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Abstract: This study aimed to develop a non-destructive measurement method utilizing acoustic
sensors for the efficient determination of the internal temperature of shiitake mushroom sticks during
the cultivation period. In this research, the sound speed, air temperature, and moisture content of the
mushroom sticks were employed as model inputs, while the temperature of the mushroom sticks
served as the model output. A data—physics hybrid-driven model for temperature measurement
based on XGBoost was constructed by integrating monotonicity constraints between the temperature
of the mushroom sticks and sound speed, along with the condition that limited the difference between
air temperature and stick temperature to less than 2 °C. The experimental results indicated that
the optimal eigenfrequency for applying this model was 850 Hz, the optimal distance between the
sound source and the shiitake mushroom sticks was 8.7 cm, and the temperature measurement
accuracy was highest when the moisture content of the shiitake mushroom sticks was in the range of
56~66%. Compared to purely data-driven models, our proposed model demonstrated significant
improvements in performance; specifically, RMSE, MAE, and MAPE decreased by 74.86%, 77.22%,
and 69.30%, respectively, while R? increased by 1.86%. The introduction of physical knowledge
constraints has notably enhanced key performance metrics in machine learning-based acoustic
thermometry, facilitating efficient, accurate, rapid, and non-destructive measurements of internal
temperatures in shiitake mushroom sticks.

Keywords: shiitake mushroom stick; acoustic thermometry; data—physics hybrid; non-destructive

measurement

1. Introduction

Edible fungi are found to hold a crucial role in global agricultural products, of which
the shiitake mushroom is one of the main varieties. Its cultivation area is vast, and the
annual production and consumption of shiitake mushrooms are reported to occupy an
important position in global edible fungi products [1]. Mycelial physiological maturity is
referred to as the stage after the Shiitake mushroom mycelium has grown all over the stick
and before it moves to the mushroom shed. The accurate judgment of mycelial maturity
is considered crucial during cultivation, as it is believed to directly affect the yield and
quality of the shiitake mushroom [2]. Currently, the mycelium is usually assessed for
maturity using the accumulated temperature method [3], but mushroom farmers often use
air temperature or the surface temperature of the mycelium stick instead of the internal
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temperature, which leads to a significant measurement error and misses the optimal mush-
rooming time. The method of temperature detection using a metal probe is limited in its
ability to accurately reflect the internal temperature range of mycelium and disrupts the
growth microenvironment, which is detrimental to mycelial cultivation processes. Com-
mon non-destructive temperature measurement techniques primarily include acoustic
thermometry and infrared thermography [4]; however, infrared thermography typically
only measures surface temperatures and fails to provide insights into the internal tempera-
ture of mycelium. Consequently, there is an urgent need identified for a non-destructive
and efficient method to measure the internal temperature of mycorrhizal rods for assessing
mycelial maturity, in conjunction with the cumulative temperature method.

Acoustic thermometry is a non-invasive and reliable temperature measurement method
that indirectly measures temperature by using the corresponding relationship between the
speed of sound propagation in the medium and the temperature [5]. It not only protects
the structure of the shiitake mushroom sticks and the bacterial environment but also has
the advantages of being fast, accurate, and non-contact [6], making it the best way to detect
the temperature of the ingredients inside the shiitake mushroom sticks.

Acoustic thermometry has found wide applications in various fields, such as grain
temperature monitoring [7-9], biomass fuel temperature detection [10,11], and air tem-
perature field analysis [12,13]. Yan et al. employed an experimental calibration method
to establish the physical relationship between sound velocity and temperature within
the stacked structure of biomass materials, thereby validating the feasibility of acoustic
thermometry for use in these materials [14]. Guo et al. experimentally verified a single-path
acoustic temperature measurement method for wood pellet piled structures and proposed
a non-invasive approach based on acoustic sensing technology using low-frequency sound
waves and cross-correlation processing techniques to measure the temperature of stored
biomass. Their experiments demonstrated effective temperature measurements for wood
materials within the range of 22~48.9 °C [15]. Holstein et al. utilized cross-correlation meth-
ods to calculate the average sound speed along sound wave propagation paths, effectively
eliminating the influence of air flow speed on measured sound velocity fields [16]. Bao
et al. performed simultaneous acoustic signal transmission and acoustic wave transit time
measurements for multiple acoustic paths, followed by air temperature field reconstruction
using an offline iterative algorithm, which shortened the computation time and achieved
high accuracy in temperature field reconstruction [17].

The relationship between the internal sound speed and temperature in the medium
was the result of the combined effects of multiple factors, including the moisture content of
the medium, the temperature difference between the inside and outside of the medium,
and the distribution of the sound source and medium. To solve the problem of the complex
interaction of multiple factors affecting the accurate and rapid monitoring of temperature
fields, Lin et al. proposed a machine learning method based on convolutional neural net-
works (CNNSs) to reconstruct the gas temperature distribution (TD) from the sound speed,
which improved the 2D visualization results, indicating that machine learning methods can
be applied in complex relationships between sound speed and medium temperature [18].
Zhong et al. proposed a machine learning approach for reconstructing the temperature
field in acoustic thermometry based on the Kernel Extreme Learning Machine (KELM),
which enhances both the speed of the temperature computation and the computational
accuracy [19]. Jeong et al. proposed and successfully proved a machine learning-based
method for obtaining the transit time measurement model and estimating the temperature
distribution [20]. Ma et al. used a CDMA-based acoustic signal modulation technique to
improve the Signal-to-Interference-plus-Noise Ratio and established a kernel regression
model with spatially dependent Gaussian radial basis function and time-dependent co-
efficients. The Gaussian function parameters were optimally solved by gradient descent,
and the numerical simulation shows that the error of 3D temperature field reconstruction
was less than 5%, which verifies the feasibility and high efficiency of the machine learning
method in measuring temperature using the speed of sound [21].



Agriculture 2024, 14, 1841

3o0f21

XGBoost (eXtreme Gradient Boosting) has integrated multiple decision trees, offering
a novel approach to enhance the accuracy of temperature measurements under conditions
characterized by multi-factor coupling. Jeon et al. developed a machine learning-based
model to predict the internal environment of greenhouses cultivating melons. This model
effectively captured the complex inter-relationships among greenhouse environmental
factors and successfully established a monitoring framework for melon cultivation environ-
ments [22]. Tang et al.’s comparative analysis was conducted involving several mainstream
single model algorithms, including XGBoost, as well as integrated learning algorithms,
to validate the superiority of XGBoost’s integrated learning capabilities [23]. Weierbach
et al. found that the combined model integrated with XGBoost was significantly better
than other ensemble models in measuring river temperatures [24]. Yang et al. conducted a
comparative analysis of four models—Support Vector Regression (SVR), Random Forest
Regression (RFR), Multi-Layer Perceptron (MLP), and XGBoost utilizing the same dataset;
the XGBoost model consistently surpassed the performance of the other three models [25].
Consequently, XGBoost has been found to be particularly well suited for scenarios charac-
terized by abundant data and complex challenges, enabling rapid and reliable high-quality
measurements [22].

When employing the XGBoost model to measure temperature changes within the
medium, the black box nature of purely data-driven models complicates the interpre-
tation of their internal decision-making processes, leading to suboptimal temperature
measurement. In contrast, the data—physics hybrid-driven model integrates the benefits of
prior knowledge with data-driven methods, enhancing both model interpretability and
measurement accuracy [26,27].

This paper proposed a non-destructive method for measuring the internal temperature
of shiitake mushroom sticks using microphones. The method combines machine learning
and physical knowledge to construct a model for measuring the internal temperature of
shiitake mushroom sticks. The study first collected a large dataset covering the influence
of factors such as different air temperatures, moisture contents of the shiitake mushroom
stick, temperatures of the shiitake mushroom stick, and frequencies of different sound
sources. These datasets were used for the training and validation of the XGBoost model.
Furthermore, this study incorporates physical constraints into the model training process,
including the frequency characteristics of acoustic signal propagation within shiitake
mushroom sticks and the monotonic relationship between sound velocity and temperature
in these sticks, resulting in a data—physics hybrid-driven XGBoost model. Finally, the
temperature measurement effect of the purely data-driven model and the data—physics
hybrid-driven model was verified and evaluated separately. This study will provide a
novel, non-invasive solution for the internal temperature detection of shiitake mushroom
sticks, enabling its non-destructive measurement.

This paper investigates the non-destructive measurement of internal temperature in
shiitake mushroom sticks, structured into five sections: Section 1 introduces the significance
of non-destructive temperature estimation for shiitake mushroom sticks and provides rele-
vant technological background; Section 2 outlines the principles of acoustic temperature
estimation, detailing the experimental design, data acquisition process, and construction of
a temperature estimation model; Section 3 analyzes various factors influencing model per-
formance and compares these results with those from other models; Section 4 discusses the
feasibility of this method in cultivating other edible fungi species as well as its application
in shiitake greenhouse cultivation. Finally, Section 5 summarizes the key research findings.

2. Materials and Methods
2.1. Acoustic Wave-Based Non-Destructive Temperature Measurement for Shiitake
Mushroom Sticks

Acoustic temperature measurement relies on the correlation between sound speed and
temperature within a given medium. The speed of sound was the most critical intermediate
quantity in the acoustic temperature measurement process, but the speed of sound was
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affected by the frequency of the sound wave, the moisture content of the shiitake mushroom
stick, the air temperature, and the distance from the sound source. Given that the moisture
of air in the bacterial cultivation room remained exceptionally stable, its impact on sound
velocity was relatively minor compared to other factors mentioned above. Consequently,
the influence of air humidity on sound velocity was not considered during the initial model
development and training process.

The low thermal conductivity coefficient of the shiitake mushroom stick material led
to a gradual temperature variation, while the specific heat capacity of air was also relatively
low. This facilitated rapid heat exchange and thermal equilibrium between the air within
the shiitake mushroom stick and the mushroom material. Consequently, the temperature
fluctuation of the air in the interstitial spaces could be considered equivalent to that of the
shiitake mushroom sticks themselves.

Guo et al. proposed a non-invasive temperature measurement method utilizing mi-
crophone technology. This approach involved measuring the temperature within biomass
accumulation structures through low-frequency sound waves and cross-correlation process-
ing techniques. The findings indicated that the accuracy of measuring the transit time of
sound wave signals, particularly at characteristic frequencies ranging from 600 Hz~1 kHz,
was significantly enhanced when employing the cross-correlation method [15]. The cross-
correlation method determined the time delay between two microphones by utilizing the
time delay t as the transit duration of the acoustic signal within the shiitake mushroom
stick. This method was predicated on the waveform similarity of the signals, where the
actual time delay was identified as the interval at which two signals exhibited maximum
correlation. Let us denote f1(x) and f,(x) as time-domain acoustic signals with a specific
temporal gap; thus, their cross-correlation function could be expressed in Equation (1).

Ryp(m) = LM A f(t+m)
VENM (1) /TNM B ()

where f1(t) and f, () denote the sampled values of the signals f1(x) and f,(x), respectively;
N denotes the total number of data points in the sampled signals; m denotes the number
of delayed sampling points (m =0, 1, 2, ..., h, ..., M). Here, M represents the number of
samples used for calculating the cross-correlation function at maximum allowable delay.
The peak value of the function R, (), known as the cross-correlation coefficient, quantifies
the degree of similarity between two sound signals. The transit time of the sound signal is
calculated using Equation (2).

,0<m<M (1)

t=hxAt (2)

where t denotes the transit time of the acoustic signal; h denotes the abscissa corresponding
to the maximum value of Ryp(m) in the range 0 to M; At denotes the time interval between
signal acquisitions. The velocity of the acoustic signal is calculated from Equation (3).

C=7 )
where C denotes the velocity of the acoustic wave; d is the distance between the micro-
phones; t is the acoustic wave transit time.

This study employed low-frequency acoustic waves to measure the internal temper-
ature of mycelium sticks; however, the microphone configuration differed from that in
reference [15]. In reference [15], all the microphones were embedded within the medium,
which compromised the structural integrity of its edges. The layout is illustrated in Figure 1.
Conversely, this study aimed to achieve a non-destructive measurement of temperature
within the mycelium stick. To preserve the internal microenvironment, the microphones
were positioned on both sides of the measuring medium, as depicted in Figure 2. Further-
more, compared to the literature [15], this paper must also consider the phenomenon of
low-frequency acoustic wave bypassing [28-30].
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Microphone 1 Microphone 2

/
Loudspeaker

‘Wood pellets

Figure 1. Microphone placement as reported in the literature [15].

Microphone 1  Microphone 2

Loudspeaker
Shiitake mushroom

stick

Figure 2. Microphone placement in this study.

In this study, the acoustic wave signals received by microphone 1 indicated signals
that were about to be incident on the shiitake mushroom stick, which was different from the
signals received by microphone 1 in the literature [15] that had already entered the medium.
The signal received by microphone 2 consisted of an acoustic signal that penetrated the
shiitake mushroom stick to the air and an acoustic signal that was projected around along
the surface of the shiitake mushroom stick, which was different from the literature [15],
where microphone 2 was in the medium, and only the signal that penetrated the medium
was captured.

2.2. Experimental Materials
2.2.1. Mushroom Stick Material

In this study, the short shiitake mushroom sticks randomly selected from the produc-
tion line of factory-cultivated shiitake mushrooms at the germination stage were subjected
to experimental measurements (Figure 3). The material composition ratio of the short shi-
itake mushroom stick comprised 78% wood shavings, 20% bran, 1% lime, and 1% gypsum,
with moisture content ranging from 45~77%. The short shiitake mushroom stick was mixed
and filled using automated production equipment to ensure uniform particle distribution
and regular shape, then wrapped in a double-layer high-density polyethylene plastic bag,
with inner and outer bag thicknesses of 0.01 mm and 0.05 mm, respectively. The diameter
of the shiitake mushroom stick was measured at 10.5 cm, while their height was recorded
as 20 cm. The center of the shiitake mushroom stick was selected for experimental data
collection. They were then externally wrapped in double-layer high-density polyethylene
plastic bags, with inner and outer bag thicknesses measuring 0.01 mm and 0.05 mm, respec-
tively. The diameter of the shiitake mushroom stick was measured as d = 10.5 cm, while
their height was recorded at h = 20 cm. The central region of the shiitake mushroom stick
was selected for the experiment, during which the data on sound velocity and temperature
were collected.

Figure 3. Shiitake mushroom sticks used in the experiment.
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2.2.2. Data Acquisition System

The composition of the measurement system is illustrated in Figure 4. The self-
developed LabVIEW computer software V1.1 controlled the NI acquisition card to generate
acoustic signals of the desired frequency and duration. These signals were linearly ampli-
fied by a power amplifier, which drove a low-frequency loudspeaker to emit a sinusoidal
wave lasting 100 ms, starting at a frequency of 600 Hz and increasing in steps of 50 Hz up
to a cutoff frequency of 1 kHz.

-~ Ss

Signal output and acquisition l/ =i \\
control software ! - )

U
Computer / “Acquisition Card

Microphone power
«— supply

-—g = = -

Microphone2

Shiitake mushroom
stick

Power amplifier
Noise insolation
cotton

Foundation

Figure 4. Schematic diagram of sound velocity measurement system connection and the velocity of
the composite acoustic signal measurement.

As illustrated in Figure 4, the microphones and speakers positioned on both sides of
the shiitake mushroom sticks were aligned horizontally. The signal received by microphone
1 consisted of the incident signal from the front surface of the shiitake mushroom stick
combined with noise, while microphone 2 captured a composite acoustic signal along with
noise. This composite acoustic signal was formed by superimposing the penetrating acous-
tic signal from the shiitake mushroom stick and an additional acoustic signal transmitted
along their surface. Subsequently, host computer software controlled the NI acquisition
card to save signals received by both microphones for a duration of 100 ms. In this study,
a bandpass filtering algorithm was employed to reduce noise in these signals, followed
by using mutual correlation methods to calculate the time delay between the incident and
composite signals; finally, the velocity of the composite acoustic signal was determined
using Equation (3). The operating steps of the complete collection system are shown
in Figure 5.

In the measurement system of this study, the microphone utilized was a model MPA265
from Beijing Soundwatch (BSWA) Technology Co., Ltd. (Beijing, China) featuring a response
frequency range of 20 Hz~12.5 kHz. The power amplifier used in this study was the model
ATA-2021B from Xi'an Aigtek Electronic Technology Co., Ltd. (Xi’an, China), with a
maximum output power of 50 W. The loudspeaker was obtained from Dongguan Guanyin
Audio Co., Ltd. (Dongguan, China), model YD78DQTZE-01, with a rated power of 15 w,
a resistance value of 8 (), and a frequency response range of 108 Hz~20 kHz. The data
acquisition card used was the NI-PCle-6374 high-speed data acquisition card from National
Instruments (NI) Co., Ltd. (Austin, TX, USA), which features a 4-channel analog input,
a 2-channel analog output, and a 16-bit resolution with a maximum sampling rate of
3.57 MS/s. According to the experimental requirements, based on LabVIEW language
development contains signal modulation, signal acquisition, and other functions in one
of the acquisition card control software. The constant temperature and humidity test
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chamber used in the experiment was produced by Guangdong Xingtuo Environmental Test
Equipment Technology Co., Ltd. (Dongguan, China), model AH-408, with temperature
control accuracy of +0.5 °C and humidity control accuracy of £2.5%RH. The digital
temperature inspection instrument used in this experiment was manufactured by Pumei
Instruments (Zhongshan) Co., Ltd. (Zhongshan, China), specifically the 8-channel model
DC700. The temperature probe was custom designed by (RTHOYE) Shenzhen Rongtai
Hongye Technology Co., Ltd. (Shenzhen, China) and features a length of 3.5 cm. When
used in conjunction with the digital thermometer, the temperature measurement accuracy
is £0.02 °C.

1.Turn on the power to supply power to the
entire system.

2.Set up the upper computer software,
including the signal output parameters, the
acquisition parameters, and the
amplification factor of the power amplifier.

g

3.Click the start button.

g

4.Drive the microphone to collect a
signal with a duration of 100ms,
perform signal denoising.

g

5.Calculate the time delay between
acquired signals

4

6.Calculate sound velocity based
on time delay.

Figure 5. Operation steps of the sound velocity measurement system.

In this study, a moving coil loudspeaker was employed as the sound source. The
resulting acoustic signal was unfocused, leading to a low Signal-to-Interference-plus-Noise
Ratio (SINR) in the acquired data. To address this issue, sound insulation cotton was
utilized to modify the sound source prior to the experiment. The acoustic insulation
properties of the material effectively concentrated the acoustic signal along the central axis
of the loudspeaker’s propagation path.

To measure the velocity and amplitude of the penetrating acoustic signal within the
shiitake mushroom stick, modifications to the arrangement of microphones depicted in
the dotted box of Figure 4 were required, as illustrated in Figure 6. Within a constant
temperature and humidity experimental chamber, there existed a minimal gap between
Microphone 1 and the surface of the shiitake mushroom stick, while Microphone 2 was
positioned inside the stick. Both microphones were aligned along the same horizontal axis.
Additionally, an electronic thermometer probe was placed at every 90° interval within the
middle section of the shiitake mushroom stick to monitor temperature variations. Each
probe had an insertion depth of 4 cm.

As illustrated in Figure 6, the two microphones were positioned inside and outside
the shiitake mushroom sticks and were aligned horizontally with the loudspeaker. The
signal was received by microphone 1, which consisted of a combination of the incident
signal and noise from the front surface of shiitake mushroom sticks, while microphone 2
captured a mixture of penetrating acoustic signals and noise. Subsequently, host computer
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software controlled the NI acquisition card to save signals acquired by both microphones
for a duration of 100 ms. After applying bandpass filtering and noise reduction to these
signals, cross-correlation methods were employed to calculate the time delay between
the incident signal and penetrating acoustic signal; finally, the velocity of the penetrating
acoustic signal was determined using Equation (3).

Signal acquisition

section
R . 'l'l' . -1' N B RS
: ficrophone microphone2 AN
' Penetrating sound |
! — |
' Loudspealer wave path 1
poosssosssoomossoos 1
| Signal excitation X | Shiitake mushroom |
| section X sticks !
T | Noise insolation _Temperature !
: cotton _‘__. e 23 sensor 1
I ) i '
[} LL \
\ Sound source 7 ,
AN channel Foundation L

Figure 6. Schematic diagram for measuring the velocity of the penetrating acoustic signal inside the
shiitake mushroom: stick.

2.3. Data Collection
2.3.1. Sound Velocity Data at Different Acoustic Frequencies

In this study, the velocities of the composite acoustic signal Cy; and the penetrating
acoustic signal Cp; were measured within the shiitake mushroom stick for signals in the
frequency range of 600 Hz~1 kHz, with results presented in Figure 7. The temperature T
of the shiitake mushroom sticks during experimentation was recorded at 22.4 °C, while
the moisture content of the mushroom stick was determined to be 66.47%. Additionally,
the ambient air temperature T surrounding the shiitake mushroom stick was measured at
23.4 °C, and relative humidity levels were found to be 75.3%. When discrepancies among
measurements from four material temperature sensors did not exceed 0.1 °C, their average
value was utilized to represent the temperature T of the shiitake mushroom stick.

Penetrating acoustic signal

95.0- —@— Composite acoustic signal

1
N
N
(=]

945

1
N
[
=)

94.0

[
=3
=)

93.5- 1

Velocity of penetrating acoustic signal(m/s)
1 1
[ N~
> o
£ ~
Velocity of the composite acoustic signal(m/s)

93.0

600 650 700 750 800 850 900 950 1000
Frequency(Hz)

Figure 7. Velocity of the composite acoustic signal and velocity of penetrating acoustic signal at

different frequencies.
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The signal frequency ranged from 600 Hz~1 kHz, and both the velocity of the pene-
trating acoustic signal and the velocity of the composite acoustic signal increased with the
frequency. This was due to the dispersion phenomenon of sound waves in the material [31].
Acoustic signals propagated through the air gap within the shiitake mushroom sticks; how-
ever, the velocities of the composite acoustic signal and the penetrating acoustic signal were
remarkably lower than that of sound in free-field air. This was attributed to the complex
structure within the shiitake mushroom sticks, which caused sound waves to undergo
multiple reflections and scattering. Additionally, the material of the shiitake mushroom
sticks exhibited a certain degree of absorption for acoustic signals, resulting in an acoustic
impedance that was higher than that of air.

Remarkably, the scattering of acoustic signals occurred when biomass materials were
employed as the medium. To further identify the optimal characteristic frequency point,
this study measured the sound pressure amplitude of penetrating acoustic signals at
various frequencies within shiitake mushroom sticks. The sound pressure amplitude was
determined by calculating the average amplitude of the signal collected from within the
stick. The calculation formula is presented in Equation (4).

L = 201log,, (2) (4)

where L represents the sound pressure amplitude in units of dBuV; V; denotes the measured
voltage amplitude in units of uV; and Vj refers to the reference voltage in units of 1 uV. The
experimental results are shown in Figure 8.

rated signal(dBv)
£
(9]
1
3

= 1 1 1 1 1 1 1 1 1
5 600 650 700 750 800 850 900 950 1000
Frequency(Hz)

Figure 8. Sound pressure amplitude of penetrating acoustic signal at different frequencies.

The amplitude of acoustic pressure was maximized for signals at a frequency of 850 Hz,
while that for signals at 750 Hz was minimized. This indicates that the shiitake mushroom
stick exhibited minimum acoustic impedance to 850 Hz signals and maximum acoustic
impedance to 750 Hz signals.

In this study, the velocity of the composite acoustic signal with the temperature T of
the shiitake mushroom stick was measured in the frequency range of 600 Hz~1 kHz, and
the results are shown in Figure 9.

Within the temperature range of 18~42 °C for shiitake mushroom sticks, the velocity
of the composite acoustic signal in the frequency range of 600 Hz~1 kHz was found to
consistently increase with rising temperature. As the temperature of the shiitake mushroom
sticks was elevated, the rate of change in sound velocity per unit temperature at each
frequency was found to gradually intensify. The minimum change in sound velocity per
unit temperature for an 850 Hz sound wave signal was measured at 0.41 m/s, which
outperformed that observed at other frequencies. Consequently, when utilizing a frequency
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of 850 Hz, temperature measurement was able to achieve the highest resolution, and the
sound impedance of shiitake mushroom sticks to 850 Hz waves was minimized. Therefore,
this study selected a sound wave signal frequency of 850 Hz.

—=— 600Hz —~— 750Hz 900Hz
—e— 650Hz 800Hz 950Hz
—a— T700Hz 850Hz 1000Hz

N

n

=]
1

N

S

[—J
I

[

(7]

<
1

N

p—

=}
1

[

S

(=]
1

20 25 30 35 40
Temperature of shiitake mushroom sticks(°C)

Velocity of the composite acoustic signal (m/s)
=
1

Figure 9. Variation of composite acoustic signal velocity across different acoustic wave frequencies in
the temperature range.

2.3.2. Sound Velocity Data at Different Moisture Contents of Shiitake Mushroom Sticks

In order to measure the velocity of the penetrating acoustic signal and the composite
acoustic signal of the shiitake mushroom sticks, the moisture content of the sticks was set in
the range of 45~77% under the conditions of 22.4 °C temperature of the sticks and 22.2 °C
temperature of the air around the sticks. The measurement results are shown in Figure 10.

=
w
1
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—+— Composite acoustic signal
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1
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o
|
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o
9]
1

-1208

o
ES
1

44 48 52 56 60 64 68 72 76
Moisture content of shiitake mushroom sticks(%o)

Velocity of penetrating acoustic signal(m/s)
\o
=)
1
Velocity of the composite acoustic signal(m/s)

Figure 10. Variation of velocity of penetrating acoustic signal and composite acoustic signal at
different moisture contents of shiitake mushroom sticks.
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The velocities of both the composite acoustic signal and the penetrating acoustic signal
were found to exhibit a decline with increasing moisture content in shiitake mushroom
sticks. For moisture content of 45~55% of the shiitake mushroom sticks, the rate of change
in the velocity of the composite acoustic signal Cy; was measured at 3.836%, and the rate
of change in the velocity of penetrating acoustic signal C,; was measured at 4.676%. For
moisture content of 56~66% of the shiitake mushroom sticks, the rate of change in the
velocity of the composite acoustic signal C1; was measured at 1.99%, and the rate of change
in the velocity of penetrating acoustic signal C,; was measured at 2.4%, which was smaller
than the rate of change in the range of 45~55%. When the moisture content of the shiitake
mushroom sticks was in the range of 67~77%, the rate of change in the velocity of the
composite acoustic signal Cy; was measured at 0.317%, and the rate of change in the velocity
of the penetrating acoustic signal C,; was measured at 0.516%.

The increase in moisture content was found to lead to a decrease in both the velocity of
the composite acoustic signal and the velocity of the penetrating acoustic signal. Both were
attributed to the fact that the increase in the moisture content of the shiitake mushroom
sticks hindered the propagation of the penetrating acoustic signal. Consequently, the ratio
of the decrease in velocity for the penetrating acoustic signal to that for the composite
acoustic signal could be interpreted as representing the proportion of the penetrating
acoustic signal within the composite acoustic signal. When moisture contents of shiitake
mushroom sticks were within ranges of 45~55%, 56~66%, and 66~77%, the corresponding
proportions of penetrating acoustic signals were measured at 55.3%, 61.1%, and 39.51%,
respectively. The optimal moisture content for shiitake mushroom mycelium growth was
reported to be between 60% and 65% [32]. Within this range, the proportion of penetrating
acoustic signals relative to composite signals was maximized, facilitating accurate transit
time calculations.

2.3.3. Velocity of Sound Data at Different Temperatures

To measure the velocity of the composite acoustic signal at varying temperatures of
both the air and shiitake mushroom sticks, the air temperature was maintained within a
range of 18~42 °C, while the moisture content of the shiitake mushroom sticks was set
at 65.28%, and the air humidity was set at 75.36%. The relationship between the velocity
of the composite acoustic signal and the temperature of the shiitake mushroom sticks is
shown in Figure 11a, whereas Figure 11b depicts how this velocity varies with changes in
air temperature.
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Figure 11. Variation of composite acoustic signal velocity with shiitake mushroom stick temperature
and air temperature. (a) Variation of the velocities of the composite acoustic signal with the tempera-
ture of the shiitake mushroom sticks; (b) Variation of the velocities of the composite acoustic signal
with the temperature of the air surrounding the shiitake mushroom sticks.
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The experimental results indicated that the velocity of the composite acoustic sig-
nal Cy; increased with the temperature of the shiitake mushroom sticks, demonstrating a
monotonically increasing relationship between Cj; and the temperature of the shiitake
mushroom sticks. Additionally, the velocity of Cy; also rose with an increase in air
temperature, exhibiting a similar monotonically increasing relationship between Cy; and
air temperature.

2.4. Temperature Measurement Models and Evaluation Metrics
2.4.1. Temperature Measurement Model Construction

In this study, the XGBoost model was selected for data—physics hybrid modeling.
The model utilized the moisture content of the shiitake mushroom sticks, the velocity of
the composite acoustic signal, and air temperature as input features, with the internal
temperature of the shiitake mushroom sticks used as the output variable. The dataset was
divided into training, validation, and test sets in a ratio of 6:2:2.

During the data preprocessing stage, the velocity of the composite acoustic signal was
observed to exhibit fluctuations due to interference from various noise sources. Neverthe-
less, given the established monotonically increasing relationship between velocity and air
temperature, as well as the monotonically decreasing relationship between velocity and
moisture content of shiitake mushroom sticks, this study employed these relationships to
identify and filter out anomalous data points.

This study employed the XGBoost algorithm for temperature prediction, with the
model articulated as follows:

Ti(x) = Bo + B1x1 + Box] + Pax; + Paxa + Psx3 + Bo(x1 - x2) + By (x% . XZ) (5)

where x; denotes the velocities of the composite acoustic signal; x, indicates the moisture
content of the shiitake mushroom stick; and x3 represents the air temperature. The parame-
ters Bo, B1, - - ., Bs, and By signify the influence weights of each input factor on the output
results. This study employs a non-negative least squares method to estimate parameter S.
The optimized objective function is presented in Equation (6).

min i (yi — T(xi;ﬁ))z (6)
i=1

To ensure that the temperature prediction function T;(x) adhered to the monotonically
increasing constraints between the velocities of the composite acoustic signal and the tem-
perature of the shiitake mushroom sticks, it was essential to satisfy the following conditions:

Ti(x)

Sx = P1H2Baxi 4 3Bsx + foxa + 2prrixy > 0 (7)

In this study, the XGBoost package (version 1.5.2) was implemented in Python and
was utilized, with parameters such as monotonic constraints configured accordingly. Fur-
thermore, the loss function of the XGBoost model is represented by Equation (8).

L(T,T) = -y, (fi-T)° 8)

where Ti denotes the model measurement of shiitake mushroom stick temperature values;
T; denotes the sensor measurement of shiitake mushroom stick temperature values.

Additionally, it was empirically observed that the temperature of shiitake mushroom
sticks typically did not exceed 2 °C above the surrounding air temperature. Consequently,
this constraint is incorporated into the monotonicity constraints. The updated loss function
could be expressed as shown in Equation (9).
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L'(T;, T, T) = L(T;, T;) + a = penalty(|T; — Ty| — 2) 9)

where T; is the measured temperature of the shiitake mushroom sticks; T; is the actual tem-
perature of the shiitake mushroom sticks; Ty is the air temperature; « is a hyperparameter
that controls the strength of the penalty, with values ranging from 0~1; and penalty(x) is a
penalty function, and its form is presented in Equation (10).

penalty (x) = {2 z;z § 8 (10)

2.4.2. Model Assessment Indicators

The computer hardware and software utilized in the experiment were as follows: the
CPU processor was an Intel i7-12700H with 16 GB of RAM (Intel, Santa Clara, CA, USA);
the GPU graphics card was an NVIDIA RTX 3060 (NVIDIA, Santa Clara, CA, USA); the op-
erating system was 64-bit Windows 11; the programming environment was Python 3.6; and
the integrated development environment used was PyCharm Community Edition 2022.3.2.

To assess the performance of the model, this study employed root mean square error
(RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and the
coefficient of determination (R?) as assessment indicators.

12 A
RMSE = |-} (vi = 9)° (11)
i=1
1n R
MAE = -} 77 lyi — il (12)
100% «—n |y — ¥
MAPE = Yo f (13)
R2:1_ Z?:l (]/i_]?i)z (14)
Y (vi— ?i)z

where y; denotes the sensor measurement of shiitake mushroom stick temperature values;
y; denotes the average of the sensor measurement of shiitake mushroom stick temperature
values; j; denotes the model measurement of shiitake mushroom stick temperature values.

3. Results
3.1. The Influence of Acoustic Frequency on Temperature Measurement Effect

To identify the best characteristic frequency for measuring the temperature of shiitake
mushroom sticks, this study employed different frequencies of sound waves for testing and
verification. The effect of measuring the temperature of the shiitake mushroom sticks based
on the data—physics hybrid drive temperature measurement model is shown in Table 1.

Table 1. Evaluation metrics for data—physics hybrid drive models at various frequencies.

Frequency (Hz) RMSE (°C) MAE (°C) MAPE (%) R?
600 0.092 0.083 0.295 0.991
650 0.082 0.088 0.277 0.995
700 0.088 0.079 0.279 0.993
750 0.130 0.113 0.385 0.988
800 0.083 0.079 0.273 0.994
850 0.054 0.047 0.218 0.999
900 0.087 0.081 0.291 0.994
950 0.081 0.075 0.276 0.996

1000 0.082 0.079 0.281 0.992
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The temperature measurement model exhibited an RMSE of 0.054 °C, a MAE of
0.047 °C, a MAPE of 0.218%, and an R? of 0.999 for the acoustic wave frequency of 850 Hz.
At an acoustic frequency of 750 Hz, the temperature measurement model demonstrated
an RMSE of 0.13 °C, a MAE of 0.113 °C, a MAPE of 0.385%, and an R? value of 0.988.
In comparison to the measurements at this frequency, the RMSE, MAE, and MAPE for
the temperature measurement model at an acoustic frequency of 850 Hz decreased by
approximately 58.5%, 58.4%, and 43.4%, respectively; additionally, R? had improved by
about 1.12%.

According to the RMSE, MAE, and MAPE evaluation indices in the above table, it
was evident that the temperature measurement model accurately reflected the temperature
of the shiitake mushroom sticks when 850 Hz was utilized as the characteristic frequency.
The elevated R? value indicated a strong correlation between the velocity of the composite
acoustic signal and the temperature of these sticks, suggesting that the model provided
an excellent fit to the data. Furthermore, as discussed in Section 2.3.1, a frequency of
850 Hz offers the highest resolution for sound velocity per unit temperature. Consequently,
this study selected 850 Hz as the characteristic frequency to achieve optimal accuracy in
temperature measurements.

In addition, the model performed the poorest performance at 750 Hz due to the ab-
sorption of sound waves by the shiitake mushroom stick at this frequency. This absorption
diminished the proportion of penetrating acoustic signals within the composite signal,
thereby weakening the correlation between the velocity of the composite acoustic signal
and the temperature of these mushroom sticks.

3.2. The Effect of Moisture Content of Mushroom Sticks on Temperature
Measurement Effectiveness

To assess the impact of the moisture content of shiitake mushroom sticks on the
data—physics hybrid drive temperature measurement model, 10 shiitake mushroom sticks
were randomly selected from each of the following moisture content ranges: 45~55%,
56~66%, and 67~77%, for a total of 30 sticks. The sticks were measured using the model at
each moisture content, and the temperature of the shiitake mushroom sticks was 27.24 °C.
The results of the experiment are shown in Figure 12.
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Figure 12. Temperature measurement effects of the data—physics hybrid drive model at different
moisture contents in shiitake mushroom sticks. (a) Effects of moisture content in the 45-55% range
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on temperature measurements of shiitake mushroom sticks; (b) Effects of moisture content in the
56-66% range on temperature measurements of shiitake mushroom sticks; (c) Effects of moisture
content in the 67-77% range on temperature measurements of shiitake mushroom sticks.

In this study, W1, W2, and W3 were used to denote the moisture content intervals
of 45~55%, 56~66%, and 66~77% for shiitake mushroom sticks, respectively. As shown in
Figures 12 and 13, an RMSE at the 45~55% moisture content stage of the shiitake mushroom
sticks was measured at 0.074 °C, with a MAE of 0.060 °C and a MAPE of 0.252%. For the
56~66% moisture content stage of the shiitake mushroom sticks, an RMSE of 0.056 °C, a
MAE of 0.041 °C, and a MAPE of 0.223% were obtained. At the 66~77% moisture content
stage of the shiitake mushroom sticks, an RMSE of 0.096 °C, a MAE of 0.091 °C, and a
MAPE of 0.333% were obtained.
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Figure 13. Model evaluation indicators for different moisture contents of shiitake mushroom sticks.

The temperature measurement model was found to perform best when the moisture
content of the shiitake mushroom sticks was in the range of 56~66%; it was second best at
45~55%, and least effective at 67~77%. This variation in performance was attributed to how
accurately the transmission signal from within the shiitake mushroom stick contributed
to the composite signal. The moisture content was found to influence this contribution,
affecting what microphone 2 received as a composite signal. As detailed in Section 2.3.3,
for moisture contents of 45~55%, 56~66%, and 67~77%, the proportions of the transmission
signal from shiitake mushroom sticks within the composite signal were measured at
approximately 55.3%, 61.1%, and 39.51%, respectively. Notably, there was an increasing
correlation between the velocity of the composite acoustic signal and temperature as this
proportion rose.

3.3. Effect of Sound Source and Shiitake Mushroom Stick Spacing on Temperature
Measurement Accuracy

In order to determine the optimal distance between the sound source and the shiitake
mushroom sticks for model application, temperature measurements were conducted by
incrementally adjusting the distance. The recorded temperature of the shiitake mushroom
sticks was 26.76 °C, as shown in Figure 14.

In this paper, D1, D2, and D3 were used to denote the distance between the sound
source and shiitake mushroom sticks for x < 8.7 cm, 8.7 < x < 16 cm, and 16 < x < 30 cm,
respectively. As shown in Figure 15, within the distance range of x < 8.7 cm, the RMSE of
the temperature measurement model was 0.095 °C, with a MAE of 0.085 °C and a MAPE
of 0.237%. For distances in the range of 8.7 < x < 16 cm, the thermometry model had an
RMSE of 0.162 °C, a MAE of 0.154 °C, and a MAPE of 0.718%. In the distance range of



Agriculture 2024, 14, 1841

16 of 21

16 < x < 30 cm, the thermometry model had an RMSE of 0.329 °C, a MAE of 0.411 °C, and
a MAPE of 1.555%.
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Figure 14. Measurement error in temperature attributed to the distance between the loudspeaker and
the shiitake mushroom sticks.
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Figure 15. Evaluation indicators for models in different distance ranges between the loudspeaker
and the shiitake mushroom stick.

In comparison to the range of 8.7 < x < 16 cm, RMSE, MAE, and MAPE of the
temperature measurement model in the range of x < 8.7 cm decreased by 41.4%, 44.8%, and
66.9%, respectively. Similarly, when compared to the range of 16 < x < 30 cm, RMSE, MAE,
and MAPE for x < 8.7 cm exhibited reductions of 50.8%, 62.5%, and 84.8%, respectively.

As the distance increased, the error in temperature measurement gradually increased.
This phenomenon occurred because the increase in distance led to an increase in the
proportion of the air diffraction signal in the composite signal received by microphone 2,
which reduced the proportion of the shiitake mushroom stick transmission signal in the
composite signal. Consequently, this resulted in a reduced correlation between the velocity
of the composite acoustic signal and the temperature of the shiitake mushroom sticks. The
temperature measurement error of the model was 0.08 °C at a distance of 5 cm. As the
distance increased, the error changed from positive to negative. At a distance of 8.7 cm,
the measured value of the model was the same as the measured value of the material
temperature sensor. Therefore, the optimal distance from the sound source to the shiitake
mushroom stick was 8.7 cm.
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3.4. Comparing Temperature Measurement Models

Two physical constraints were employed to enhance the temperature measurement
performance of the model. This paper selected a purely data-driven XGboost temperature
measurement model, a model with only monotonicity constraints added to the velocity of
the composite acoustic signal and the temperature of the shiitake mushroom stick; and a
model with only the physical constraint being that the difference between the temperature
of the shiitake mushroom stick and the air temperature was less than 2 °C added to compare

with the model in this paper. The actual temperature measurement results are shown
in Figure 16.
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Figure 16. Comparison of the effects of temperature measurement models.

The models M1, M2, M3, and M4 depicted in Figure 17 correspond to the purely
data-driven model, the model with only monotonicity constraints added, the model

with only temperature difference constraints added, and the data—physics hybrid-driven
model, respectively.
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Figure 17. Evaluation indicators for different models.

The purely data-driven model M1 exhibited an RMSE of 0.21 °C, a MAE of 0.195 °C,
a MAPE of 0.71%, and an R? value of 0.991. The purely data-driven model M2, which
incorporated monotonicity constraints, demonstrated an RMSE of 0.108 °C, a MAE of
0.106 °C, a MAPE of 0.37%, and an R? value of 0.997. The purely data-driven model M3,
also with monotonicity constraints, had an RMSE of 0.149 °C, a MAE of 0.143 °C, a MAPE
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of 0.49%, and an R? value of 0.994. The data—physics hybrid model M4 achieved an RMSE
of 0.055 °C, a MAE of 0.0465 °C, a MAPE of 0.22%, and an R? value of 0.999.

The comparison of the metrics indicated that the introduction of physical constraints
enhanced model performance. The purely data-driven model exhibited substantial er-
rors; however, after incorporating monotonicity constraints between the velocity of the
composite acoustic signal and the temperature of the shiitake mushroom sticks, all error
metrics showed significant improvement: the RMSE decreased by 48.57%, MAE decreased
by 45.64%, MAPE decreased by 47.89%, and R? improved by 0.605%. Adding the physical
constraint that limited the difference between the shiitake mushroom stick temperature and
air temperature to less than 2 °C resulted in a smaller improvement compared to previous
adjustments, but it still reduced errors relative to the purely data-driven model. Ulti-
mately, the data—physics hybrid-driven model, which integrated both physical constraints,
achieved remarkable enhancements: the RMSE decreased by 74.86%, MAE decreased by
77.22%, MAPE decreased by 69.30%, and R? improved by 0.807%. These results clearly
demonstrated that introducing physical constraints significantly optimized predictive
performance, with improvements becoming increasingly pronounced as more types and
numbers of physical constraints were applied.

To further assess the stability of the aforementioned four models, a 5-fold cross-
validation approach was employed to evaluate the temperature measurement accuracy of
these four models. In this study, the training set and validation set were combined and
partitioned into five equally sized subsets. At each iteration, one subset was designated
as the validation set while the remaining four subsets served as the training set; notably,
the test set was excluded from this cross-validation process. The specific methodology is
illustrated in Figure 18.

Iteration 1 -| Train ” el ” el ” Train |

1 2 3 4 5
toration 2 | Tran_|[Nadtion]| tean [ teain [ tean |
1 2 3 4 5
Iteration 3 | Lt ” Lt |-| L ” L |
1 2 3 4 5
terston 4 |1 || teain [ tean [Nalition][ 1ran |
1 2 3 4 5
Iteration 5 e e Wl Train -
1 2 3 4 5

Figure 18. The 5-Fold cross-validation principle.

The accuracy of the predictions generated by the four thermometry models in each
fold of the validation set is presented in Table 2 below.

Table 2. Accuracy of 5-fold cross-validation for each temperature measurement model.

Models Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Average Accuracy (%)
M1 92.856 93.642 93.156 94.103 92.683 93.288
M2 97.368 96.963 97.823 97.657 98.334 97.629
M3 96.753 96.145 97.263 95.961 96.393 96.503
M4 98.236 98.879 99.534 99.245 98.331 98.845
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According to the results of cross-validation for each model, the purely data-driven
model M1, the model incorporating only monotonicity constraints (M2), the model with
solely temperature difference constraints (M3), and the data—physics hybrid-driven model
(M4) exhibited commendable accuracy, with prediction accuracies of 93.288%, 97.629%,
96.503%, and 98.845%, respectively. The introduction of additional constraints significantly
enhanced their predictive performance. Notably, the M4 model achieved an impressive
accuracy of 98.845%, demonstrating exceptional stability and reliability in predicting tem-
peratures based on the relationship between sound velocity and shiitake mushroom stick.

4. Discussion

This study utilized changes in sound speed to achieve non-destructive temperature
measurements of shiitake mushroom sticks. When combined with the effective accumu-
lated temperature method, this approach was found to accurately determine the physio-
logical maturity of the mycelium in these mushroom sticks. This is of great significance
for timely transitioning to the fruiting stage, enhancing mushroom yield, reducing en-
ergy consumption during industrial cultivation, and shortening the production cycle of
edible fungi.

By employing the acoustic non-destructive thermometry method that was proposed in
this study, corresponding embedded devices can be developed to collect essential data such
as sound speed and air temperature, enabling the calculation of the internal temperature of
shiitake mushroom stick using the model that was constructed herein. Regarding model
applicability, the framework developed in this study is considered suitable for the cultiva-
tion stage of shiitake mushrooms and can also be applied to the cultivation environments
of other edible fungi. Regarding model applicability, the framework developed in this
study is considered suitable for the cultivation stage of shiitake mushrooms and can also
be applied to the cultivation environments of other edible fungi, such as Auricularia au-
ricula and oyster mushrooms, within bag cultivation systems. In contrast to these species,
shiitake mushroom sticks are equipped with two-layer moisture-preserving bags that are
designed to provide enhanced moisture retention [33]. When the model is applied to these
mushrooms, the moisture content of the shiitake mushroom sticks varied relatively more in
the mushroom-raising environment. Factory-cultivated mushroom rooms, such as those
for shiitake mushrooms, are usually well equipped, with better facility conditions, such
as air conditioning units and fresh air units, which can effectively regulate the climate in
the mushroom-raising room [34]. The fruiting process of shiitake mushrooms occurs in
plastic greenhouses in southern China and sun greenhouses in northern China [35]. The
common feature of such facilities is that they are heavily dependent on natural weather
conditions, and the environmental control equipment is weak in regulating and controlling
the conditions, making it impossible to accurately control conditions of air temperature
and air humidity. Therefore, the influencing factors to be considered in applying the model
constructed in this paper to shiitake mushrooms and other mushrooming processes will
be increased.

5. Conclusions

This study proposed a method for measuring the internal temperature of shiitake
mushroom sticks utilizing acoustic sensors. The method began by collecting sound velocity
data at various acoustic frequencies, along with measurements of moisture content and
the temperatures of the shiitake mushroom sticks through multiple experimental setups.
Subsequently, a temperature measurement model was constructed based on the XGBoost
algorithm, utilizing sound velocity, air temperature, and moisture content as inputs while
predicting the temperature of the shiitake mushroom stick as outputs. This approach
incorporated monotonicity constraints between the shiitake mushroom stick’s temperature,
sound velocity, and constraints, ensuring that the difference between the shiitake mushroom
stick temperature and air temperature remained below 2 °C. The results indicated that at
an acoustic frequency of 850 Hz, with the moisture content in the range of 56~66% and
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a distance from the sound source to the mushroom stick set at 8.7 cm, the data—physics
hybrid-driven model presented in this paper achieved reductions in RMSE, MAE, and
MAPE by 74.86%, 77.22%, and 69.30%, respectively; additionally, it enhanced the R? value
by 1.86% compared to a purely data-driven temperature measurement model.

Future research will incorporate sweeping and imaging technologies, aiming to further
investigate the velocity temperature relationship model across various eigenfrequencies.
This effort seeks to enhance the accuracy of temperature measurements for shiitake mush-
room sticks and facilitate the visualization of temperature field distribution. Additionally,
we plan to develop an embedded system that integrates data acquisition, processing,
and analysis functions while reducing equipment size to enable networked or portable
monitoring capabilities.
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