient (PCC) and theory of run were utilized to identify the propagation times between different
types of droughts. Cross-wavelet transform (XWT) and wavelet coherence (WTC) were applied to
investigate the linkages among the three types of droughts. The results showed that, from 2004 to
2022, the average durations of MD, AD, and GD in Henan Province were 4.55, 8.70, and 29.03 months,
respectively. MD and AD were gradually alleviated, while GD was exacerbated. The average propa-
gation times for the different types of droughts were as follows: 6.1 months (MD-AD), 4.4 months
(MD-GD), and 16.3 months (AD-GD). Drought propagation exhibited significant seasonality, being
shorter in summer and autumn than in winter and spring, and there were close relationships among
MD, AD, and GD. This study revealed the characteristics and propagation dynamics of different
types of droughts in Henan Province, providing scientific references for alleviating regional droughts
and promoting the sustainable development of agriculture and food production.

Keywords: drought propagation; meteorological drought; agricultural drought; groundwater
drought; groundwater drought index

1. Introduction

In recent years, the continuous warming of the global climate has led to frequent
occurrences of hydrological extreme events, resulting in increasingly severe meteorological
disasters [1]. Among the numerous hydrological extreme events, drought is the most
common natural disaster globally and is characterized by high frequency, long duration,
wide-ranging impact, and massive economic losses [2]. Since the 20th century, more than
70% of countries worldwide have been threatened by droughts of varying intensities,
resulting in an annual average direct economic loss of USD 6 to 8 billion [3]. As a country
vulnerable to drought, China incurred agricultural economic losses amounting to CNY
27.2 billion annually, with an average affected crop area exceeding 200,000 km2 per year [4].
Therefore, drought monitoring and early warning have become focal issues of common
concern among the international community and experts from various fields [5].

Drought is a complex cyclical event that has a series of negative impacts on agriculture,
hydrological systems, and socioeconomic development [6,7]. It is typically categorized into
meteorological drought (MD), agricultural drought (AD), hydrological drought (HD), and
socioeconomic drought [8]. Understanding the spatiotemporal evolution characteristics of
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water cycle elements at different stages is crucial for studying the formation and develop-
ment process of drought. There is a close relationship between different types of droughts.
The phenomenon where one type of drought propagates to others is recognized as drought
propagation [9,10]. MD is usually the driving factor of other droughts. Stemming from
insufficient precipitation, MD impacts various aspects of the underlying surface, influ-
encing soil, vegetation, runoff, and groundwater to varying degrees, thereby triggering
AD, ecological drought, HD, and groundwater drought (GD) [5,8]. In recent years, some
scholars have begun to pay attention to the types of droughts such as GD and ecological
drought [11,12]. In a broad sense, GD is a type of HD, and its main characteristics are the
continuous reduction in the groundwater level and the reduction in groundwater runoff
due to the continuous impact of the reduction in groundwater recharge or the increase in
groundwater exploitation [13]. With the increasing frequency and severity of drought, it
has become increasingly important to reveal the propagation between different droughts in
areas with strong interference from human activities.

Previous studies on drought propagation have predominantly focused on two types
of droughts, such as MD and AD [14–16] or MD and HD [17,18]. Moreover, studies have
primarily concentrated on the global [19–21], national [22–25], or watershed scale [26–29].
However, studies on the propagation dynamics among multiple types of droughts, such
as MD, AD, and GD, are relatively scarce. Moreover, such research is particularly rare
in Henan Province, which is not only a major agricultural province but also a crucial
grain-producing area in China. Nevertheless, with the increasing frequency of droughts,
agricultural production and food security in Henan Province have been severely threat-
ened [30]. Additionally, Henan Province is a typical multi-basin aggregation area, spanning
four major river basins: the Hai River, the Yellow River, the Yangtze River, and the Huai
River. Due to variations in climate conditions across different basins, the distribution
of droughts in Henan Province exhibits complex spatiotemporal differences. Therefore,
investigating the occurrence patterns, variation characteristics, and propagation dynamics
of droughts in different basin divisions of Henan Province is of significant importance
for adapting to climate change, making disaster prevention and mitigation decisions, and
ensuring the long-term sustainable development of agriculture and food production in this
crucial region.

Given the aforementioned context, the objectives of this study are (1) to identify
and quantify the spatiotemporal characteristics of MD, AD, and GD; (2) to analyze the
changing trends of these three types of droughts; (3) to elucidate the propagation dynamics
of droughts under various climatic conditions in different basins; and (4) to investigate the
linkages among the three types of droughts. The findings of this research will contribute to
a deeper understanding of the propagation relationships among different types of droughts
in Henan Province, providing novel insights for regional drought propagation studies.

2. Materials and Methods
2.1. Study Area

Henan Province (HP) (31◦23′ N–36◦22′ N, 110◦21′ E–116◦39′ E) is located in the central
plains of China (Figure 1). It has a total land area of 167,000 km2, stretching approximately
530 km from north to south and 580 km from east to west. The terrain of HP slopes from
west to east, bordering Anhui and Shandong provinces to the east, Hebei and Shanxi
provinces to the north, Shaanxi Province to the west, and Hubei Province to the south. The
climate of HP exhibits significant regional differences between the northern and southern
areas. The northern region experiences a temperate continental climate, with summers
that are hot and rainy and winters that are cold and dry. In contrast, the southern region
has a subtropical monsoon climate, characterized by hot and humid summers and mild
and rainy winters. The province has an average annual temperature ranging from 10.5 to
16.7 ◦C, an annual precipitation between 407.7 and 1295.8 mm, and an annual sunshine
duration ranging from 1285.7 to 2292.9 h. Additionally, the frost-free period spans from 201
to 285 days annually. As an important grain-producing region and agricultural province in
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China, HP is susceptible to droughts and floods, which is attributed to the differences in
the spatiotemporal distribution of precipitation. Therefore, studying the spatiotemporal
variation characteristics and propagation mechanisms of droughts in HP plays a crucial
role in ensuring national food security.
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Figure 1. The position of China (a), distribution of elevation (b), and watershed divisions (c) in
Henan Province.

To better reveal the variations in different types of droughts and their propagation
characteristics in diverse regional environments, HP was partitioned into four subregions
based on the watershed position of each region (Region A: Hai River Basin (HARB); Region
B: Yellow River Basin (YRB); Region C: Yangtze River Basin (YZRB); and Region D: Huai
River Basin (HURB)), as illustrated in Figure 1c.

2.2. Data Description
2.2.1. SPEI Data

In this study, the Standardized Precipitation Evapotranspiration Index database
(SPEIbase), Version 2.9 (https://developers.google.com/earth-engine/datasets/catalog/
CSIC_SPEI_2_9, accessed on 1 February 2024), was utilized to investigate the variations in
MD in HP. The SPEIbase v2.9 provides reliable information on long-term drought globally,
with a spatial resolution of 0.5 degrees and a temporal resolution of one month. Moreover,
this database offers SPEI time scales ranging from 1 to 48 months, covering the period from
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1901 to 2022. In this study, the SPEI datasets were selected for 1 to 24 months in the period
2004–2022, and then bilinear interpolation was employed to interpolate to 0.25 degrees.

2.2.2. MODIS Data

The dataset of the Normalized Difference Vegetation Index (NDVI) used in this study
was acquired from MODIS/Terra products (MYD13A2 V6.1) obtained from the web-
site (https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MYD1
3A2, accessed on 1 February 2024). This dataset has a spatial resolution of 1 km and a
temporal resolution of 16 days, ensuring detailed and frequent monitoring of vegetation
dynamics, which was provided by NASA LP DAAC at the USGS EROS Center. For this
investigation, the NDVI data from 2004 to 2022 were selected for the computation of the
Vegetation Condition Index (VCI). To ensure the spatial coherence of all the experimental
data, bilinear interpolation was used to adjust the NDVI data to a spatial resolution of 0.25◦.

2.2.3. Global Land Data Assimilation System (GLDAS)

GLDAS is a high-resolution global land simulation system jointly developed by
NASA’s Goddard Space Flight Center (GSFC) and NOAA’s National Centers for Envi-
ronmental Prediction (NCEP) [31]. This system assimilates satellite data and observational
data to generate comprehensive land surface simulations. For this study, groundwater
storage data from the GLDAS-2.2 product (https://developers.google.com/earth-engine/
datasets/catalog/NASA_GLDAS_V022_CLSM_G025_DA1D, accessed on 1 February 2024),
with a spatial resolution of 0.25◦ and covering the period from 2004 to 2022, were used to
calculate the Groundwater Drought Index (GDI).

2.2.4. Auxiliary Data

The DEM data were acquired from the Geospatial Data Cloud (https://www.gscloud.cn/,
accessed on 1 February 2024). Temperature data were sourced from ERA5-Land (https://
developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_MONTHLY_
AGGR, accessed on 2 April 2024), and evapotranspiration data were acquired from the global
land surface monthly climate and water balance dataset (https://developers.google.com/
earth-engine/datasets/catalog/IDAHO_EPSCOR_TERRACLIMATE, accessed on 2 April
2024). Both the temperature and evapotranspiration data were downloaded and prepro-
cessed using Google Earth Engine (GEE). Detailed information on water resources, reser-
voir dynamics, and water usage was obtained from the Henan Water Resources Bulletin
(https://slt.henan.gov.cn/bmzl/szygl/szygb/, accessed on 2 April 2024). For this study, we
collected data on drought-related factors in HP from 2004 to 2022, including precipitation, tem-
perature, evapotranspiration, vegetation, surface water resources, groundwater resources, the
storage capacity of major and mid-sized reservoirs, agricultural irrigation water consumption,
and total water consumption (including industrial, urban and rural living, environments), to
analyze the impact of these factors on drought propagation across different subregions.

2.3. Methods

In this study, the Standardized Precipitation Evapotranspiration Index (SPEI), Veg-
etation Condition Index (VCI), and Groundwater Drought Index (GDI) were utilized to
identify MD, AD, and GD, respectively. The classification levels for these drought indices
are presented in Table 1. The trends of different types of droughts were analyzed using
Sen’s slope method and the Mann–Kendall trend test. The Pearson correlation coefficient
and theory of run were employed to identify the propagation time between different types
of droughts. The relationships among these three types of droughts were explored using
cross-wavelet transform (XWT) and wavelet coherence (WTC). The flowchart of this study
is illustrated in Figure 2.
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https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_MONTHLY_AGGR
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Table 1. Classification of the drought severity levels based on the drought indices.

Drought Severity SPEI/GDI VCI

No drought (−0.5, 0.5) (50, 100)
Mild drought (−1.0, −0.5] (30, 50]

Moderate drought (−1.5, −1.0] (20, 30]
Severe drought (−2.0, −1.5] (10, 20]

Extreme drought (−∞, −2.0] [0, 10]
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2.3.1. Drought Indices
Standardized Precipitation Evapotranspiration Index (SPEI)

The SPEI is a meteorological drought index characterized by its multitemporal scale
and spatial comparability, developed by Vicente-Serrano et al. [32]. Considering monthly
precipitation and potential evapotranspiration, this index is employed to determine the
water budget deficit and surplus. In comparison to other meteorological drought indices,
the SPEI not only combines the advantages of the Palmer Drought Severity Index (PDSI)
and the Standardized Precipitation Index (SPI), but also offers simple and convenient
calculations, sensitivity in drought response, and flexibility in time scales. Widely utilized
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in meteorological drought research, detailed calculation procedures for this index can be
found in Zhu et al. [33].

Vegetation Condition Index (VCI)

The Normalized Difference Vegetation Index (NDVI) has recently been utilized not
only to reflect vegetation growth conditions but also as a tool for evaluating drought
events by numerous researchers [34–36]. However, the NDVI can only reflect the impact of
climate, soil, and hydrological factors on vegetation in isolation and is highly sensitive to
geographical environmental conditions, rendering it unsuitable for cross-regional drought
monitoring. To overcome this limitation, the VCI was developed based on the NDVI [37].
The VCI can reflect the drought-affected environment resulting from the interaction between
vegetation and its growing environment, and accurately characterize the physiological
response of vegetation to drought stress, making it suitable for monitoring agricultural
drought [38,39]. Additionally, serving as an indicator of crop growth and ground vegetation
cover, the VCI can reduce the impact of diverse geographical areas, soil conditions, and
ecosystems on vegetation [12,36]. The formula for calculating the VCI is as follows:

VCI =
NDVIi − NDVImin

NDVImax − NDVImin
∗ 100 (1)

where NDVIi is the monthly NDVI value at a specific period i of a particular year; NDVImax
and NDVImin are the multiyear maximum NDVI and multiyear minimum NDVI over the
study period, respectively. The VCI values range between 0 and 100, and lower VCI values
indicate poorer vegetation growth and more severe drought conditions.

Groundwater Drought Index (GDI)

The GDI was proposed based on GRACE data, offering a novel method to assess hy-
drological drought in regions with limited data availability [40]. It is a normalization-based
indicator of groundwater storage (GWS) that evaluates GD by combining the deficits and
surpluses of GWS. Recently, this index has been gradually applied to identify GD [13,41,42].
This study drew on the experience of previous studies [43,44], and the GDI was constructed
utilizing the GWS data from GLDAS-2.2. The calculation steps of the GDI are as follows:

First, the monthly climatology (Mi) was calculated based on the GWS data. The Mi
used here did not refer to climate in the climatological definition, and it was used to remove
the effect of monthly variability factors on the GWS. The equation is as follows:

Mi =
∑ni

1 GWSi

ni
, i = 1, 2, . . . , 12 (2)

where Mi indicates the climatology for month i.
Then, the monthly groundwater storage deviation (GSDi) was obtained by subtracting

the Mi from the GWSi. This deviation reflects the net variation in groundwater storage.
The GSDi was calculated as follows:

GSDi = GWSi −Mi (3)

Finally, the GDI was calculated as the result of the GSDi subtracting the mean of the
GSDi (XGSD) and then dividing it by the standard deviation of the GSDi (SGSD), as follows:

GDI =

(
GSDi − XGSD

)
SGSD

(4)

where the XGSD was utilized to mitigate the influence of seasonal variations on the GWS
fluctuations.
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2.3.2. Theory of Run

The theory of run is a method of time series analysis [45]. It has been widely utilized
for the identification of drought events [46]. This approach can identify and analyze various
characteristics of drought events, including drought onset and end time, drought duration,
drought frequency, drought magnitude, and drought severity [47]. As a threshold-based
algorithm, run theory defines drought events as periods during which values consistently
fall below a specific drought threshold. According to the drought level classification, −0.5
was set as the threshold of drought in this study. Further, the characteristics of drought were
obtained. Details on the theory and computational methods can be found as a reference [48].

2.3.3. Trend Analysis Method

In this paper, Sen’s slope and Mann–Kendall trend test were utilized to analyze trends
in various drought index series. The combination of Sen’s slope and Mann–Kendall trend
test can effectively reduce noise interference and accurately determine the significance of
serial trends, thereby improving the accuracy of the results.

Sen’s Slope

Sen’s slope is a robust nonparametric trend estimation method [49]. It has been
widely applied in meteorology and hydrology due to its advantages of efficient algorithm
calculations and insensitivity to outliers and errors [50]. The calculation of Sen’s slope is
as follows:

Slope = Median
[ xj − xi

j− i

]
, ∀ 1 ≤ i ≤ j ≤ n (5)

where xi and xj represent the drought index values at time i and j, respectively. When
Slope > 0, the time series shows an increasing trend; conversely, it indicates a decreas-
ing trend.

Mann–Kendall Trend Test

The Mann–Kendall (MK) trend test [51], a nonparametric statistical test method highly
recommended by the World Meteorological Organization, was used to detect the signifi-
cance level of the trend slope [30,52]. The data samples do not need to adhere to a specific
distribution, and it is not affected by a small number of outliers. These advantages make it
appropriate for analyzing meteorological, hydrological, and other non-normally distributed
data. The calculation principle is as follows:

Assume a time series data are X = (X1, X2, . . . , Xn), then the M-K test statistic S is
estimated as follows:

S =
n−1

∑
i=1

n

∑
j=i+1

sgn
(
Xj − Xi

)
(6)

where

sgn
(
Xj − Xi

)
=


1 , Xj > Xi
0 , Xj = Xi
−1 , Xj < Xi

(7)

S follows a normal distribution, and its variance is calculated as follows:

Var(S) =
n(n− 1)(2n + 5)

18
(8)

The significance of the trend in the time series at a certain confidence interval is tested
by calculating the test statistic Z:

Z =


S−1√
Var(S)

, S > 0

0 , S = 0
S+1√
Var(S)

, S < 0
(9)
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At a given ∂ confidence level, if |Z| > Z1−∂/2, the null hypothesis is rejected. When
|Z| is greater than or equal to 1.96 or 2.58, the significance test is passed with a 95% or 99%
confidence level, respectively.

2.3.4. Pearson Correlation Coefficient (PCC)

The PCC is a statistical index measuring the linear relationship between variables
and is extensively applied in scientific research [53]. It performs well in detecting linear
relationships and can effectively capture the propagation relationships between different
types of droughts, as well as determine the drought propagation time [2,54]. Before
conducting the correlation analysis, we performed a normality test on the SPEI, VCI, and
GDI data, which showed that the data for all three drought indices followed a normal
distribution. Therefore, this study selected this method to calculate the correlation between
the SPEI-n (1, 2, 3, . . ., 24 months) and the VCI or GDI at the 1-month scale, to quantify the
propagation time among MD, AD, and GD. The correlation coefficient R is calculated as
follows:

R =
cov(x, y)

σxσy
(10)

where x and y are the time series of the two drought indices at different scales; cov(x, y) is
the covariance of the rank variables; and σx and σy represent the standard deviations of
these rank variables.

2.3.5. Cross-Wavelet Transform and Wavelet Coherence Analysis

Cross-wavelet transform (XWT) and wavelet coherence (WTC) are effective approaches
applied to test the relationship between two time series. The XWT [55] is a new method
merging cross-spectral analysis with wavelet transform, which enhances the ability to test the
connections between two time series in both the time and frequency domains [56,57]. XWT
has strong signal coupling and discriminative ability, which makes it ideal for investigating
the distribution and phase relationships between time series. Defining two time series as Xn
and Yn, the XWT can be expressed as follows:

WXY(α, τ) = CX(α, τ)C∗Y(α, τ) (11)

However, XWT does not perform well in low-energy regions and this problem can be
mitigated through the application of WTC [58]. WTC evaluates the correlation between
two time series as a function of frequency, and its value varies between 0 and 1 [56]. This
method can be interpreted as the decomposition of the correlation coefficient across various
scales [59]. After normalizing the wavelet energy of X and Y, the WTC can be calculated
by the following equation:

R2(s, t) =

∣∣S(s−1WXY(s, t)
)∣∣2

S
(

s−1|WX(s, t)|2
)
·S
(

s−1|WY(s, t)|2
) (12)

where R2(s, t) denotes the local correlation coefficient in the time–frequency domain, S
represents the smoothing operator, s denotes the scale factor, and t indicates the translation
factor. WX(s, t) and WY(s, t) are the wavelet transforms of the series X and Y, respectively.

Additionally, the causal relationship between X and Y can be evaluated by calculating
the cross-wavelet phase angle. This is performed by utilizing the circular mean of a set
of angles and plotting the confidence interval of the phase difference in the range of 0◦ to
360◦ [58]. The calculation of the phase angle is as follows:

θXY(s, t) = tan−1

(
I
(
SWXY

n (s)
)

R(SWXY
n (s))

)
, θXY(s, t) ∈ [−π, π] (13)
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where I and R represent the real and imaginary, respectively. The phase difference is
distributed across four quadrants, showing the leading and lagging relationships between
the time series X and Y. This is illustrated by the directional arrows in the wavelet coherence
power spectrum. Phase arrows pointing left or right indicate whether the two factors are
in-phase or out-of-phase, respectively [60].

3. Results
3.1. Spatiotemporal Characteristics of Droughts
3.1.1. Temporal Variations in MD, AD, and GD

Figure 3 illustrates the changes in the SPEI for HP and its different subregions from
2004 to 2022 at scales of 1 to 24 months. As shown in Figure 3a, as the time scale increases,
the frequency of droughts is becoming less and less, the drought duration lasts longer and
longer, and the drought magnitude is becoming smaller and smaller. The SPEI reflects
alternating wet and dry conditions. From 2004 to 2009, the region experienced relatively
humid conditions. In 2010, a severe drought occurred, which persisted until 2013. Drought
conditions were alleviated from 2014 to 2016, but the years 2017–2018 were characterized
by relative dryness. Drought conditions relatively improved from 2019 to 2021, but in 2022,
a relatively severe drought reemerged.

The variations in the SPEI-n (n = 1, 2, 3 . . . 24) in different subbasins of HP from 2004
to 2022 are illustrated in Figure 3b–e. Each subregion demonstrated distinctive alternations
between wet and dry conditions, aligning closely with the overall trend observed across
the entire province. HP was significantly wet during 2004–2009, 2014–2016, and 2019–2021,
while it was significantly dry during 2010–2013, 2017–2018, and 2022. However, due to
the unique climatic environments within each subbasin, the severity of MD events varied
significantly. A comparative analysis among the four subregions revealed that the wet–dry
fluctuations in Region A were relatively mild, followed by those in Regions B and D, with
Region C exhibiting the most severe drought conditions.

Figure 4 illustrates the changes in the VCI on a monthly scale in HP and its subregions
from 2004 to 2022. As shown in Figure 4, the overall trend of the VCI in HP alternated
between dry and wet conditions, showing a gradual increase over time. Notably, the region
frequently experienced mild to moderate, and even severe droughts, between 2004 and
2013, suggesting that the vegetation drought situation across HP was particularly serious
during this period. Conversely, a noticeable reduction in drought occurrence has been
observed since 2014. Additionally, compared to the other three regions, Region A exhibited
the most significant fluctuations in the VCI. This reflected that the variations in the wet and
dry conditions of vegetation drought in Region A were more severe than those in other
areas, primarily because of the climatic environment and geographical influences.

The changes in the monthly GDI of HP and its subregions from 2004 to 2022 are
shown in Figure 5. As depicted in Figure 5, the GDI of HP and its subregions generally
exhibited a decreasing trend, indicating a gradual exacerbation of GD. The period from
2004 to 2010 was mostly characterized by non-drought conditions. However, starting in
2011, the occurrence of GD became increasingly frequent, with the severity of drought
intensifying annually. Furthermore, Regions A and B experienced similar changes in
wetness and dryness, transitioning from a long-term wet state to a long-term dry state.
Similarly, Regions C and D also shifted from wet to dry conditions overall, with some
degree of alternating wetness and dryness in between.
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Figure 3. SPEI at the 1–24-month scales of Henan Province and its different subregions from 2004 to
2022 (calculated based on the entire region (a), Region A (b), Region B (c), Region C (d), and Region D
(e)). The upper section of the horizontal axis represents wet conditions (blue), and the lower section
represents dry conditions (red).
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3.1.2. Spatial Distribution Characteristics of MD, AD, and GD

Figure 6 depicts the spatial distribution characteristics of MD, AD, and GD in HP
during 2004–2022, including drought frequency, drought magnitude, drought duration,
and drought severity. As illustrated in Figure 6a, there was a significant spatial difference in
the distribution of MD frequency, with the highest occurrence in Region B in the northwest,
followed by Region A, as well as localized occurrences in Regions C and D. Based on
Figure 6b and Table 2, the spatial distribution of MD intensity averaged at 6.54, and did
not exhibit significant differences. Figure 6c and Table 2 indicate that the overall duration
of MD was 4.55 months, with relatively longer drought durations in the western part of
the province. In terms of the severity of MD, as illustrated in Figure 6d, Regions A, B,
and D exhibited higher severity compared to Region C, with Region A displaying the
highest overall.

The spatial distribution of AD characteristics in HP from 2004 to 2022 is illustrated
in Figure 6e–h. It is evident from Figure 6e that the frequency of AD occurrences was
notably high across the entire province, with the northeastern region experiencing higher
frequencies than the southwestern region. The distribution of drought magnitude depicted
in Figure 6f indicated a higher magnitude in the eastern region compared to the western
region. As shown in Figure 6g, it highlights prolonged drought durations in the northern
and central parts of HP. Combined with Table 2, the average duration of AD province-wide
was 8.70 months, which was twice the drought duration of MD. Furthermore, Figure 6h
demonstrates that Region D exhibited the most severe agricultural drought, followed by
Regions B and C, with Region A experiencing the lowest severity.
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Figure 6. Spatial distribution of meteorological, agricultural, and groundwater drought characteristics
based on the monthly SPEI (a–d), VCI (e–h), and GDI (i–l) in Henan Province during 2004–2022.

Table 2. Drought characteristics of meteorological, agricultural, and groundwater droughts in Henan
Province and its subregions during 2004–2022.

Drought
Type Region Drought

Frequency
Drought

Magnitude
Drought
Duration

Drought
Severity

MD

HP 0.40 6.54 4.55 1.19
Region A 0.41 6.44 4.00 1.26
Region B 0.43 6.45 4.60 1.21
Region C 0.41 6.08 4.55 1.13
Region D 0.38 6.74 4.61 1.19

AD

HP 0.42 211.88 8.70 27.43
Region A 0.47 250.56 10.71 27.04
Region B 0.43 231.77 9.51 27.28
Region C 0.41 214.61 8.52 27.36
Region D 0.42 195.37 8.05 27.58

GD

HP 0.34 37.33 29.03 0.97
Region A 0.37 53.90 44.29 0.94
Region B 0.36 45.62 38.81 0.98
Region C 0.33 31.12 23.55 0.94
Region D 0.33 32.71 23.67 0.98
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According to Figure 6i, a clear north–south difference in the frequency of GD was
observed in HP, with Regions A and B exhibiting the highest frequency while Regions C
and D showed relatively lower. Figure 6j,k reveal that the spatial distribution characteristics
of drought magnitude and drought duration for GD were similar to its drought frequency,
being significantly higher in the northern part and lower in the southern part. Moreover,
the average drought duration of GD in the entire province was 29.03 months, significantly
exceeding that of both MD and AD (Table 2). Additionally, Figure 6l reveals that the
drought severity in Regions B and D was higher than that in Regions A and C.

Figure 7 presents the drought frequency at different severity levels in MD, AD, and
GD in HP and its subregions from 2004 to 2022. As shown in Figure 7a, the frequencies of
mild and moderate drought levels in MD were relatively high, while severe and extreme
droughts occurred less frequently. In comparison, Region A experienced the greatest
number of drought events, while Region D experienced the least. According to Figure 7b,
the frequency of mild drought levels was predominant in AD, with Region A experiencing
more severe drought events than other regions. The data in Figure 7c exhibited that Region
B experienced the greatest number of moderate drought events, closely followed by Region
A. Conversely, Regions C and D encountered a greater number of severe and extreme
drought events. Overall, it can be observed that the severity levels of MD events exceeded
those of AD and GD, and multiple instances of extreme drought events occurred.
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3.2. Trend Identification of MD, AD, and GD

Sen’s slope and MK trend test methods were used to further investigate the trends in
the spatiotemporal variations in the SPEI, VCI, and GDI in HP from 2004 to 2022. As shown
in Figure 8, noticeable spatial distribution differences were observed in the trends of the
SPEI, VCI, and GDI across HP. Combined with Table 3, it can be observed that most of the
regions exhibited increasing trends in both the SPEI and VCI. The area with an insignificant
increasing trend in the SPEI accounted for 79.4%, while the areas with insignificant and
significant increasing trends in the VCI accounted for 33.7% and 60.8%, respectively. This
indicates that MD and AD were gradually alleviated in most areas of HP during the period
from 2004 to 2022. However, there was a significant decreasing trend in the GDI accounting
for 81.4%, indicating an aggravation of GD in HP.
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Table 3. The percentages of areas of SPEI, VDI, and GDI in Henan Province from 2004 to 2022.

Drought
Index

Significantly
Decrease

Insignificant
Decrease No Trend Insignificant

Increase
Significantly

Increase

SPEI 0 19.8% 0.8% 79.4% 0
VCI 1.2% 4.3% 0 33.7% 60.8%
GDI 79.1% 2.3% 15.1% 1.6% 1.9%

Based on Figure 8a–c, it is evident that the slope of the SPEI ranged from −0.0004 to
0.0019. Only the eastern region showed an insignificant decreasing trend, while the other
areas exhibited an insignificant increasing trend. This indicated a pronounced exacerbation
of MD in the northern part of Region D. Analysis of Figure 8d–f revealed that the slope of
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the VCI varied between −1.3690 and 3.1414, with Z-values ranging from −3.2187 to 5.1779.
Spatial variations and differences in distribution across the whole area were apparent.
Nevertheless, AD across the province was gradually alleviated. Figure 8g–i demonstrate
that the slope of the GDI ranged from −0.0153 to 0.0042, with Z-values falling between
−16.2779 and 3.7184. GDI values were significantly decreasing across the entire province,
except for minor increases or no changes in certain areas of Regions C and D, indicating a
progressive worsening of GD. Furthermore, MD, AD, and GD in Region D tended to cluster,
particularly MD and GD. However, this pattern was less pronounced in the other regions.

3.3. Propagation Dynamics of Droughts
3.3.1. Correlation and Propagation Time among MD, AD, and GD

As shown in Figure 9, there were significant spatial distribution differences in the
correlation and propagation time of the three types of droughts (MD, AD, and GD) in HP.
Figure 9a illustrates that the maximum correlation coefficients of the SPEI and VCI at the
grid scale ranged from 0.06 to 0.30, with higher values in the west and lower values in the
east of the province. This indicated a closer connection between MD and AD in the western
region than in the eastern region. Similarly, the correlation between the SPEI and GDI
was positive, and varied from 0.03 to 0.43 (Figure 9c). However, the spatial distribution of
the correlation between the SPEI and GDI showed a pronounced north–south difference,
suggesting a closer relationship between MD and GD in the southern part of HP. From
Figure 9e, it can be observed that the correlation coefficient between the VCI and GDI
ranged from −0.31 to 0.37, with a negative correlation in the northern part and a positive
correlation in the southern part of HP, indicating that the correlation gradually increased
from north to south. This difference was closely related to the spatial distribution of
groundwater reserves in HP.

The spatial distributions of the propagation time among the three types of droughts in
HP are illustrated in Figure 9b,d,f, indicating the shortest propagation time between the
SPEI and VCI. As depicted in Figure 9b, the average drought propagation time from the
SPEI to VCI in HP was 6.1 months, with that in Region A being 9.2 months, that in Region B
being 5.4 months, that in Region C being 6.1 months, and that in Region D being 4.0 months
(Table 4). Figure 9d displays the spatial distribution of the drought propagation time from
the SPEI to GDI, revealing an average propagation time of 4.4 months from MD to GD,
with the shortest of 1.0 months in Regions C and D, followed by 6.0 months in Region
B, and the longest of 11.1 months in Region A (Table 4). Combined with Figure 9f and
Table 4, the average drought propagation time from the VCI to GDI in HP was 16.3 months,
with 19.5 months in Region A, 17.1 months in Region B, 14.1 months in Region C, and 18.5
months in Region D. Overall, there were significant spatial differences in the propagation
time among MD, AD, and GD, primarily attributed to factors such as farmland distribution,
human activities (artificial irrigation, etc.), and topography, which either accelerated or
weakened the propagation of drought.

Table 4. Drought propagation time in Henan Province and its subregions during 2004–2022.

Region MD to AD MD to GD AD to GD

HP 6.1 4.4 16.3
Region A 9.2 11.1 19.5
Region B 5.4 6.0 17.1
Region C 6.1 1.0 14.1
Region D 4.0 1.0 18.5
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3.3.2. Seasonal Characteristics of Drought Propagation in Different Subregions

To further accurately analyze the correlation and propagation of MD, AD, and GD,
as well as their distinctions among different climatic conditions in various subbasins of
HP, the correlation coefficients between the SPEI-n (n = 1, 2, 3 . . . 24) and the monthly VCI
and monthly GDI were calculated. Considering the varying responses of vegetation and
groundwater to meteorological factors such as temperature, precipitation, and evapotran-
spiration across different months, it is necessary to study the propagation time from MD to
AD and GD every month. As illustrated in Figure 10, the correlation between the SPEI and
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GDI was higher than that between the SPEI and VCI, indicating a stronger linkage between
MD and GD, whereas the relationship between MD and AD was relatively weaker.
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Figure 10. The correlation coefficients between SPEI-n (n = 1, 2, 3 . . . 24) and monthly VCI (a,c,e,g),
SPEI-n (n = 1, 2, 3 . . . 24) and monthly GDI (b,d,f,h) of different subregions in Henan Province.

Figure 10 illustrates the seasonal and regional differences in the correlation between
the SPEI-VCI and SPEI-GDI in various subregions, suggesting the influence of other factors
on the hydrological cycle in these areas. As depicted in Figure 10a, the shortest drought
propagation times occurred in March, July, and September–October (1–3 months). In partic-
ular, the VCI in July exhibited a strong correlation (0.33–0.44) with the SPEI at different time
scales, indicating a propensity for MD to transition to AD during this month. This could
be because of the high temperatures, limited precipitation, and strong evapotranspiration



Agriculture 2024, 14, 1840 18 of 26

during the summer, leading to vegetation water stress, and consequently shortening the
propagation time of MD-AD. Figure 10c shows that the SPEI-VCI correlation in Region
B was highest during the summer and autumn, followed by the spring, with a predomi-
nantly negative correlation in winter. The shortest propagation time of MD-AD occurred
in July and September–October (1–4 months), while the longest occurred from April to
June (7–9 months). As shown in Figure 10e, the propagation time of MD-AD in Region
C was generally short, spanning from January to June (1–5 months) and from October to
December (1–3 months), with the strongest correlation observed between SPEI01 and the
monthly VCI in October, reaching 0.56. In Figure 10g, the shortest drought propagation
period in Region D occurred from September to October (1–2 months), followed by Febru-
ary (5 months), and the longest occurred in June (9 months), indicating that meteorological
factors (temperature, precipitation, evapotranspiration, etc.) play a role in shortening or
extending the propagation time of MD-AD.

As shown in Figure 10b, the SPEI-GDI in Region A exhibited the strongest correlation
in autumn, followed by that in winter, and weaker correlations in spring and summer. The
shortest propagation time from MD to GD occurred between September and November
(1–3 months), while the longest occurred between April and June (10–12 months). Ad-
ditionally, there was a strong correlation (up to 0.66) between the GDI and the SPEI at
different time scales in September. From September to November, characterized by high
temperatures and low rainfall in the preceding summer months (e.g., July to August),
intensified human activities (reservoir storage, groundwater extraction for crop irrigation,
etc.), and high rates of evapotranspiration led to a reduction in groundwater storage, sig-
nificantly shortening the propagation time from MD to GD. In Region B (Figure 10d), the
period of drought propagation ranged from 7 to 9 months in spring, the shortest occurred
in summer (July to August), about 1 to 2 months, and the longest occurred in June (12
months). In autumn, the propagation time ranged from 1 to 3 months, and in winter, from
4 to 6 months. Compared to other subregions, Region C (Figure 10f) exhibited the highest
correlation coefficient between the SPEI and GDI, indicating a closer relationship between
MD and GD, with GD responding more rapidly to MD. The propagation time from MD
to GD in Region C was the shortest between July and September (1 month), the longest
occurred in April (7 months), and those taking 2 to 6 months occurred in other months.
In Figure 10h, the correlation between the SPEI and GDI in Region D was higher in the
summer and autumn than in the spring and winter. The shortest drought propagation
time occurred between July and October (1–2 months), with the longest duration occurring
in June (12 months). Overall, Region C exhibited the highest correlation in terms of the
SPEI-GDI, followed by Regions D and B, with Region A showing the lowest correlation.

3.4. Linkage Analysis Among MD, AD, and GD

In this study, XWT and WTC were utilized to explore the linkages among the SPEI-VCI,
SPEI-GDI, and VCI-GDI. The results can be seen in Figures 11 and 12. In the graphical
representations, the horizontal axis denotes the timeline of the time series, the vertical
axis represents the changing periods, and the color indicates the intensity of these periods.
The thin black solid line illustrates the Cone of Influence (COI) for the wavelet boundary
effect, while the thick black solid line region represents the significant correlation through
a red noise test at the 95% confidence level. Arrows are used to represent the phase
relationship between the two: → denotes synchronous changes, indicating a positive
correlation; ↓ indicates a 90◦ leading phase of the former sequence over the latter; ←
signifies an opposite phase, implying a negative correlation; and ↑ represents a 90◦ lagging
phase of the former sequence behind the latter.



Agriculture 2024, 14, 1840 19 of 26

Agriculture 2024, 14, 1840 20 of 28 
 

 

phase, implying a negative correlation; and ↑ represents a 90° lagging phase of the former 
sequence behind the latter. 

3.4.1. XWT Analysis 
As shown in Figure 11, the impacts of climate change in different basins resulted in 

distinct differences in the high-energy resonance cycles, notable periods, and lag charac-
teristics among MD, AD, and GD. There was a strong correlation between the SPEI and 
VCI in Region A. In the high-frequency domain, there were two resonance periods: one 
displaying a significant negative correlation over a time scale of 20–28 months (2007–
2011), and the other showing a significant positive correlation at a time scale of 12–14 
months in 2011 (Figure 11a). Although a resonance period of 6–24 months was observed 
for the SPEI-GDI from 2019 to 2022, it was heavily influenced by potential edge effects 
(Figure 11b). In Region B, a significant positive correlation was observed between the 
SPEI-VCI at the time scale of 12–16 months from 2010 to 2012 (Figure 11d), while the SPEI-
GDI exhibited resonance periods of 12–24 months (2010–2013), with most phase angles 
close to 90°, indicating that the change in the SPEI occurred before the GDI during this 
period (Figure 11e). In Region C, the correlation between the SPEI-VCI was significantly 
positive at the time scale of 12–20 months from 2009 to 2012 (Figure 11g). The resonance 
period of the SPEI-GDI was observed from 2009 to 2013, indicating the SPEI’s precedence 
over the GDI. Figure 11i illustrated three distinct resonance periods between the VCI and 
GDI, at 12–20 months (2009–2012), 30–32 months (2013–2016), and 12–20 months (2017–
2018) time scales, but their phase variations differed, indicating that the VCI may lead or 
lag the GDI at different times. In Region D, the resonance periods for the SPEI-VCI and 
SPEI-GDI were similar to those in Region C. Additionally, the VCI and GDI were strongly 
linked in Region D, with two distinct resonance periods at 16–24 months (2006) and 12–
24 months (2017–2018) (Figure 11l). 

 
Figure 11. The cross-wavelet transform among monthly SPEI01, VCI, and GDI of different subre-
gions in Henan Province. Region A (a–c), Region B (d–f), Region C (g–i), and Region D (j–l). 

Figure 11. The cross-wavelet transform among monthly SPEI01, VCI, and GDI of different subregions
in Henan Province. Region A (a–c), Region B (d–f), Region C (g–i), and Region D (j–l).

Agriculture 2024, 14, 1840 21 of 28 
 

 

3.4.2. WTC Analysis 
WTC was employed to further explore the coherence between different types of 

droughts in low- and high-energy regions (Figure 12), to elucidate the interrelationships 
among MD, AD, and GD. As shown in Figure 12, there was a significant difference in the 
relationships among different types of droughts. The coherence between MD and GD was 
the strongest, followed by that between MD and AD, and the weakest coherence was ob-
served between AD and GD. Moreover, the strength of coherence among the three types 
of droughts varied across different subregions. In Region A, the relationship between the 
SPEI and VCI was relatively weak, with almost no discernible resonance periods (Figure 
12a). However, as illustrated in Figure 12b, a close relationship was observed between the 
SPEI and GDI, exhibiting six distinct resonance periods: 3–4 months (2006, 2009), 4–10 
months (2010–2011), 4–8 months (2012–2016), 12–14 months (2007–2008), and 14–32 
months (2009–2014). Notably, in Regions B (Figure 12d–e), C (Figure 12g–h), and D (Fig-
ure 12j–k), the coherences between the SPEI-VCI and SPEI-GDI were stronger than those 
in Region A, indicating a pronounced consistency in the periodic variations in MD-AD 
and MD-GD. Additionally, in Region C, the VCI and GDI exhibited four relatively strong 
resonance periods (Figure 12i): 8–13 months (2005–2006), 7–12 months (2011–2013), 16–24 
months (2010–2013), and 5–7 months (2014–2015), with an overall positive phase angle 
relationship, indicating that the VCI was ahead of the GDI. 

 
Figure 12. The wavelet coherence among monthly SPEI01, VCI, and GDI of different subregions in 
Henan Province. Region A (a–c), Region B (d–f), Region C (g–i), and Region D (j–l). 

4. Discussion 
4.1. The Impact of Different Factors on the Propagation of Drought 

Understanding the variations in influencing factors during the drought propagation 
process is crucial for unraveling the underlying mechanisms of drought propagation. As 
mentioned in Sections 3.3 and 3.4, there was a strong linkage between MD and AD/GD, 
but significant variations were evident across different subregions. Hence, it is imperative 

Figure 12. The wavelet coherence among monthly SPEI01, VCI, and GDI of different subregions in
Henan Province. Region A (a–c), Region B (d–f), Region C (g–i), and Region D (j–l).



Agriculture 2024, 14, 1840 20 of 26

3.4.1. XWT Analysis

As shown in Figure 11, the impacts of climate change in different basins resulted in
distinct differences in the high-energy resonance cycles, notable periods, and lag character-
istics among MD, AD, and GD. There was a strong correlation between the SPEI and VCI in
Region A. In the high-frequency domain, there were two resonance periods: one displaying
a significant negative correlation over a time scale of 20–28 months (2007–2011), and the
other showing a significant positive correlation at a time scale of 12–14 months in 2011
(Figure 11a). Although a resonance period of 6–24 months was observed for the SPEI-GDI
from 2019 to 2022, it was heavily influenced by potential edge effects (Figure 11b). In Region
B, a significant positive correlation was observed between the SPEI-VCI at the time scale
of 12–16 months from 2010 to 2012 (Figure 11d), while the SPEI-GDI exhibited resonance
periods of 12–24 months (2010–2013), with most phase angles close to 90◦, indicating that
the change in the SPEI occurred before the GDI during this period (Figure 11e). In Region
C, the correlation between the SPEI-VCI was significantly positive at the time scale of
12–20 months from 2009 to 2012 (Figure 11g). The resonance period of the SPEI-GDI was
observed from 2009 to 2013, indicating the SPEI’s precedence over the GDI. Figure 11i
illustrated three distinct resonance periods between the VCI and GDI, at 12–20 months
(2009–2012), 30–32 months (2013–2016), and 12–20 months (2017–2018) time scales, but
their phase variations differed, indicating that the VCI may lead or lag the GDI at different
times. In Region D, the resonance periods for the SPEI-VCI and SPEI-GDI were similar
to those in Region C. Additionally, the VCI and GDI were strongly linked in Region D,
with two distinct resonance periods at 16–24 months (2006) and 12–24 months (2017–2018)
(Figure 11l).

3.4.2. WTC Analysis

WTC was employed to further explore the coherence between different types of
droughts in low- and high-energy regions (Figure 12), to elucidate the interrelationships
among MD, AD, and GD. As shown in Figure 12, there was a significant difference in
the relationships among different types of droughts. The coherence between MD and GD
was the strongest, followed by that between MD and AD, and the weakest coherence was
observed between AD and GD. Moreover, the strength of coherence among the three types
of droughts varied across different subregions. In Region A, the relationship between
the SPEI and VCI was relatively weak, with almost no discernible resonance periods
(Figure 12a). However, as illustrated in Figure 12b, a close relationship was observed
between the SPEI and GDI, exhibiting six distinct resonance periods: 3–4 months (2006,
2009), 4–10 months (2010–2011), 4–8 months (2012–2016), 12–14 months (2007–2008), and
14–32 months (2009–2014). Notably, in Regions B (Figure 12d–e), C (Figure 12g–h), and
D (Figure 12j–k), the coherences between the SPEI-VCI and SPEI-GDI were stronger than
those in Region A, indicating a pronounced consistency in the periodic variations in MD-
AD and MD-GD. Additionally, in Region C, the VCI and GDI exhibited four relatively
strong resonance periods (Figure 12i): 8–13 months (2005–2006), 7–12 months (2011–2013),
16–24 months (2010–2013), and 5–7 months (2014–2015), with an overall positive phase
angle relationship, indicating that the VCI was ahead of the GDI.

4. Discussion
4.1. The Impact of Different Factors on the Propagation of Drought

Understanding the variations in influencing factors during the drought propagation
process is crucial for unraveling the underlying mechanisms of drought propagation. As
mentioned in Sections 3.3 and 3.4, there was a strong linkage between MD and AD/GD, but
significant variations were evident across different subregions. Hence, it is imperative to
further investigate how various factors such as climate variations, land surface conditions,
and human activities influence the propagation among these three types of drought in
different river basins [52]. In this study, nine variables relevant to drought propagation
were considered, including precipitation (PRE), temperature (TEM), evapotranspiration
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(ET), vegetation (NDVI), surface water resources (SWR), groundwater resources (GWR),
the storage capacity of large and medium reservoirs (L/M-RSC), agricultural irrigation
water consumption (AIWC), and total water consumption for industrial, urban and rural
living, and environment (I-UR-E-TWC), thereby quantifying the influence of these factors
during the drought propagation [42].

As shown in Figure 13, the raincloud plots illustrated the variations in the nine influ-
encing factors in different subregions of HP from 2004 to 2022. Based on the violin plots,
it can be observed that the distributions of these factors were uneven, with significant
differences among the subregions. Combined with Figure 12, it was evident that factors
such as climate change, surface conditions, and human activities in different river basins
influenced the propagation of the three types of droughts. In Region A, low precipitation,
high evaporation, and elevated mean annual temperatures led to frequent MD. As shown
in Figure 12a, the propagation from MD to AD was not significant due to the region’s mini-
mal vegetation cover and agricultural irrigation. However, there was a close relationship
between MD and GD, which could largely be attributed to the depletion of surface and
groundwater reserves following MD, coupled with increased water consumption, exacer-
bating GD (Figure 12b). In Region B, Figure 12d,e showed a stronger connection between
MD and AD/GD, influenced by factors such as surface water utilization, groundwater
extraction, agricultural irrigation, and the development of water infrastructure [61,62].
These factors, as depicted in Figure 13, accelerated the propagation of drought, leading to a
faster propagation from MD to AD and GD. In Region C, Figure 12d,e indicated the closest
relationships between MD, AD, and GD. This region had the highest vegetation cover,
and after MD, the threat to vegetation growth led to a decline in vegetation greenness and
moisture content, triggering AD [63,64]. Intensive human activities further increased water
consumption, disrupted the hydrological cycle, and accelerated the propagation from MD
to GD [65]. Additionally, Figure 13 indicated that Region D had the most abundant water
resources and vegetation cover. However, after the occurrence of MD, factors such as high
temperatures and increased evaporation rates, along with a sharp rise in crop and human
water demand, intensified water resource stress, shortening the propagation time from MD
to AD and GD [10].

Therefore, it is essential to utilize water resources efficiently through integrated plan-
ning and management to strengthen drought resilience in HP. For Region A, given its low
rainfall and limited groundwater resources, we recommend implementing groundwater
recharge projects and improving groundwater management. Optimizing surface water stor-
age and utilizing rainwater collection systems during frequent MD can mitigate resource
shortages. Additionally, promoting water-efficient technologies will reduce agricultural
water wastage. In Region B, where agricultural water demand is high, advanced irriga-
tion techniques such as drip and sprinkler irrigation should be prioritized to minimize
evaporation losses. Drought-resistant crops should be encouraged to reduce dependence
on water during dry periods, and water infrastructure improvements should enhance
resource allocation efficiency. For Region C, where human activities significantly influence
drought propagation, it is crucial to protect the environment and promote water-saving
technologies. Monitoring the hydrological cycle will ensure sustainable water use and slow
the propagation from MD to AD and GD. Although Region D has abundant resources,
high temperatures and evapotranspiration during droughts increase water demand, so
better water storage management and pre-drought planning are necessary. Implementing
drought warning systems will help prevent severe impacts on agriculture and ecosystems.
In conclusion, we hope the results of this study can serve as a scientific reference for mit-
igating regional droughts, promoting sustainable agricultural and food production, and
ensuring the effective management of water resources.
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4.2. Uncertainties and Limitations of This Study

In this study, most of the selected research data were obtained and preprocessed
based on GEE. Although GEE offers abundant spatiotemporally continuous environmental
geographic data, the resolutions of the SPEIbase v2.9 [66] and GLDAS-2.2 [67] utilized
in this study exhibited certain limitations, leading to a degree of uncertainty in regional
drought studies [36]. Furthermore, this study only used statistical methods (run theory,
PCC, XWT, and WTC) to unveil the propagation of droughts by capturing linear and
nonlinear relationships, presenting certain limitations in comprehensively analyzing the
propagation of drought [68]. Given the complexity of drought, the heterogeneity of events,
and the impact of multiple factors including natural phenomena and human activities,
further research is warranted to more deeply investigate the propagation dynamics of
drought [1].

4.3. Advantages and Future Work

The majority of past studies have been concerned with comparisons between MD
and AD (or HD) [48,58,69,70], with limited exploration into multiple types of droughts.
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This study employed the SPEI, VCI, and GDI to identify the characteristics of MD, AD,
and GD, respectively. This study revealed the propagation among these three types of
droughts, providing new insights into regional drought propagation research. However, in
HP, as a major agricultural region, intensive human activities (such as agricultural irrigation
and groundwater extraction) significantly impacted the interrelations between AD and
GD [68]. Consequently, future research should differentiate between irrigated agriculture
and rainfed agriculture concerning their influence on regional drought propagation. Fur-
thermore, droughts are influenced by various driving factors within the water cycle and
energy cycle. In addition to the natural factors and human activities mentioned in this
study, atmospheric circulation anomalies, land cover types, and land use should also be
considered [71]. The quantitative analysis of factors influencing drought propagation can
be facilitated by employing modeling techniques. In summary, future research on drought
propagation should comprehensively consider meteorological, agricultural, hydrological,
and socioeconomic droughts, analyze the underlying mechanisms throughout the entire
drought process, and quantitatively assess the impacts of different driving factors.

5. Conclusions

In the context of current climate change, investigating the spatiotemporal characteris-
tics, propagation dynamics, and primary influencing factors of droughts holds significant
relevance for relevant authorities engaged in managing drought disasters, making reason-
able decisions, and ensuring equitable allocation of water resources. In this study, HP and
its four subregions were utilized as the research objects. We investigated the spatiotemporal
characteristics and trends of MD, AD, and GD from 2004 to 2022 based on the SPEI, VCI,
and GDI, and explored the correlations and propagation times among the three types of
droughts under different climatic conditions. Additionally, we analyzed the interlinkages
among the three types of droughts. The main conclusions are as follows:

(1) Significant disparities in spatial distribution were observed in MD, AD, and GD
across HP. From 2004 to 2022, the average durations for these three types of droughts
were 4.55 months, 8.70 months, and 29.03 months, respectively. Overall, MD events
exhibited greater severity compared to AD and GD, reaching extreme drought levels
several times.

(2) From 2004 to 2022, an increasing trend in the SPEI and VCI was evident in the
majority of HP, suggesting a gradual alleviation of MD and AD conditions. Conversely,
a significant decrease in the GDI was consistently observed across the province,
indicating an exacerbation of GD.

(3) The correlations of MD-AD and MD-GD were positive, but with notable regional
variations: the correlation of the SPEI-VCI was stronger in the west than in the east,
while the correlation of the SPEI-GDI was stronger in the south than in the north.
Moreover, the average propagation time of MD-AD was 6.1 months, that of MD-GD
was 4.4 months, and that of AD-GD was 16.3 months.

(4) The propagation time of drought exhibited significant seasonality, being shorter in the
summer and autumn compared to the winter and spring. For the propagation time of
MD-AD, Region A experienced the shortest (1 months) in the summer (July), Region
B spanned 1 to 4 months during summer and autumn, and in Region C, the shortest
of that (1 months) occurred in the autumn (October). Similarly, Region D displayed
the shortest propagation time in summer and autumn (1–2 months), with the longest
time extending up to 9 months. Moreover, regarding MD-GD, all subregions were
most prone to 1 to 3 months of propagation during autumn, especially in Region C,
which was identified as a hotspot area for MD-GD.

(5) MD showed a close association with AD and GD. In Region C, these three types of
droughts exhibited similar cyclical characteristics, resonance frequencies, and phase
shift features. Consequently, the response relationships among these three types of
droughts were comparatively strong in Region C.
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