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Abstract: Intramuscular fat (IMF) content significantly influences pork tenderness, flavor, and
juiciness. Maintaining an optimal IMF range not only enhances nutritional value but also improves
the taste of pork products. However, traditional IMF measurement methods are often invasive
and time-consuming. Ultrasound imaging technology offers a non-destructive solution capable
of predicting IMF content and assessing backfat thickness as well as longissimus dorsi muscle area
size. A two-stage multimodal network model was developed in this study. First, using B-mode
ultrasound images, we employed the UNetPlus segmentation network to accurately delineate the
longissimus dorsi muscle area. Subsequently, we integrated data on backfat thickness and longissimus
dorsi muscle area to create a multimodal input for IMF content prediction using our model. The
results indicate that UNetPlus achieves a 94.17% mean Intersection over Union (mIoU) for precise
longissimus dorsi muscle area segmentation. The multimodal network achieves an R2 of 0.9503 for
IMF content prediction, with Spearman and Pearson correlation coefficients of 0.9683 and 0.9756,
respectively, all within a compact model size of 4.96 MB. This study underscores the efficacy of
combining segmented longissimus dorsi muscle images with data on backfat thickness and muscle
area in a two-stage multimodal approach for predicting IMF content.

Keywords: deep learning; pig; multimodal; intramuscular fat

1. Introduction

Quality assessment is a crucial aspect of the meat industry, directly impacting con-
sumer health and the commercial value of food products. Intramuscular fat (IMF) content,
as an important indicator of meat quality, significantly affects the texture, flavor, and ten-
derness of meat [1]. A low IMF content leads to reduced tenderness, juiciness, flavor, and
overall consumer acceptability in meat products. Conversely, while a higher IMF content
improves various physicochemical properties, it may negatively impact the animal’s health
if it exceeds a certain level [2]. Overemphasis on lean meat yield and growth rate over
the years has led to an overall decline in porcine IMF content, which critically affects pork
quality [3]. The ideal is generally believed to range from 3.0% to 3.5% [4,5].

The most accurate method for detecting IMF content is chemical analysis [6]; however,
this method requires the slaughter of pigs, is destructive to the samples, and is excessively
time-consuming. Near-infrared spectroscopy [7,8] and hyperspectral imaging [9–12] have
also emerged as techniques for measuring IMF content, but these methods also require the
slaughter of pigs when applied to market meat. Detecting and controlling the IMF content
during pig rearing can save time, enhance production efficiency, and protect animal welfare.
Accordingly, non-destructive methods based on ultrasound technology for IMF content
measurement have become a priority.
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In early studies, researchers have suggested that intramuscular fat content is signif-
icantly correlated with backfat thickness and longissimus dorsi muscle area [13,14]. Some
researchers extracted feature parameters from ultrasound images of the eye muscle, such
as the gray-level co-occurrence matrix [15], image histogram [16], run-length matrix, and
wavelet transform [17], before constructing linear regression models using these parameters
along with backfat thickness and eye muscle area. However, traditional linear regression
models are limited in regard to complexity and predictive accuracy.

As research advanced and data volumes increased, deep learning methods were
gradually introduced into IMF content prediction studies. Compared with linear regression
models, deep learning can handle more complex and higher-dimensional data. Chen [18]
used a convolutional neural network(CNN) model to predict backfat thickness and eye
muscle area separately, followed by machine learning methods to predict IMF content.
Zhao [19] used deep learning technology for beef marbling grading and developed a
mobile application to display the grading results in real time, significantly improving
the inspection efficiency of agriculture and livestock products. Liu [20] proposed a deep
learning model named the Prediction of Intramuscular Fat Percentage (PIMFP), which
is the first to use a convolutional neural network to directly predict IMF content from
ultrasound images. Despite the value of these contributions, these methods still have
limitations. For example, Chen’s [18] method requires separate training of the backfat and
eye muscle prediction and machine learning models, and Zhao [19] focused only on beef
grading. Liu’s [20] approach requires the precise segmentation of regions of interest (ROIs),
increasing difficulty and uncertainty during practical operations due to inherently strict
image preprocessing accuracy requirements.

Accurately and conveniently predicting IMF content in live pigs remains a significant
challenge. To address this, we designed a two-stage multimodal model, the Backfat
thickness–Longissimus dorsi area Intramuscular fat Multimodal Network (BL-IMF-MNet)
to segment the longissimus dorsi region in ultrasound images and predict the IMF content.

In this study, we used the UNetPlus image segmentation network to segment the
longissimus dorsi region in ultrasound images as the ROI, then combined this ROI with
backfat thickness and longissimus dorsi area values via a multimodal network for training
to predict the IMF content. This approach not only improves the accuracy of IMF content
prediction but also reduces reliance on destructive sampling, holding significant application
potential and practical value.

2. Materials and Methods
2.1. Sample and Image Acquisition

The experimental data for this study were provided by Professor Jianxun Zhang’s
research team at the Chongqing University of Technology [18]. The dataset comprises
135 sets of vertical ultrasound images of pig longissimus dorsi muscles, captured using the
BMV FarmScan® L70 veterinary ultrasound device (manufactured by BMV Technology
Ltd., Shenzhen, China), equipped with a linear backfat probe, with a detection depth
set to 20 cm. The pigs were fasted the day before data collection. Prior to obtaining the
ultrasound images, the body weight of each pig was measured. Transverse ultrasound
images were collected from the left side of the carcass between the 10th and 11th ribs using
the ultrasound device. Experienced personnel annotated the images to calculate the backfat
thickness and longissimus dorsi muscle area. After slaughter, samples of the longissimus dorsi
muscle between the 10th and 11th ribs were collected, and the intramuscular fat content
was determined using the Soxhlet extraction method. Ultrasound images from 130 pigs
were obtained along with corresponding ear tag numbers, body weight, backfat thickness,
longissimus dorsi muscle area, and IMF content data. Only body weight and IMF data are
available for the remaining five pigs. The body weight ranged from 75.8 kg to 127 kg,
with an average of 95.59 kg; the backfat thickness ranged from 0.91 cm to 5.48 cm, with an
average of 2.78 cm; the longissimus dorsi muscle area ranged from 11 cm2 to 53.78 cm2, with
an average of 26.99 cm2; the IMF content across the entire dataset ranges from 0.36% to
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18.85%, with an average of 3.67%. A chart illustrating the specific IMF content range and
number of pigs is provided in Figure 1.
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Figure 1. Intramuscular fat content range. Each box represents the interquartile range, while the
individual data points indicate specific measurements.

2.2. Overview of the BL-IMF-MNet Framework

The BL-IMF-MNet consists of five components: image segmentation data preprocess-
ing, UNetPlus image segmentation network, multimodal data preprocessing, multimodal
model training, and model inference (Figure 2). First, the original ultrasound images are
preprocessed, labeled, and augmented. The UNetPlus image segmentation network is then
used to segment the longissimus dorsi muscle region as the ROI. To highlight features such as
fat tissue, the ROI is adaptively enhanced using contrast-limited adaptive histogram equal-
ization. The data are simultaneously screened and augmented to ensure the effectiveness
of the network model. A multimodal dataset is then created and input into the multimodal
network for training. Finally, the IMF content value is obtained through model inference.
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2.2.1. Image Segmentation Data Preprocessing

In this experiment, 135 ultrasound images of pigs were obtained as the original data
for the UNetPlus image segmentation network. The resolution of these original images
was 309 × 254. They were cropped to retain only the upper half due to non-useful areas
being present at the bottom of the images, shifting the resolution to 220 × 160. The original
images also had black boxes marked by the ultrasound machine, which were removed
using the OpenCV library by identifying the black pixels in the images and covering them,
averaging the values of the two adjacent pixels horizontally or vertically. Subsequently, the
images were annotated using Labelme v3.16.7 under the guidance of pig-farm experts.

Data augmentation techniques including image rotation, horizontal flipping, and
random cropping were employed to increase the amount of data for model training
and improve their generalization ability. These steps ultimately expanded the original
135 images to 562 images to form the segmentation dataset. The dataset was divided into
training, validation, and test sets in an 8:1:1 ratio; the training set contained 449 images, the
validation set contained 57 images, and the test set contained 56 images. This process is
depicted in Figure 3.
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2.2.2. UNetPlus Image Segmentation Network

UNetPlus [21] is an enhanced version of the UNet [22], which is widely used for
image segmentation in the medical field. The UNet features a U-shaped, fully symmetric
structure comprising an encoder and a decoder. The encoder extracts features by progres-
sively reducing the image size and increasing the number of channels, while the decoder
restores the image to its original size through up-sampling and adds skip connections
at the corresponding dimensions to help the network capture both low- and high-level
feature details.

UNetPlus retains the basic structure of the encoder and decoder but enhances the skip
connections by densifying them. This improvement allows the fusion of feature information
from different dimensions and reduces the semantic gap between features in the encoder
and decoder subnetworks. There is a connection layer between each convolutional layer
that merges the output of the previous convolutional layer in the same dense block with the
corresponding down-sampled output of the next dense block. These dense skip connections
integrate the outputs of each encoder, yielding richer semantic information. Additionally, a
deep supervision mechanism enables the model to operate in all or part of the branches,
which reduces the size and computational cost of the model with minimal precision loss,
thereby determining its pruning and inference speed.

2.2.3. Multimodal Data Preprocessing

After obtaining the ROI images using the UNetPlus image segmentation model, further
processing is required to input them to a multimodal prediction network, as shown in
Figure 4. Image segmentation may result in black borders around the ROI images, so we
used OpenCV to identify the ROI boundaries based on pixel points and then crop them.
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Subsequently, to highlight features such as adipose tissue and enable better feature
extraction by deep learning networks, we employed contrast-limited adaptive histogram
equalization (CLAHE) [23] for adaptive contrast adjustment. This method not only helps to
reduce image defects caused by segmentation but also enhances image contrast and makes
details more readily visible, thus optimizing the input data for deep learning tasks.

However, the CLAHE method is only applicable to individual images. Because our
experimental dataset contains images of varying brightness, we calculated the average
brightness of the image pixels and normalized the brightness of all images using this value.
This allowed us to mitigate instances where image brightness is excessively high or low,
thus preventing significant model training errors caused by image brightness.

The original dataset contains ultrasound images, ear tag numbers, body weight,
backfat thickness, loin muscle area, and IMF content for 130 pigs. Preliminary analysis
showed that only seven pigs had an IMF content greater than 8%, with IMF contents varying
significantly over a range from 12% to 18%. In practice, pigs with a high IMF content are
relatively easy to identify. Accordingly, to ensure the effectiveness of the multimodal
network’s learning process, we manually removed the data for seven pigs (including one
lacking backfat thickness and loin muscle area data), leaving data for 124 pigs.

We also applied data augmentation techniques such as translation, rotation, and
flipping to the image data to enhance the learning effect of the multimodal network. Subse-
quently, we matched the augmented images with the textual data for backfat thickness, loin
muscle area, and IMF content using the pigs’ ear tag numbers. To prevent overfitting in this
process, we added random noise of 1 × 10−7 units to the backfat thickness and loin muscle
area with the IMF content as the label. This yielded 1552 data entries, which we divided
dataset in an 8:1:1 ratio to create a training set of 1241 entries, a validation set containing
155 entries, and a test set containing 156 entries.

2.2.4. Feature Fusion

We designed a feature fusion mechanism for the data loading phase to effectively
integrate image and textual information, providing the model with richer and more com-
prehensive inputs. First, the image data were read, resized to a resolution of 256 × 256,
normalized, and converted into a tensor. Next, the textual data were read. In the dataset
used for this experiment, the textual data include values for backfat thickness and loin mus-
cle area, so they were converted into a two-channel tensor. We expanded this textual data
tensor by adding dimensions to match the size of the image data. Finally, we concatenated
the image data tensor and the textual data tensor along the channel dimension to obtain a
fused multi-channel data tensor.
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2.2.5. Multimodal Network Structure

ShuffleNetV2, proposed by Ma [24], is a lightweight convolutional neural network that
employs depth-wise separable convolutions and channel shuffling operations. This enables
more efficient feature extraction while maintaining high computational efficiency and a low
parameter count, making it suitable for deployment in resource-constrained environments.
ShuffleNetV2 was established to include a Channel Split operation, dividing the input
channels into two branches. One branch undergoes three convolutions, while the other
remains as an identity mapping component to reduce computational load. Additionally, to
avoid the increased memory access cost associated with excessive use of group convolutions,
pointwise convolutions are no longer grouped. In the branch fusion process, Concat is used
instead of Add, followed by channel shuffling to ensure information exchange between
branches without sacrificing model performance (Figure 2, right panel).

In this experiment, we improved the ShuffleNetV2 network by first modifying the
number of input channels in the first layer to five, accommodating the multimodal dataset.
Next, we replaced the final layer of the model with a linear layer to suit regression tasks.
Lastly, we added an efficient multi-scale attention (EMA) mechanism after the network’s
first convolutional layer to enhance the model’s feature extraction capability (Figure 2,
bottom middle panel).

The EMA, proposed by Ouyang [25], is a novel cross-spatial learning method that
designs a multi-scale parallel sub-network to establish short-term and long-term dependen-
cies. It also reshapes a portion of the channel dimensions into batch dimensions to preserve
dimensionality through general convolutions, and integrates the output feature maps of
the two parallel sub-networks using cross-spatial learning methods. This approach, com-
bining multi-scale parallel sub-networks and attention mechanisms, extracts rich semantic
information without making the model burdensome, thereby improving the performance
and generalization ability. The EMA structure is illustrated in Figure 5.
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2.3. Environmental Configuration

We conducted experiments on the following hardware and software platforms: two
Intel(R) Xeon(R) CPU E5-2690 v4 @2.60 GHz, two NVIDIA RTX A5000 (24 GB VRAM)
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with NVLink, and 80 GB RAM. The code was written in Python 3.10.11 and Pytorch 2.0.1,
with the software environment set to Cuda 12.1. The specific model hyperparameters are
described in Table 1.

Table 1. Hyperparameter settings for network training.

Model Type Parameters Values

Segmentation

Max Learning Rate 1 × 10−4

Min Learning Rate 1 × 10−6

Learning Rate Decay Type cos
Momentum 0.9
Batch Size 8

Epoch 250
Input Size 224 × 224

Multimodal

Random Seed 41
Max Learning Rate 1 × 10−3

Min Learning Rate 1 × 10−5

Learning Rate Decay Type cos
Batch Size 8

Epoch 250
Images Input Size 256 × 256

2.4. Experiment Setting

In this study, we validated the performance of the UNetPlus image segmentation
network and the BL-IMF-MNet. First, we demonstrated the superiority of UNetPlus in
ROI segmentation by conducting comparative experiments with the UNet, PSPNet [26],
FCN [27], and HRNet [28] image segmentation networks.

Secondly, after obtaining and processing the ROI images, we designed three groups of
comparative experiments involving textual data, image data, and multimodal data. Our
objective was to verify the feasibility and robustness of the proposed multimodal network
over single-modality networks while validating the improvements to the network through
ablation experiments.

Our stepwise process can be summarized as follows:
(1) We utilized ROI images to extract 15 parameters from the gray-level co-occurrence

matrix (GLCM) [29,30], a method widely employed in texture analysis to quantify spatial
relationships between pixel intensities. Previous studies have demonstrated the effective-
ness of this method by using features extracted from GLCM in regression analyses to
validate correlations with intramuscular fat content [13,28]. By integrating these texture
features with backfat thickness, loin muscle area, and body weight values, we formed a
total of 18 parameters. In this study, we aimed to replicate these successful experiments
and compare their results with our proposed method to validate the improvements of
our approach. Subsequently, we conducted comparative experiments on this feature set
using linear regression analysis, as well as KNN [31], SVR [32], BP neural networks [33],
1D convolutional CNN, and 1D convolutional TCN [34].

(2) We used AlexNet [35], VGG16 [36], ResNet [37], MobileNet [38], and ShuffleNetV2
as backbone networks for regression analysis to compare the network performance of single
image modalities.

(3) We compared the improved multimodal model with other multimodal feature
extraction networks, namely AlexNet, VGG16, ResNet, MobileNet, and ShuffleNetV2.

(4) We validated the enhanced performance of the proposed network through ablation
experiments.

2.5. Performance Evaluation

We developed an innovative method in this study for predicting IMF content using
the entire loin muscle area. We proposed a two-stage model. The first stage uses the
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UNetPlus image segmentation network to segment the ROI area, and the second stage
uses a multimodal regression network for IMF content prediction. We used a series of
evaluation metrics to assess model performance, including the mean Intersection over
Union (mIoU) [39], mean Pixel Accuracy (mPA) [40], and accuracy (ACC) for the image
segmentation network, as well as the coefficient of determination (R2) [41], mean squared
error (MSE), root mean squared error (RMSE) [42], Spearman’s rank correlation coefficient
(ρ) [43], and Pearson correlation coefficient (r) [44] for the IMF content regression network.

mIoU =
1
n∑n

i=1
TP

TPi + FPi + TNi
(1)

mPA =
1
n∑n

i=1
TP

TPi + FPi
(2)

ACC =
TP + TN

TP + TN + FP + FN
(3)

The three formulas above represent the evaluation metrics required for the segmen-
tation model; TPi denotes the true positive count for i th category, FPi denotes the false
positive count for the i th category, TNi denotes the false negative count for the i th category,
n represents the number of categories, TP represents the true positive count, TN represents
the true negative count, FP represents the false positive count, and FN represents the false
negative count.

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (4)

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (5)

RMSE =
√

MSE (6)

ρ = 1 −
6∑ d2

i
n(n2 − 1)

(7)

r = ∑n
i=1 (xi − x)(yi − y)√

∑n
i=1(xi − x)2

√
∑n

i=1(yi − y)2
(8)

The above five formulas are the evaluation metrics we used for both unimodal and
multimodal scenarios, where yi represents the observed value, ŷi represents the predicted
value, y represents the mean of the observed values, xi and yi represent the observed values
of two sets of data, respectively, x represents the mean value of the data, di represents the
sorted difference between the two sets of data, and n represents the number of data points.

3. Results
3.1. Segmentation Performance of UNetPlus

The results of our experimental comparison of five segmentation network models are
summarized in Table 2. UNetPlus outperformed the other models in terms of mIoU (94.17),
ACC (98.89), and model size (35 MB). PSPNet ranked second in mIoU at 94.13, followed
by UNet (93.15), FCN (92.83), and HRNet (92.62). UNetPlus had an average ACC up to
0.162 higher than the other models with a total model size as much as 2.5–143 MB smaller
than the others. However, UNetPlus had an mPA that was 0.46 percentage points lower
than PSPNet. This is because PSPNet uses a deep decoder and ASPP module, with a deeper
decoder than UNetPlus, which captures multi-scale features; this enhances the model’s
perceptual and generalization capabilities, thereby improving its performance.
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Table 2. Performance of image segmentation models.

Name mIoU/% mPA/% ACC/% Model Size/MB

UNetPlus 94.17 96.92 98.89 35
UNet 93.15 95.95 98.69 118

PSPNet 94.13 97.38 98.87 178
FCN 92.83 95.81 98.63 71.1

HRNet 92.62 96.27 98.56 37.5

3.2. Comparison of Unimodal Networks

Previous research has demonstrated that linear regression and KNN machine learning
methods are effective in predicting IMF content. In this experiment, we compared linear
regression, KNN, a BP neural network, and a one-dimensional convolutional network meth-
ods, incorporating both text-only and image-only modalities, to validate their effectiveness
when using the entire loin muscle area, as shown in Table 3.

Table 3. Performance of single-modal models.

Method Name R2 MSE RMSE ρ r

Feature set
Unimodal

LR 0.567 \ \ \ \
KNN 0.6351 1.3404 1.1577 0.8142 0.8306

BP 0.4442 2.0604 1.4354 0.796 0.787
1DCNN 0.8367 0.6222 0.7888 0.9442 0.9269

Image
Unimodal

AlexNet −0.0025 \ \ \ \
VGG16 −0.002 \ \ \ \

ResNet18 0.8508 0.0116 0.7078 0.9276 0.9418
ResNet101 0.7364 0.0206 0.1434 0.8551 0.8672
MobileNet 0.8411 0.0123 0.1111 0.8950 0.9176

ShuffleNetV2 0.9189 0.0063 0.0795 0.9504 0.9613

We extracted 15 parameters from the gray-level co-occurrence matrix of the ROI
area, combined with backfat thickness, longissimus dorsi muscle area, and body weight
as independent variables, plus the IMF content as the dependent variable. The linear
regression method was operated in IBM SPSS Statistics 25 with stepwise regression. The
final retained parameters were backfat thickness, gray variance, correlation, loin muscle
area, large gradient prominence, inertia, gradient entropy, gradient distribution unevenness,
gray mean, and gradient mean. Using all retained independent variables as inputs, the
R2 value obtained was 0.567.

We further compared KNN and BP neural network models to find that they were
less effective than the one-dimensional convolutional neural network, which achieved
an R2 value of 0.8367, while those of KNN and BP were 0.6351 and 0.4442, respectively.
Our multimodal network model outperformed the others in terms of R2 value and overall
prediction effectiveness, marking an 11% improvement over the one-dimensional convolu-
tional neural network.

We compared several commonly used network models in experiments involving con-
volutional network regression with image-only unimodal data. ShuffleNetV2 performed
the best on all metrics, with an R2 value of 0.9189. Next were ResNet18 and MobileNet,
with R2 values of 0.8508 and 0.8411, respectively. In contrast, AlexNet and VGG16 per-
formed the worst, including negative R2 values, indicating a poor fit for this task. The
Spearman’s and Pearson correlation coefficients of ShuffleNetV2 were 0.9504 and 0.9613,
respectively, indicating a high correlation between predictions and actual values. ResNet18
and MobileNet also had high correlation coefficients, both exceeding 0.8950.

3.3. Comparison of Multimodal Networks

To assess the superiority of the proposed BL-IMF-MNet, we compared it with AlexNet,
VGG16, ResNet18, ResNet101, MobileNet, and ShuffleNetV2, as shown in Table 4. Our
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proposed network achieved the best performance in terms of R2, MSE, RMSE, Spearman’s
and Pearson coefficients, and model size. For example, BL-IMF-MNet had the highest
R2 at 0.950, followed by ShuffleNetV2 (0.927), ResNet18 (0.885), MobileNet (0.871), and
ResNet101 (0.804). AlexNet and VGG performed the worst, with negative R2 values,
indicating they are not suitable for this task; other metrics were not calculated.

Table 4. Performance comparison of multimodal models.

Name R2 MSE RMSE ρ r Model
Size (MB)

AlexNet −0.0025 \ \ \ \ 217
VGG16 −0.0021 \ \ \ \ 512

ResNet18 0.8852 0.5010 0.7078 0.9276 0.9418 42.7
ResNet101 0.8036 0.8571 0.9258 0.8863 0.9044 162
MobileNet 0.8712 0.1 0.1002 0.9243 0.9352 8.72

ShuffleNetV2 0.9273 0.0057 0.0753 0.9551 0.9646 4.95
Ours 0.9503 0.0039 0.0622 0.9683 0.9756 4.96

BL-IMF-MNet also showed excellent performance in MSE and RMSE, at 0.004 and
0.062, respectively. ResNet18 and ResNet101 performed poorly, with respective values of
0.708, 0.501, 0.926, and 0.857. Our network also achieved the best results concerning its
Spearman’s and Pearson correlation coefficients of 0.976 and 0.968, respectively, surpassing
other models by 0.011–0.074 and 0.013–0.082. ResNet101 exhibited the worst performance,
with values of 0.904 and 0.886, while the original ShuffleNetV2 network were second best
at 0.965 and 0.955.

Compared with VGG16, the size of our proposed model was reduced by 507.04 MB, fol-
lowed by AlexNet at a reduction of 212.04 MB, ResNet101 (157.04 MB), ResNet18 (37.74 MB),
and MobileNet (3.76 MB). The proposed network’s inclusion of the EMA mechanism mod-
ule increased the model size increased by only 0.01 MB compared to ShuffleNetV2, reaching
4.96 MB.

3.4. Ablation Experiment

We verified the effectiveness of the proposed multimodal network through ablation
experiments that included three different models: E0, which uses the ShuffleNetV2 architec-
ture for training on image unimodal data; E1, which adds two textual data points (backfat
thickness and longissimus dorsi muscle area) to form a multimodal network; and EP, which
further introduces the EMA mechanism on top of E1, as shown in Table 5.

Table 5. Comparison of ablation experiments.

Model Image Text EMA R2 RMSE MSE ρ r

E0
√

0.9189 0.0795 0.0063 0.9504 0.9613
E1

√ √
0.9273 0.0753 0.0057 0.9551 0.9646

EP
√ √ √

0.9503 0.0622 0.0039 0.9683 0.9756

Training on image unimodal data using the ShuffleNetV2 architecture (E0) yields an
R2 value of 0.9189, indicating a high degree of fit for the image unimodal data. The Spear-
man’s and Pearson correlation coefficients were 0.9504 and 0.9613, respectively, indicating
a high correlation between the predicted and actual values. Adding backfat thickness and
longissimus dorsi muscle area textual data to form a multimodal network (E1) increased
the R2 value to 0.9273, indicating that the multimodal network is more effective than the
unimodal network. Both the RMSE and MSE decreased, while Spearman’s and Pearson
correlation coefficients increased to 0.9551 and 0.9646, respectively, further validating the
effectiveness of the multimodal network.
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Introducing the EMA mechanism to form the final multimodal network (EP) improved
the R2 value to 0.9503, demonstrating substantial performance enhancement. The RMSE
decreased to 0.0622, MSE decreased to 0.0039, and Spearman’s and Pearson correlation
coefficients reached 0.9683 and 0.9756, respectively, indicating an improvement in predic-
tive performance.

As the three models improved from E0 to EP, the R2 values increased by 3.15% from
0.9189 to 0.9503, indicating that adding textual information and the EMA mechanism
enhanced the predictive performance of the model. Specifically, the multimodal network
combining image and textual data (E1) outperformed the unimodal network (E0), while the
final multimodal network with the EMA mechanism (EP) achieved the best performance.
Thus, the proposed multimodal network outperforms traditional unimodal methods on
IMF content prediction tasks, particularly after incorporating the attention mechanism.
These results validate the effectiveness of multimodal information fusion with the attention
mechanism in terms of enhanced prediction accuracy.

4. Discussion

This paper proposes a two-stage deep learning network model, BL-IMF-MNet, for
predicting IMF content using images of the longissimus dorsi muscle region and two pa-
rameters, backfat thickness and longissimus dorsi muscle area. Notably, we introduce a
novel approach based on the use of whole longissimus dorsi muscle region images and a
multimodal model for IMF content prediction.

In the first stage, the UNetPlus network is employed to perform image segmentation
of the longissimus dorsi muscle region, generating high-precision images of this region. In
the second stage, an improved multimodal network is employed for IMF content prediction,
leveraging multimodal data encompassing the segmented images from the first stage as
well as numerical backfat thickness and longissimus dorsi muscle area data. The use of
the UNetPlus network ensures the accuracy and precision of image segmentation; the
improved multimodal network utilizes ShuffleNetV2 as the backbone network for feature
extraction, benefiting from its efficiency and accuracy. This approach offers advantages
compared to other models.

We conducted two preprocessing steps on the dataset used to test the proposed
method. Prior to image segmentation, irrelevant regions were removed from the original
images, and black pixels annotated by the original ultrasound machine were eliminated.
Before generating the multimodal data, we applied CLAHE to enhance the details of
the segmented longissimus dorsi muscle region images, thereby optimizing the images for
subsequent steps.

Using the UNetPlus image segmentation network, our model achieved an mIoU of
94.17% and mPA of 96.92%, indicating strong segmentation performance. Furthermore, the
proposed multimodal regression network, BL-IMF-MNet, reached an R2 value of 0.9503,
with Spearman and Pearson correlation coefficients of 0.9683 and 0.9756, respectively,
demonstrating its effectiveness in predicting intramuscular fat (IMF) content. These re-
sults indicate that our method performs exceptionally well in both segmentation and
prediction tasks.

Currently, our team is investigating additional segmentation and calculation methods
for backfat thickness and longissimus dorsi muscle area based on ultrasound images. The
aim is to replace manual annotation with automatic calculation of backfat thickness and
longissimus dorsi muscle area values, providing optimal data for inputting to multimodal
networks. We anticipate that this technology will enable rapid, non-destructive, and
accurate detection of pig backfat thickness, longissimus dorsi muscle area, and IMF content,
thus forming a convenient one-click detection system.

In the future, we will continue to increase the dataset size to further improve the train-
ing effectiveness and generalization ability of our model. Additionally, we will continue to
refine our algorithms and techniques to contribute to advancements in this field.
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5. Conclusions

This paper presents a two-stage multimodal approach for predicting the IMF content
in live pigs by segmenting whole longissimus dorsi muscle region images and combining
numerical values of backfat thickness and longissimus dorsi muscle area to form multi-
modal data. The proposed method exhibits advantages over existing methods in terms
of the model’s accuracy, predictive performance, and size. However, despite achieving
satisfactory results, further research is needed to develop automatic calculation methods
for backfat thickness and the longissimus dorsi muscle area for non-destructive, rapid, and
one-click prediction of backfat thickness, longissimus dorsi muscle area, and IMF content.

The results of this study may provide important support for advanced animal medical
imaging processing and offer valuable insights for future related research endeavors.
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