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Abstract: Lightweight convolutional neural network (CNN) models have proven effective in recog-
nizing common pest species, yet challenges remain in enhancing their nonlinear learning capacity
and reducing overfitting. This study introduces a grouped dropout strategy and modifies the CNN
architecture to improve the accuracy of multi-class insect recognition. Specifically, we optimized the
base model by selecting appropriate optimizers, fine-tuning the dropout probability, and adjusting
the learning rate decay strategy. Additionally, we replaced ReLU with PReLU and added BatchNorm
layers after each Inception layer, enhancing the model’s nonlinear expression and training stability.
Leveraging the Inception module’s branching structure and the adaptive grouping properties of
the WeDIV clustering algorithm, we developed two grouped dropout models, the iGDnet-IP and
GDnet-IP. Experimental results on a dataset containing 20 insect species (15 pests and five beneficial
insects) demonstrated an increase in cross-validation accuracy from 84.68% to 92.12%, with notable
improvements in the recognition rates for difficult-to-classify species, such as Parnara guttatus Bremer
and Grey (PGBG) and Papilio xuthus Linnaeus (PXLL), increasing from 38% and 47% to 62% and
93%, respectively. Furthermore, these models showed significant accuracy advantages over standard
dropout methods on test sets, with faster training times compared to four conventional CNN models,
highlighting their suitability for mobile applications. Theoretical analyses of model gradients and
Fisher information provide further insight into the grouped dropout strategy’s role in improving
CNN interpretability for insect recognition tasks.

Keywords: common pests; lightweight CNN; insect image recognition; grouped dropout; activation
function; batch normalization

1. Introduction

Pests have long imposed significant challenges on agriculture and human society, such
as the Irish potato famine caused by Phytophthora infestans in the 1840s, the spread of coffee
rust in Ceylon by Hemileia vastatrix in the 1860s, and the Bengal famine of 1943 caused
by Helminthosporium oryzae [1]. Traditionally, the extensive use of pesticides has been the
primary approach for pest management, but this has led to issues like pesticide resistance,
water pollution, and other health hazards [2]. Consequently, there is a growing need for
sustainable and efficient pest control measures. Insect monitoring, which enables early
pest detection, is crucial to reducing pesticide dependency and enhancing crop quality and
yield [3]. However, conventional monitoring methods involve manual insect recognition
and counting, which are time-consuming and error-prone [4]. Therefore, while traditional
pest management approaches have helped, they also show clear limitations, highlighting
the need for modern, technology-driven solutions.

With the rapid development of artificial intelligence (AI), smart pest monitoring involv-
ing automatic data acquisition, remote sensing, big data analysis, and decision making has
emerged and advanced enormously in recently years [5]. Machine learning (ML) involves
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using algorithms and statistical models that allow systems to learn from data without
explicit programming [6]. A simple image processing system that automatically estimates
the density of whiteflies on sticky traps was developed using noise elimination and image
binarization techniques [7]. However, this system was only suitable for detecting whiteflies
on sticky traps. A system utilizing multiple-task sparse representation and multiple-kernel
learning techniques was proposed for insect recognition, in which the techniques were
used to combine multiple features of insect species to enhance the model’s recognition
performance [8]. This method’s limitations include a high level of computational com-
plexity due to sparse coding and multiple kernel learning, dependence on high-quality
images for optimal performance, and limited scalability for datasets with large sample
size and higher-dimensional features. To achieve automatic pest detection for strawberry
greenhouse monitoring against pest attacks, a support vector machine with different kernel
function was used for the classification of parasites and detection of thrips [9]. Despite
demonstrating a strong performance in insect detection, ML-based algorithms encounter
challenges such as time efficiency and accuracy constraints, which stem from the process of
manually extracting image features and the substantial growth in image samples. Although
ML-based algorithms demonstrate strong performance in certain specific tasks of insect
detection, they often face challenges in terms of time efficiency and accuracy during feature
extraction, especially with the rapid growth of image samples. Regularization can effec-
tively improve model generalization and reduce overfitting, helping maintain robustness
and accuracy across diverse datasets when dealing with complex data like image features.

In contrast, deep learning employs neural networks with multiple layers to auto-
matically learn and extract features from data [4]. By utilizing convolutional operations,
pooling, and fully connected layers, convolutional neural networks (CNNs) are an impor-
tant branch of deep learning and are particularly effective for insect image recognition and
classification [4]. To address the challenge of the multi-classification of crop insects, a CNN
model based on an improved VGG19, a pretrained CNN 19 layers deep, was proposed for
rapid and accurate insect detection in images [10]. The application of lightweight neural
networks has also gradually become popular. A lightweight convolutional neural network
named BerryNet-Lite was designed for accurate strawberry disease identification. By lever-
aging transfer learning and incorporating techniques like dilated convolution and efficient
channel attention, BerryNet-Lite achieves a high accuracy with a low level of computational
demand, making it suitable for real-time deployment in resource-limited environments [11].
Addressing the challenge of accurate potato pest identification, PotatoPestNet employs a
customized CTInceptionV3-RS architecture [12]. With optimized hyper-parameters and reg-
ularization techniques, the model reduces the overfitting of various datasets. Its lightweight
structure and computational efficiency make it highly practical for real-world agricultural
applications, aiding farmers in timely pest management [12]. However, several issues
remain to be addressed in this model, including augmenting the insect database, extracting
relevant insect-like areas, and segmenting the periods of insect growth. By leveraging
the advantages of Inception modules adopted by GoogleNet to specify different filter
sizes within each block, a fine-tuned GoogleNet model was proposed to handle the com-
plex backgrounds in farmland scenes. This model achieved a 6.22% improvement in pest
classification accuracy compared to the state-of-the-art method [13]. A lightweight CNN
model named CPAFNet (Common Pests in Agriculture and Forestry) was designed for
pest identification using a specially constructed image dataset. This model, involving
three specific Inception modules and optimized training parameters, presented a higher
recognition accuracy and reduced training time compared to traditional CNN models [14].
Ensembles of CNNs, including EfficientNetB0, ResNet50, and GoogleNet, were developed
using various data augmentation and Adam optimization techniques for pest identifica-
tion. The top-performing ensemble matched human expert classifications on the Deng
dataset and achieved state-of-the-art results on three insect datasets [15]. Although CNN
models have achieved significant improvements in classification accuracy on image-based
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pest datasets, the fine-tuning of network structure and training parameters often leads to
overfitting problems.

Regularization is also an important method for controlling model complexity. In
the training of CNNs, regularization methods are often employed to reduce the risk of
overfitting, resulting in an improved generalization ability [16]. Dropout is a crucial regu-
larization technique that mitigates overfitting by randomly deactivating neurons during
the training process, effectively generating thinned networks. During testing, the effect
of averaging the predictions of these thinned networks is easily approximated, signifi-
cantly reducing overfitting and offering major improvements over other regularization
methods [17]. However, for fully convolutional networks and natural images with a strong
spatial correlation, standard dropout often fails [18]. Spatial dropout addresses this by
dropping the entire channel (feature map) instead of individual neurons, encouraging the
network to learn more robust features across channels [18]. Though effective, the randomly
sampled sub-models caused by dropout during training are inconsistent with the full model
used during model inference. To address this issue, a new training strategy called R-Drop
was proposed. R-Drop regularizes dropout by forcing the output distributions of different
sub-models generated by dropout to be consistent with each other [19]. Experiments on
various deep learning tasks such as neural machine translation, language modeling, and
image classification have shown that R-Drop is universally effective [19].

A common drawback of the mentioned dropout methods is that they fail to account for
redundant information among feature maps generated within the same layer. This results
in feature maps capturing similar information, which may not be uniformly retained and
could be lost during the deactivation process. To address this issue, we propose a hypothesis
that deactivating the group(s) of feature maps with similar expressions would enhance
the effect of regularization and thus improve the generalization ability of a CNN model.
Then, the key problem is how to design or categorize those relevant feature maps to form a
representative group. The Inception module adopted by a CNN model has proven effective
at classifying pests [13,14], as its multiple branches enrich feature information with different
filter sizes. The feature maps within each branch can be intrinsically categorized into one
group. However, the effectiveness of grouping by Inception is severely limited due to the
manual design of the Inception structure and the variable dropout probabilities specified
for different Inception modules. Aiming at addressing the disadvantages of Inception, we
employ the clustering algorithm named WeDIV, which we developed recently [20], to group
feature maps (or channels) at the tail of the network and then perform grouping dropout.
For convenience, the proposed method is named the Grouped Dropout-based Network for
Insect Pest recognition (GDnet-IP). The classification performance of the GDnet-IP with
different dropout strategies was evaluated and compared with traditional CNN models
using the Common Pests in Agriculture and Forestry (CPAF) dataset. Moreover, to enhance
the interpretability of the proposed CNN model, the effectiveness of grouped dropout was
also explained through analyses of model gradients [21] and Fisher information [22].

2. Dataset and Methods
2.1. Description of Insect Pest Dataset

The dataset used for evaluating the effectiveness of the proposed CNN model is the
CPAF dataset [14], containing 4909 original images of 20 insect species (11 fruit tree pests,
4 cereal pests, and 5 beneficial insects). The name and sample size for each insect species
are listed in Table S1. Among the original images, 973 were taken with a smartphone
and 3936 were collected online. To enhance the network’s generalization ability, data
augmentation techniques were employed to expand the data volume. Each image was
augmented through flipping (from 2 directions), rotating from 0 to 90 degrees in increments
of 15 degrees, scaling by 0.8, 0.9, 1.1, and 12, respectively, adding Gaussian noise with the
sigma set to 12, and transforming with fancy PCA. This resulted in 68,726 enhanced images,
totaling 73,635 insect images.
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For fair comparison, we followed the same data division as the dataset constructed
in [12], in which the dataset was divided into three folds. To ensure that hyper-parameter
optimization was performed only on the training set, we initially randomly extracted
approximately 1/10th of the images (including the original and corresponding augmented
images) from each of the three folds to form an independent Test Set 1, while the remaining
images were used for hyper-parameter optimization (Table 1). During the hyper-parameter
optimization stage, one fold (without any test samples) was used as the validation set, while
the images in the other two folds served as the training set (more precisely, a sub-training
set). Moreover, to validate the effectiveness of the models in real scenarios in which not all
augmentations are available, only the original images from Test Set 1 were selected to form
Test Set 2. For predictions on either test set, the model with optimal hyper-parameters was
trained on all images except those included in Test Set 1. The training environment and the
hyper-parameters to be optimized in the CNN model are detailed in Table 2.

Table 1. The number of images included in the training, validation, and test set.

1st Fold 2nd Fold 3rd Fold Total

Training/
Valid set 1483 (20,762) 1484 (20,776) 1484 (20,776) 4451 (62,314)

Test Set 1 152 (2128) 152 (2128) 154 (2156) 458 (6412)
Test Set 2 152 152 154 458

Total 1635 (22,890) 1636 (22,904) 1638 (22,932) 4909 (68,726)
Note: The number in parentheses represents the augmented images. During cross-validation for optimizing the
hyper-parameters (first line), images in one fold were used as the validation set, while the remaining images were
used as the training set. In the independent testing stage, the model with optimal hyper-parameters was trained
on a total of 66,765 images. Test Set 1 comprised the original and corresponding augmented images randomly
extracted from each of the 3 folds, while Test Set 2 included only the original images extracted.

Table 2. Details of computing environment and hyper-parameters to be optimized.

Environment Item Name Version/Values

Hardware CPU Intel(R) Platinum 8255C
GPU Nvidia GTX3080

Software Pytorch 1.1.0
Python 3.7
CUDA 10.0

Hyper-parameters Optimizer Adam/AdamW/RMSProp
Dropout probability 0.2/0.5/0.8

Learning rate
0.002/0.008/

0.0002/0.0008/0.0008 (with
decay)

Activation function ReLU/PReLU
BatchNorm With/Without

2.2. Development of Gdnet-IP Model

The Gdnet-IP is developed from the CPAFNet model [12]. It features four convolu-
tional layers and three Inception modules, each followed by a max pooling layer. The
last module is followed by a global pooling layer (see Figure 1A). This design utilizes
layer-by-layer down-sampling to achieve a larger receptive field and extract higher-level
features from input images. The main Inception module expands the network’s width with
four branches, in which the features computed with different filter sizes are combined to
enhance their representation, ensuring richer information and reducing redundancy.
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Figure 1. Architecture of GDnet-IP. (A) BatchNorm modules (BN) and clustering-based grouped
dropout are introduced into the initial CPAFNet model; (B) Inception-based grouped dropout, in
which one of the branches (grey branch) is randomly deactivated; (C) Clustering-based grouped
dropout, in which the channels in ‘Group 2’ are randomly deactivated.

To enhance CPAFNet’s nonlinear learning capability, we replaced the default ReLU
activation function with the Parametric Rectified Linear Unit (PreLU). Additionally, we
added batch normalization layers after each Inception module to stabilize and accelerate
network training. Based on the model with optimal hyper-parameters, two types of
grouped dropout methods (i.e., Inception-based and clustering-based) were designed and
introduced to form the improved Gdnet-IP model (Figure 1).

2.2.1. Reconstruction of CPAFNet

Before performing additional operations to enhance the accuracy of CPAFNet model,
we tested its reliability based on the optimal hyper-parameters, data division, and perfor-
mance assessment presented in [14]. However, the classification accuracy was found to
be significantly lower than that in the reference. To address this, we first reconstructed
the CPAFNet by setting different values for each hyper-parameter that needed optimiza-
tion (Table 2). Specifically, the optimization algorithms considered include Adam [23],
AdamW [24], and RMSProp [25]; and the basic dropout probabilities tested were 0.2, 0.5,
and 0.8. For convenience, the optimal model from this step is named optiCPAFNet-1. Next,
we experimented with learning rates set to 0.002, 0.008, 0.0002, 0.0008, and 0.0008 with
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decay. The model optimized in this step is named optiCPAFNet-2 and is considered the
recurrent and reliable CPAFNet.

2.2.2. Incorporating PreLU and BatchNorm

The ReLU activation function involving a simple threshold operation (f (x) = max(0, x))
allows the network to overcome the vanishing gradient issue and produce sparce represen-
tations. This sparsity can lead to more efficient computations and help prevent overfitting.
However, the biggest issue with ReLu during training is the occurrence of dead neurons [26].
PreLU addresses this issue by allowing a small, learnable negative slope, which helps keep
neurons active. The flexibility of having a learnable parameter for negative slopes can
lead to improved nonlinear learning in some cases, as the network can adapt better to the
data [27].

In addition, batch normalization (often abbreviated as BatchNorm) is a powerful
technique used in CNNs to improve training efficiency and model performance. BatchNorm
normalizes the output of a previous activation layer by subtracting the batch mean and
dividing by the batch standard deviation, followed by scaling and shifting operations using
learnable parameters. By normalizing the outputs of layers, BatchNorm addresses issues
related to internal covariate shifts, allows for higher learning rates, reduces dependency on
initialization, and acts as a regularizer [28]. Therefore, we tested whether the combination
of PreLU and BatchNorm operations could improve the classification accuracy based on
the reliable CPAFNet model previously obtained. The model optimized in this step is
named optiCPAFNet-3. The computing environment details and hyper-parameters to be
optimized are listed in Table 1.

2.2.3. Grouped Dropout Based on Inception Modules or Clustering

Research into the interpretability of CNNs shows that feature maps produced by
convolutional kernels do not operate independently but interact and collaboratively train
a network [29]. This finding aligns with research suggesting that interactions and inter-
pretability among different feature maps in hidden layers are not merely random linear
combinations [30]. Inspired by this, we propose a hypothesis that feature maps exhibiting
interactions and/or similar representation form groups to capture specific information.
However, not all of the information captured by different groups is universally useful or
improves the classification accuracy of a CNN model. Dropping group(s) out of feature
maps with specific probabilities during training iterations could be an ideal alternative.

The Inception module with four branches adopted by the CPAFNet model captures
enriched features using different filter sizes in each branch [14]. However, redundancy
among these branches may still exist. Therefore, the grouped dropout strategy based
on the Inception module, named the iGDnet-IP, was designed to test its contribution to
the classification performance of neural networks (Figure 1B). There are three Inception
modules sequentially deployed within the CPAFNet model. Performing grouped dropout
on the first module would result in the loss of important features learned from shallow
layers. Thus, grouped dropout was conducted only on the second and third modules.
Low-level features detected in the shallow layers are generally considered to represent
more basic and richer information than high-level features obtained from deep layers.
Therefore, the drop probabilities to be optimized for the second module were set to 0.1, 0.2,
and 0.3, while for the third module, they were set to 0.2, 0.3, and 0.4. This setting ensures
that more information is preserved in the second module compared to the third module.

Considering the challenges of specifying different drop probabilities for the Inception-
based Gdnet-IP model, we adopted a new strategy: automatically grouping feature maps
using a clustering algorithm, followed by grouped dropout. However, clustering feature
maps with 4 dimensions (length, width, depth, and the number of images) in hidden layers
is both difficult and time-consuming. Thus, we performed clustering only on the tail (i.e.,
the output of the global pooling layer) of the network. The tail is a vector of size 1 × 1 × f
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(the number of filters) for a single image (Figure 1A) and a matrix of size n × f for n images
in a batch, making it suitable for clustering.

We utilized the clustering algorithm WeDIV we recently proposed for grouping the
feature maps [20]. The WeDIV is an improved k-means clustering algorithm incorporating
weighted distance and a novel internal validation index. The former can effectively capture
information with both global spatial correlation (reflected by Euclidean distance) and local
variable trends (represented by Pearson distance) among features, while the latter is able
to automatically estimate the optimal number of clusters. A hyper-parameter, w, in the
weighted distance needs to be optimized within the range of [0, 1] with a specified step (0.25
or 0.2 in this study) to measure the relative contributions of the two distances. The newly
proposed model based on the clustering-based grouped dropout is named the Gdnet-IP
(Figure 1A,C).

2.3. Reference Models

To evaluate the effectiveness of the proposed models in this study, we used the reliable
CPAFNet (i.e., the optiCPAFNet-2) and four famous models (VGG11, VGG16, ResNet50,
and Inception V3), which were compared with CPAFNet in [14] as reference models. In
addition, two traditional dropout methods (Spatial-Dropout [18] and R-Drop [19]) were
also compared to assess the performance of the two grouped dropout strategies.

The VGG11 (with 11 weight layers) and VGG16 (with 16 layers) models are part of
the VGGNet family [31], which are widely used in image classification due to their sim-
plicity and effectiveness. The ResNet50 (with 50 layers) is known for its use of residual
blocks, which allows for training very deep networks by addressing the vanishing gradient
problem [32]. This is achieved through shortcut connections within the residual blocks
which enable gradients to propagate directly through multiple layers, improving training
stability and accuracy [33]. The Inception V3 network is a powerful and efficient deep
CNN architecture that builds upon the inception module, factorized convolutions, auxiliary
classifiers, and batch normalization [34]. Inception V3 also incorporates factorized con-
volutions, auxiliary classifiers, and batch normalization to further optimize performance
and computational efficiency, making it highly effective for complex image classification
tasks [33].

2.4. Model Evaluation

Considering the imbalanced samples among different insect species, balanced accuracy
(BA, Equation (1)) was computed as the evaluation metric. In Equation (1), N is the number
of categories, ni is the number of images in the i-th category, and mi represents the number
of images correctly predicted in this category. The batch size and the epoch for training
were set to 256 and 40, respectively. The average BA of the training iterations in last epoch
was computed as the identification accuracy. Additionally, we discussed the reasons why
the grouped dropout-based network models perform well in classifying insect pest images
by analyzing model gradients [21] and Fisher information [22]. The code implementing
the two grouped dropout-based CNN models is written in Python and is available at
https://github.com/ZhijunBioinf/GDnet-IP (accessed on 20 October 2024).

BA =
1
N ∑N

i=1
mi
ni

(1)

3. Results and Discussion
3.1. Improving Model’s Performance with Hyper-Parameter Optimization

We first performed hyper-parameter optimization to improve the performance of
the baseline model using the cross-validation of the three-fold data utilized in [14]. The
optimization paths of different hyper-parameters and their cross-validation accuracy are
shown in Figure 2.

https://github.com/ZhijunBioinf/GDnet-IP
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Figure 2. Optimization path of hyper-parameters for the CPAFnet baseline model. The classifi-
cation accuracy (BA) colored in green represents optiCPAFnet-1 with an Adam optimizer and a
classic dropout rate of 0.5. The BA in blue represents optiCPAFnet-2 (considered a reliable repro-
duction of the CPAFnet model) with an optimized learning rate of 0.0008 and a decay constraint.
The BA in red represents optiCPAFnet-3 with the PreLU activation function and the inclusion of
BatchNorm modules.

3.1.1. Impact of Optimizer and Learning Rate on Insect Classification Accuracy

First, the performance of three optimizers (Adam, AdamW, and RMSprop) was val-
idated. We found that the model’s classification performance was better with the Adam
optimizer, with the model using AdamW performing comparably and that using RM-
Sprop performing relatively worse. This may be due to the Adam optimizer’s momentum
mechanism, which adds an exponentially weighted average after completing the gradient
calculation in each iteration. It causes certain neuron weights to update more significantly,
helping prevent the model from getting stuck in local minima. Further tests with various
dropout probabilities and optimizer combinations showed that the model (optiCPAFNet-1)
performed best with the Adam optimizer and a dropout probability of 0.5 (with the ac-
curacy shown in green in Figure 2). This suggests that a moderate dropout probability
effectively prevents overfitting while retaining sufficient useful features.

Then, the impact of the learning rate on the model classification accuracy was validated.
We found that the cross-validation accuracy of the optiCPAFNet-1 model increased steadily
as the learning rate decreased (from 64.99% to 86.35%), reaching its maximum at a learning
rate of 0.0008, while slightly decreasing at a learning rate of 0.0002 (85.48%). This suggests
that a high learning rate (e.g., 0.008) causes the parameter updates to be too large during
training, preventing the model from converging. On the other hand, a low learning rate
(e.g., 0.0002) can yield a good classification accuracy but may slow down training, requiring
more time to reach the optimal solution. Furthermore, after applying a learning rate
decay strategy in the optiCPAFNet-2 model, the accuracy improved further to 88.74% (the
accuracy is shown in blue in Figure 2).

By comparing the changes in the loss function of the model with and without decay
constraints at a learning rate of 0.0008 (Figure 3), we found that around 700 training
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iterations (shown with the vertical dashed line in Figure 3), the loss function gradually
started to fit and did not decline significantly. This indicates that the model learned features
with a certain amount of information from the data, but the loss function change without
decay constraints is still very noticeable (as shown by the red line in the inset of Figure 3),
making it difficult for the model to converge stably. However, with the introduction of the
decay strategy, the variance in the model’s loss function significantly decreased (as shown
by the blue line in the inset of Figure 3), indicating that this strategy helps the model update
parameters with smaller steps in the later stages of training, allowing for a more precise
exploration of the parameter space and gradually approaching the global optimal solution.
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3.1.2. Impact of PreLU and BatchNorm on Insect Classification Accuracy

Based on the optiCPAFNet-2 model, we sequentially performed PreLU activation func-
tion replacement, BatchNorm module addition, and an operation for their combination. We
found that the model (optiCPAFNet-3) performed best when both operations were added
simultaneously, achieving a classification accuracy of 91.65% (the accuracy is shown in red
in Figure 2). Using the accuracies of the final nine epochs of the training iterations (Table S2)
to conduct hypothesis testing, the performance of optiCPAFNet-3 is significantly better
than that of the optiCPAFNet-2 model (one-tailed t-test, p = 6.11 × 10−13). Additionally,
adding the BatchNorm module alone (91.44%) provided a more significant improvement
than PreLU (90.92%).

The Introduction of the BatchNorm module, which normalizes the mean and scales the
variance in the feature maps in each mini-batch, reduces the variation in input distribution
across different layers of the model. This allows each layer to train on a more stable
data distribution. Additionally, the scaling and shifting parameters in BatchNorm are
used to restore the network’s capacity to express inputs, reducing the information loss
caused by normalization. Recent studies have found that layer normalization (LN) and
its simplified version, RMSNorm, possess nonlinear expression capabilities. When the
network structure is sufficiently deep, a simple neural network, LN-Net, containing only
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linear layers and LN can classify given samples and sample categories arbitrarily [35]. This
discovery challenges the conventional view of various normalization techniques as linear
transformations, showing that nonlinear layers and normalization layers are no longer
mutually exclusive neural network modules. PreLU introduces a learnable slope parameter,
giving negative input values a non-zero gradient, thus addressing the “neuron death”
problem caused by the default activation function ReLU. This design provides neural
networks with richer nonlinear expression capabilities, helping capture more complex
data patterns.

3.2. Further Improving Model’s Performance with Grouped Dropout

Based on the previously optimized optiCPAFNet-3 model, we introduced grouped
dropout based on Inception modules (the iGDnet-IP) and a clustering analysis (the Gdnet-
IP) separately and validated the impact of each of them on the classification accuracy.

3.2.1. Impact of Inception-Based Grouped Dropout on Insect Classification Accuracy

By simultaneously deactivating the second Inception module (with dropout probabil-
ities of 0.1, 0.2, and 0.3) and the third module (with probabilities of 0.2, 0.3, and 0.4), we
found that setting higher dropout probabilities in shallower Inception layers is detrimen-
tal to model fitting, whereas deeper Inception layers can accommodate higher dropout
probabilities (Table 3). This may be because deeper layers tend to contain more abstract
and complex feature representations, which can be learned in part of the branches in the
Inception module; dropping a branch with varying probabilities has a smaller impact on the
entire module. When the dropout probability for the second Inception module was 0.1, the
model’s classification performance remained similar across different dropout probabilities
for the third Inception module. Conversely, when fixing the dropout probability of the
third Inception module, the model performance worsened as the dropout probability of
the second Inception module increased (Table 3). This is because the features learned In
shallower layers are more fundamental and relatively Important, and complementary infor-
mation can be learned by different branches. Deactivating any branch affects the learning
performance of the entire module, thereby impacting the model’s final classification perfor-
mance. These results also validate the rationale in setting different dropout probabilities
for different Inception layers (modules). Compared to the optiCPAFnet-3 model (Table S2),
the iGDnet-IP model achieved a significant improvement in cross-validation accuracy for
insect classification (p = 3.47 × 10−6).

Table 3. Cross-validation performance of the model with different grouped dropout probabilities in
the two Inception modules.

Prob B b
Prob A a

0.1 0.2 0.3

0.2 92.41% 92.34% 91.26%
0.3 92.39% 92.11% 91.31%
0.4 92.40% 92.31% 91.38%

a: Grouped dropout probabilities set in the second Inception module; b: Probabilities set in the third Inception
module.

3.2.2. Impact of Clustering-Based Grouped Dropout on Insect Classification Accuracy

For the output of the global pooling layer in the neural network, each image generates
a vector with a length of 256, resulting in an n × 256 matrix for each mini-batch, in
which n is the number of samples and 256 is the number of feature channels. Using
the WeDIV algorithm to cluster feature channels allows for the adaptive determination
of the optimal number of clusters, followed by grouped dropout. However, estimating
the optimal number of clusters for each iteration over thousands of training iterations
increases the model’s computational complexity. Therefore, in this study, clustering was
performed every 50 iterations, and the distribution of the number of clusters was analyzed
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to obtain a general optimal number of clusters, thereby improving modeling efficiency.
We found that the frequency of a cluster number of four was significantly higher than
other cluster numbers (Figure 4), but fewer clusters did not necessarily mean a higher
classification accuracy. Additionally, when optimizing the distance (the Euclidean distance
and correlation distance) weights in the WeDIV algorithm, the step size needs to be defined,
and different cluster numbers combined with different step sizes result in different model
classification performances. When the step size was 0.25, the optimal number of clusters
was five; when the step size was 0.2, the optimal number of clusters was four, achieving the
best cross-validation accuracy of 92.12% (Figure 4). Compared to the optiCPAFnet-3 model
(Table S2), the Gdnet-IP model also achieved a significant improvement in cross-validation
accuracy for insect classification (p = 3.37 × 10−5), preliminarily indicating the effectiveness
of the group deactivation strategy. Meanwhile, the model with WeDIV reached a higher
cross-validation accuracy across different configurations, significantly outperforming the
model involving the traditional K-means clustering (Table 4). The results suggest that,
compared to K-means, the weighted distance in the WeDIV clustering algorithm may
capture more complex data patterns and relationships between feature maps. Additionally,
unlike K-means, which requires manually specifying the number of clusters, WeDIV can
achieve adaptive clustering of feature maps, reducing reliance on network structure and
data variability. These two factors make the group dropout based on WeDIV more efficient
in insect image recognition.

Agriculture 2024, 14, x FOR PEER REVIEW 11 of 22 
 

 

and different cluster numbers combined with different step sizes result in different model 
classification performances. When the step size was 0.25, the optimal number of clusters 
was five; when the step size was 0.2, the optimal number of clusters was four, achieving 
the best cross-validation accuracy of 92.12% (Figure 4). Compared to the optiCPAFnet-3 
model (Table S2), the GDnet-IP model also achieved a significant improvement in cross-
validation accuracy for insect classification (p = 3.37 × 10−5), preliminarily indicating the 
effectiveness of the group deactivation strategy. Meanwhile, the model with WeDIV 
reached a higher cross-validation accuracy across different configurations, significantly 
outperforming the model involving the traditional K-means clustering (Table 4). The 
results suggest that, compared to K-means, the weighted distance in the WeDIV clustering 
algorithm may capture more complex data patterns and relationships between feature 
maps. Additionally, unlike K-means, which requires manually specifying the number of 
clusters, WeDIV can achieve adaptive clustering of feature maps, reducing reliance on 
network structure and data variability. These two factors make the group dropout based 
on WeDIV more efficient in insect image recognition. 

 
Figure 4. Frequency distribution of the clusters obtained from feature channels. Clustering was 
performed on the output of the global pooling layer using WeDIV every 50 training iterations. 

Table 4. Cross-validation accuracies of the grouped dropout adopting the WeDIV (under the 
combinations of weighting step and clustering number ) or the K-means clustering. 

 WeDIV  K-Means 
Clustering Number (K) Step: 0.25 Step: 0.2  

4 91.58% 92.12% 91.49% 
5 91.96% 91.84% 91.24% 
6 91.94% 92.10% 91.71% 
7 91.94% 92.11% 91.12% 
8 91.89% 91.97% 91.06% 

3.3. Improvements of GDnet-IP for Specific Insect Species 
The insect recognition model GDnet-IP designed in this study includes two major 

innovations: the introduction of the grouped dropout strategy as well as the incorporation 
of the PReLU activation function and BatchNorm module. Although the latter is not a 
strict methodological innovation, this attempt to alter the network structure significantly 
improved the insect classification accuracy (as shown by the accuracy improvement of 
optiCPAFnet-3 over optiCPAFnet-2 in Figure 2). We can observe in detail which specific 
insect’s recognition accuracy was impacted by these two innovations. The confusion 

Figure 4. Frequency distribution of the clusters obtained from feature channels. Clustering was
performed on the output of the global pooling layer using WeDIV every 50 training iterations.

Table 4. Cross-validation accuracies of the grouped dropout adopting the WeDIV (under the combi-
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WeDIV K-Means

Clustering Number (K) Step: 0.25 Step: 0.2

4 91.58% 92.12% 91.49%
5 91.96% 91.84% 91.24%
6 91.94% 92.10% 91.71%
7 91.94% 92.11% 91.12%
8 91.89% 91.97% 91.06%
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3.3. Improvements of Gdnet-IP for Specific Insect Species

The insect recognition model Gdnet-IP designed in this study includes two major
innovations: the introduction of the grouped dropout strategy as well as the incorporation
of the PreLU activation function and BatchNorm module. Although the latter is not a
strict methodological innovation, this attempt to alter the network structure significantly
improved the insect classification accuracy (as shown by the accuracy improvement of
optiCPAFnet-3 over optiCPAFnet-2 in Figure 2). We can observe in detail which specific
insect’s recognition accuracy was impacted by these two innovations. The confusion
matrices for the insect recognition of the optiCPAFnet-2, optiCPAFnet-3, and Gdnet-IP
models on independent Test Set 1 are shown in Figure 5. For the optiCPAFnet-2 model,
the classification accuracy for Parnara guttatus Bremer and Grey (PGBG) and Papilio xuthus
Linnaeus larvae (PXLL) were both below 50% (Figure 5A). Upon examining the original
images, we found that these two insect classes only contained 40 and 39 images, respectively,
posing a challenge for insect recognition. In cases in which the sample size for certain
categories in the dataset is very small, few-shot meta-learning methods can be applied
in future research [36]. For example, an inter-class knowledge transfer approach with
few-shot meta-learning can be utilized to enhance the model’s generalization ability on
small samples. By extracting shared features and transferring knowledge across classes,
this method enables the model to generalize effectively even with a limited number of
insect samples [37,38]. Additionally, optiCPAFnet-2 misclassified a significant number
of PXLL images as Gongylopus adiposus Brunner (GA), while the classification of adult
Papilio xuthus Linnaeus (PXL) remained unaffected (98%). This may be because PXLL larvae
resemble GA more closely and both have green backgrounds in the images, leading the
model to fail to learn rich enough morphological features to distinguish them sufficiently.

With the introduction of the PreLU activation function and BatchNorm module, the
optiCPAFnet-3 model improved the recognition accuracy of PGBG from 38% to 53%, al-
though many PGBG instances were still misclassified as Pieris rapae (PR). The recognition
accuracy for PXLL increased from 47% to 67%, indicating an enhancement in the model’s
nonlinear fitting capabilities (Figure 5B). With the further introduction of the clustering-
based grouped dropout strategy, the Gdnet-IP model elevated the recognition accuracy
of PGBG to 62% and significantly boosted the accuracy of PXLL to 93%, demonstrating
that grouped dropout indeed enhanced the model’s ability to extract insect morphological
features (Figure 5C). We employed Grad-CAM visualizations to analyze the reasons behind
the enhanced recognition accuracy for PXLL. In the Grad-CAM visualizations, we observe
that in the OptiCPAFnet-2 model (Figure 6A), the highlighted areas are relatively dispersed,
covering general parts of the insect’s body without focusing on specific details. In the
OptiCPAFnet-3 model (Figure 6B), the attention is slightly more focused, particularly on the
white textures of the insect, but it is still not very precise. In contrast, the Gdnet-IP model
shows significantly improved attention, with concentrated highlights on the white textures
of the insect’s body (Figure 6C). This suggests that the Gdnet-IP model successfully focuses
on crucial insect features, especially the white textures, enhancing its ability to recognize
insects even against complex backgrounds. It is evident that the GDnet-IP enables the
model to focus more on the textures present on insect bodies (Figure 6). This improvement
enhances the model’s generalization capability, allowing it to accurately identify target
insects within similar background environments. This substantial improvement in recog-
nition performance, especially in the context of such small sample sizes, challenges the
conventional understanding that deep neural networks require large training datasets.
Although the recognition accuracy of some individual insect species, such as Tettigoniidae
(Tet) and Paratenosera seu Hierodula (PH), showed slight declines, most other insects
(eight species) achieved a higher recognition accuracy. The effective recognition of the
aforementioned two insects, in particular, contributed to the overall optimal classification
performance of the Gdnet-IP.
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3.4. Comparison of Insect Recognition Models Adopting Different Dropout Methods

To validate the generalization capability of the new method, it is necessary to conduct
independent testing. This study focuses on improving traditional dropout methods by
comparing grouped dropout with three classic methods: dropout (as exemplified by
optiCPAFnet-2), spatial dropout, and R-Drop. All reference dropout methods are based
on the optiCPAFnet-3 model. First, we observed the classification performance of each
method in cross-validation (Table S2, Figure 6). As previously noted, both grouped dropout
strategies (i.e., the iGDnet-IP and Gdnet-IP) significantly outperformed the dropout method
as well as the other two classic dropout methods, as shown in Figure 6. Among the
models based on the three classic dropout methods, there were no significant differences in
classification performance; however, they all significantly outperformed the optiCPAFnet-2
model. This indicates that regardless of the classic dropout method used, models incorporating
PreLU and BatchNorm operations consistently exhibit superior insect recognition accuracies.

We then observed the independent prediction performance of each model
(Tables S3 and S4, Figure 6). The CNN models based on the two grouped dropout strategies
still significantly outperformed the other reference models. Compared to the optiCPAFnet-3
model, the iGDnet-IP model improved the insect classification accuracy from 91.60% (Test
Set 1) and 91.91% (Test Set 2) to 92.28% (p = 1.01 × 10−5) and 92.47% (p = 9.96 × 10−4),
respectively. The Gdnet-IP model further increased the accuracy to 92.72% (p = 5.08 × 10−9)
and 92.88% (p = 2.75 × 10−7). The grouped dropout strategy not only enhanced model
performance during hyper-parameter optimization but also demonstrated superior gener-
alization capabilities in independent prediction stages. Additionally, although the Gdnet-IP
model’s classification performance was slightly lower than that of the iGDnet-IP model in
internal cross-validation, it outperformed the latter in independent predictions, especially
in Test Set 1, including data augmentation (Figure 7). This indicates that the grouped
dropout based on the cluster analysis has a superior level of resistance to overfitting.
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Figure 7. Comparison of insect classification models based on different dropout methods. Letters
on the boxplot were derived from one-way ANOVA. Cross-validation accuracy was obtained from
samples excluding test set images. Test Set 1 includes original and augmented images, while Test Set 2
consists of original images only. The two reference dropout methods were based on the optiCPAFnet-
3 model. iGDnet-IP is a CNN model involving Inception module-based grouped dropout, and
Gdnet-IP is a model adopting clustering-based grouped dropout.
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3.5. Comparison of Insect Classification Accuracy Between Gdnet-IP and Classic CNN Models

All the comparisons of different dropout methods mentioned above are based on
the CPAFnet model’s network structure. The hyper-parameters used in the reference
models are shown in Table 5. To further validate the advantages of the new method,
it is necessary to compare it with various classical CNN models. The cross-validation,
independent test accuracy, and training time for each model on the CPAF dataset are shown
in Tables S5–S7 and Figure 7. First, we compared the three-fold cross-validation accuracy
of different models and found that the Gdnet-IP outperformed ResNet50 and significantly
outperformed the other reference models. ResNet50 significantly outperformed the VGG11
model, while there were no significant differences among the other models (Figure 8A).

For independent Test Set 1, the Gdnet-IP also exhibited the best classification per-
formance, significantly outperforming optiCPAFnet-2 (p = 1.98 × 10−3) and InceptionV3
(p = 1.18 × 10−5), and surpassing VGG11 (by 1.48%), VGG16 (by 1.87%), and ResNet50
(by 1.55%). InceptionV3 performed the worst, with no significant differences among
the other four reference models (the leftmost bar group in Figure 7). For Test Set 2, the
Gdnet-IP significantly outperformed optiCPAFnet-2 (p = 2.43 × 10−3) and InceptionV3
(p = 2.45 × 10−4), with improvements over the other three models as well. The two VGG
models and ResNet50 showed no significant differences among themselves, but they all
significantly outperformed optiCPAFnet-2 and InceptionV3 (right bar group in Figure 8B).
In terms of training time, optiCPAFnet-2 and the Gdnet-IP, being lightweight models,
trained significantly faster than the other classical models (Figure 8C).

Although the Gdnet-IP’s classification accuracy on independent test sets was not
significantly superior to all of the reference models, its shorter training time facilitates
deployment on mobile devices, enabling a broader range of applications. In addition,
the four reference models feature deeper network structures (with their depths ranked
as ResNet50 > InceptionV3 > VGG16 > VGG11). Except for InceptionV3, the other three
models did not show significant differences in classification accuracy on the test set. This
indicates that for datasets like CPAF, which have relatively fewer samples and categories than
the ImageNet dataset containing ~22,000 categories, shallow network models can adequately
handle the classification task. In contrast, deeper models are more prone to overfitting.

Table 5. Optimized hyper-parameters utilized in the reference models.

VGG11 VGG16 ResNet50 InceptionV3

Batch size 256 256 256 64
Optimizer SGD SGD SGD RMSprop

Learning rate 0.0002 0.0002 0.0008 0.0002
Momentum 0.9 0.9 0.9 0.9
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3.6. Explanation of Grouped Dropout Based on Model Gradients and Fisher Information

It is known from the previous results that CNN models based on grouped dropout
can significantly improve insect recognition accuracy, but the reasons behind this remain
unclear. The interpretability of deep learning models has always been a research hotspot in
this field. We attempt to analyze the reasons for the effectiveness of the grouped dropout
strategy from the perspectives of model gradients and Fisher information.

3.6.1. Explaining the Effectiveness of Grouped Dropout with Model Gradients

From the perspective of model gradients, the effectiveness of model’s performance can
be explained by the parameter update magnitude (the amount of change in the parameters
at each iteration), gradient norm (the size of the gradient vector), and gradient variance
(the variability in gradients across different batches) [21].

We first analyzed the difference in parameter update magnitude between the Gdnet-IP
and optiCPAFnet-3 model. The L2 norm of the difference between the parameter values at
iteration t (Wt) and at iteration t + 1 (Wt + 1) was calculated as ||Wt + 1 − Wt||2, and this is
used as the metric. We observed that as the training iterations increase, the L2 norm of the
parameters for the Gdnet-IP rises faster than that for optiCPAFnet-3, with the magnitude of
the difference becoming progressively larger (Figure 9A). In models trained with stochastic
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gradient descent, a smaller parameter update magnitude can lead to the model converging
to a local optimum or oscillating during convergence [19]. Therefore, the Gdnet-IP model
may be more likely to achieve a global optimum within the same number of iterations. This
phenomenon (i.e., the larger parameter update magnitude) may be attributed to two causes:
first, the model with grouped dropout has larger gradient norms, resulting in larger “steps”
(parameter updates); and second, grouped dropout may cause the model optimization
to proceed in a more consistent direction. By observing the gradient norm and gradient
variance, we found that compared to optiCPAFnet-3, the Gdnet-IP model initially (before
1000 iterations) has relatively smaller gradient norms and does not show an advantage.
However, as the number of iterations increases, the difference in gradient norms between
the two models becomes more pronounced (Figure 9B). Meanwhile, the Gdnet-IP shows
greater gradient variance from the early stages of training and this continues into the later
stages (Figure 9C). These results indicate that after dropping a particular class (or group) of
associated neurons, the model requires larger gradient adjustments to adapt to this change,
resulting in more diverse parameter updates.

Agriculture 2024, 14, x FOR PEER REVIEW 18 of 22 
 

 

From the perspective of model gradients, the effectiveness of model’s performance 
can be explained by the parameter update magnitude (the amount of change in the 
parameters at each iteration), gradient norm (the size of the gradient vector), and gradient 
variance (the variability in gradients across different batches) [21]. 

We first analyzed the difference in parameter update magnitude between the GDnet-
IP and optiCPAFnet-3 model. The L2 norm of the difference between the parameter values 
at iteration t (Wt) and at iteration t+1 (Wt+1) was calculated as ||Wt+1-Wt||2, and this is used 
as the metric. We observed that as the training iterations increase, the L2 norm of the 
parameters for the GDnet-IP rises faster than that for optiCPAFnet-3, with the magnitude of 
the difference becoming progressively larger (Figure 9A). In models trained with stochastic 
gradient descent, a smaller parameter update magnitude can lead to the model converging 
to a local optimum or oscillating during convergence [19]. Therefore, the GDnet-IP model 
may be more likely to achieve a global optimum within the same number of iterations. This 
phenomenon (i.e., the larger parameter update magnitude) may be attributed to two causes: 
first, the model with grouped dropout has larger gradient norms, resulting in larger “steps” 
(parameter updates); and second, grouped dropout may cause the model optimization to 
proceed in a more consistent direction. By observing the gradient norm and gradient 
variance, we found that compared to optiCPAFnet-3, the GDnet-IP model initially (before 
1000 iterations) has relatively smaller gradient norms and does not show an advantage. 
However, as the number of iterations increases, the difference in gradient norms between 
the two models becomes more pronounced (Figure 9B). Meanwhile, the GDnet-IP shows 
greater gradient variance from the early stages of training and this continues into the later 
stages (Figure 9C). These results indicate that after dropping a particular class (or group) of 
associated neurons, the model requires larger gradient adjustments to adapt to this change, 
resulting in more diverse parameter updates. 

 
(A) 

 
(B) 

 
(C) 

Figure 9. Parameter and gradient changes during the training iterations for two models. (A) Changes
in the amplitude of model parameter update; (B) Changes in the model gradient norm calculated
every 10 iterations; (C) Changes in the model gradient variance.

3.6.2. Explaining the Effectiveness of Grouped Dropout with Fisher Information

The process of neuron establishment in the early stages of training has a significant
impact on the model’s final generalization ability [22]. In deep learning, Fisher information
and the Fisher information matrix (FIM) are commonly used to analyze the effectiveness
of neuron connections. Given parameters w and the prior distribution Q(x) of the dataset,
one can compute the posterior distribution pw(y|x) of the target variable and the gradient
of its likelihood function. This allows for the calculation of the FIM value [22]. Fisher
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information reflects the extent to which changes in parameters affect the data distribution
(the smaller the FIM value, the smaller the impact), helping in understanding the model’s
sensitivity to parameter adjustments and the importance of these parameters.

We found that the FIM values for both models (the GDnet-IP and optiCPAFnet-3)
exhibit two distinct phases of rising and falling in the early stages of training (the first
200 iterations) (Figure 10). During the rising phase, a large number of neuron connections
are established in the training process, and the classification accuracy increases signifi-
cantly. At this time, the FIM values of the GDnet-IP are significantly higher than those of
optiCPAFnet-3, indicating that grouped dropout introduces more uncertainty in neuron
weight updates, making it less likely for the model to get trapped in local minima. During
the falling phase, the FIM value drops sharply from ~900 (the GDnet-IP model) to a higher
scale (~400), but the model prediction accuracy does not decrease during this period; rather,
it continues to rise slowly. This indicates that as the model performance stabilizes, the
information content of the neuron weights gradually decreases. This is not a “forgetting”
phenomenon, but rather an information “consolidation” process. The gradual decrease
in information content suggests that the model is pruning unimportant connections. The
larger decline in FIM for the GDnet-IP model indicates this process more strongly. This
“forgetting”–“consolidation” process is highly similar to human brain development: in
human infants, the number of synaptic connections per neuron peaks at around 12 months,
and then gradually decreases with age, while cognitive abilities continue to increase [39].
This suggests that synaptic pruning or neuron “pruning” is essential for pattern learning
and rule summarization.
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two models.

By observing the trend in FIM changes after 200 iterations, we found that the FIM
of the GDnet-IP exhibits a more pronounced and fluctuating decline, indicating that the
model gradients still show an increasing trend during the rapid reduction process. This
suggests that the corresponding neuron weight connections are undergoing multiple phases
of pruning (declining periods) and re-establishment (rising periods). Additionally, there
is often a critical learning period in the early stages of training, marked by the gradual
decline in and stabilization of gradient variance [40]. The gradient variance of the GDnet-IP
stabilizes around 3000 iterations (Figure 8C), while its FIM remains relatively high around
800 iterations (Figure 10), indicating a longer critical learning period for the GDnet-IP.
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The continuous fluctuation of FIM values reflects the ongoing dropout of different neuron
combinations, suggesting that the GDnet-IP can learn more new combinational features.

4. Conclusions

This study developed the GDnet-IP convolutional neural network model based on
the novel concept of grouped dropout regularization for the image recognition of insects
and common pests. Firstly, by optimizing the original CPAFnet model from multiple
angles, including optimizer selection, dropout probability, learning rate, and decay strategy,
we found that a smaller learning rate (0.0008) with decay constraints helps improve the
model’s classification performance (its internal cross-validation accuracy increased from
84.68% to 88.74%). Secondly, by replacing the default ReLU activation function with PReLU
and adding BatchNorm layers after each Inception layer in the network, the model’s
nonlinear expression capability was enhanced (its classification accuracy improved to
91.65%), simultaneously increasing training efficiency. Thirdly, leveraging the inherent
branching structure of the Inception module and the self-developed clustering algorithm
WeDIV for adaptive grouping, two grouped dropout insect classification models (the
iGDnet-IP and GDnet-IP) were proposed, which further significantly improved the insect
recognition accuracy (with p-values of 3.47 × 10−6 and 3.37 × 10−5, respectively).

Importantly, the GDnet-IP significantly improved the recognition accuracy of three
insect species, Parnara guttatus Bremer and Grey (PGBG), Papilio xuthus Linnaeus larvae
(PXLL), and Gryllotalpa (Gryo), from 38%, 47%, and 84% to 62%, 93%, and 93%, respectively.
Additionally, the classification performance of the two grouped dropout models was
significantly better than that of the reference dropout methods. Compared to four classic
CNN models, although the grouped dropout method did not achieve statistically significant
superiority, its training time was significantly shorter than that of the reference models,
facilitating model deployment on mobile devices. This paper also analyzed and discussed
the effectiveness of grouped dropout from the theoretical perspectives of model gradient
and Fisher information, providing a theoretical reference for establishing the interpretability
framework of CNN models.

To enhance the recognition accuracy of each insect species, it would be beneficial to
increase the number of images for insects that are difficult to classify. To improve modeling
efficiency, transfer learning using pre-trained models based on large datasets such as
ImageNet can be considered. The optimization of hyper-parameters in deep learning
models still relies on experience and poses challenges; this can be approached as a multi-
factor, multi-level experimental design problem. Advanced experimental design methods
(e.g., uniform design) can be combined with classical machine learning models (e.g., support
vector machines) to find the optimal combination of hyper-parameters. Finally, integrating
object detection with the improved insect classification model from this study can help
enhance the model’s generalizability and expand its range of applications.
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