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Abstract: Northeast China plays a crucial role as a major grain-producing region, and attention
to its land use and land cover changes (LUCC), especially farmland changes, are crucial to ensure
food security and promote sustainable development. Based on the Moderate Resolution Imaging
Spectroradiometer (MODIS) data and a decision tree model, land types, especially those of paddy
fields in Northeast China from 2000 to 2020, were extracted, and the spatiotemporal changes in paddy
fields and their drivers were analyzed. The development trends of paddy fields under different future
scenarios were explored alongside the Coupled Model Intercomparison Project Phase 6 (CMIP6) data.
The findings revealed that the kappa coefficients of land use classification from 2000 to 2020 reached
0.761–0.825, with an overall accuracy of 80.5–87.3%. The proposed land classification method can
be used for long-term paddy field monitoring in Northeast China. The LUCC in Northeast China is
dominated by the expansion of paddy fields. The centroids of paddy fields gradually shifted toward
the northeast by a distance of 292 km, with climate warming being the main reason for the shift.
Under various climate scenarios, the temperature in Northeast China and its surrounding regions
is projected to rise. Each scenario is anticipated to meet the temperature conditions necessary for
the northeastward expansion of paddy fields. This study provides support for ensuring sustainable
agricultural development in Northeast China.

Keywords: paddy field expansion; remote sensing; land use and land cover change; climate warming

1. Introduction

Land use and land cover change (LUCC) is considered the key factor in global environ-
mental change, encompassing complex dynamics that arise from the interactions between
natural and social systems across multiple temporal and spatial dimensions [1–3]. As the
crucial connection between natural ecological processes and human activities [4], LUCC
exerts direct influence on the surface material–energy cycle, the sustainable utilization of
natural resources, and human socioeconomic development [5–7]. LUCC includes not only
changes in land use types but also changes in land use management, such as irrigation and
planting structure, which can affect the regional environment and even contribute to global
climate change [8]. It is necessary to realize green and sustainable development in areas
with rapid development, prominent human-land contradictions, and fragile ecological
environments. To achieve this, it is essential to timely and accurately determine the surface
land cover status, explore the land use change trends, and identify the driving factors [9].

It is important to pay attention to spatiotemporal changes in land use, especially
in farmland, and future trends to ensure food security. The spatial distribution of rice
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cultivation in China is characterized by an increase in the north and a decrease in the south,
moving from the southwest to the northeast [10,11]. Southern China is predominantly
mountainous, with a limited availability of flat arable land [12]. Additionally, the rapid
pace of urbanization has led to the conversion of large areas of farmland into construc-
tion land [13]. Furthermore, initiatives such as returning farmland to forest land have
also contributed to the gradual reduction in the area dedicated to rice cultivation in the
region [14]. The northeast region is considered the breadbasket of China [15,16]. In recent
years, the most significant change in land use patterns in Northeast China has been the
rapid expansion of paddy fields. This shift, driven by a combination of factors such as pol-
icy support, technological advancements, and climate changes, has garnered widespread
attention [17,18]. However, long-term monitoring has been insufficient. Changes in paddy
fields prior to 2000 have been extensively studied [19,20]. Rice production in Northeast
China has been developing rapidly since 1990 [19]. Between 1995 and 2015, land use
transformation in Northeast China displayed several prominent features. These included a
persistent expansion of cultivated land, a steady decline in forestland and grassland, the
rapid growth in construction land, and a reduction in unused land [21]. Xin et al. [18] found
that the rice cultivation area in the three northeastern provinces of China experienced a
substantial increase of 3.68 million ha from 2000 to 2017. Liu et al. [16] analyzed LUCC
in Northeast China at approximately decadal intervals without continuous observational
analysis. These are scattered studies, with less analysis and attention to the spatial and
temporal variability of long time series and their causes. However, previous research
has reached a consensus regarding the substantial growth of paddy fields in Northeast
China [18,22]. Rice cultivation is influenced by many factors, and earlier research has
primarily concentrated on the impacts of temperature and precipitation changes on the
distribution of paddy fields [16]. However, policy, economic, and technological reasons are
also important factors affecting its development. Systematic analyses and summaries are
still lacking.

Anticipating future changes in paddy fields is important for sustainable development
and food security. Land use modeling examines future scenarios by analyzing the under-
lying mechanism of LUCC [23,24]. In the last few years, many analytical and geographic
models have been used to evaluate LUCC, such as SLEUTH [25,26], genetic algorithms [27],
Markov chain [28,29], Future Land Use Simulation [30], Artificial Neural Network [31], and
cellular automata [32,33]. The effects of climatic factors on LUCC have not been analyzed
from a scientific perspective. There is no quantitative analysis or systematic observations to
support the potential expansion of paddy fields due to climate warming. At both regional
and global scales, the link between climate change and rice production has been given
insufficient focus [34]. Research on how paddy fields will evolve under future climate
change in Northeast China remains limited.

The traditional acquisition of land area in China relies on a combination of ground sur-
veys and comprehensive statistical methods to gather information. Ground surveys collect
detailed data through field assessments, allowing researchers to evaluate land character-
istics and usage. Additionally, statistical offices compile data from agricultural censuses
and local surveys, which are then aggregated and analyzed to produce annual reports [35].
However, this method is heavily dependent on statistical data, resulting in significant lags
in research findings, in addition to being time-consuming and labor-intensive, particu-
larly when monitoring large areas. The emergence of Geographic Information System
(GIS) technology has brought about significant advancements in monitoring and analyzing
spatiotemporal changes in land use [36]. It has enabled the utilization of remote sensing
data, which offers regional advantages and timeliness, as a crucial data source for this
purpose [37,38]. Data with low spatial resolution are usually employed for land use classi-
fication at broad regional or global scales [10,39,40]. Tucker et al. [41] used NDVI data from
NOAA/AVHRR to study LUCC in Africa. At the regional scale, data from Moderate Reso-
lution Imaging Spectroradiometer (MODIS) and Landsat are commonly utilized [42,43].
Landsat data offers high spatial resolution but has low temporal resolution (revisit period
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of 16 days) and is susceptible to cloudy weather, resulting in some missing data and lim-
iting the ability of Landsat data to monitor LUCC [44]. MODIS data feature low spatial
resolution but high temporal resolution (revisit period of 8 days), which can be applied to
the crop identification and monitoring of large planting areas and single structures [45]. Its
characteristics are compatible with the conditions in Northeast China [10,46].

The objectives of this work were to (1) propose a land use classification method
applicable to large regional scales; (2) identify the area of each land type and analyze the
spatiotemporal changes and drivers of LUCC in Northeast China from 2000 to 2020 and
explore the drivers of changes in paddy fields; and (3) analyze trends in paddy fields in
future scenarios. These results may provide a reference for securing food, resources and
ecological security, and promoting sustainable development.

2. Materials and Methods
2.1. Study Area

The study area is situated in northeastern China, encompassing Heilongjiang, Jilin,
and Liaoning Province, as well as the eastern part of the Inner Mongolia Autonomous
Region, which includes Hulunbuir, Xing’an League, Tongliao, and Chifeng. It is located
between 115◦05′ E~135◦02′ E and 38◦40′ N~53◦34′ N. The total area covers approximately
1.27 million km2 (Figure 1). This study area has a temperate continental monsoon climate.
Summers are mild and humid, while winters are cold and long. Rainfall and warm
temperatures coincide in the same season. The annual accumulated temperature is less
than 3400 ◦C, and the average annual precipitation is 400–1000 mm, mainly concentrated in
the summer from July to September [17]. In most areas, wet and warm conditions can meet
the growth needs of rice once a year [18]. Farmland black soil is the predominant soil type
in the study area, characterized by its high fertility [47]. This region is characterized by its
predominantly flat and extensive topography [48]. It is highly suitable for rice cultivation.
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Figure 1. The locations of the China National Meteorological Observatory Stations and study area in
Northeast China.

2.2. Datasets
2.2.1. MODIS Data

Global 8-day MODIS products (MOD09A1) with a 500 m × 500 m spatial resolution
from the United States Geological Survey (USGS) were used in this study, using data
from 2000 to 2020. They were acquired from NASA’s LPDAAC website: https://lpdaac.
usgs.gov/ (accessed on 23 September 2023). Atmospheric absorption and scattering were
removed, and atmospheric correction was carried out. The grid range of the whole region
included h25v03, h26v03, h25v04, h26v04, h27v04, and h27v05. The surface reflectance

https://lpdaac.usgs.gov/
https://lpdaac.usgs.gov/
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data included 7 bands as follows: red (620~670 nm), near-infrared (841~876 nm), blue
(459~479 nm), green (545~565 nm), thermal infrared (1230~1250 nm), shortwave infrared 1
(1628~1652 nm), and shortwave infrared 2 (2105~2155 nm).

2.2.2. Meteorological Data

The meteorological data utilized in this research were sourced from the China Meteo-
rological Data Network and encompassed the daily average temperature and precipitation
recorded at 53 National Meteorological Observatory (NMO) stations between the years
2000 and 2020. Their locations are shown in Figure 1, and they have been meticulously
curated and subjected to quality control procedures by the National Climate Information
Center, ensuring a data loss rate of under 0.1% [8,49]. In instances where data were sparsely
missing, interpolation techniques leveraging information from neighboring stations were
employed [50].

2.2.3. CMIP6 Data

The Earth system model is an important tool for comprehending the past and anticipat-
ing potential future climate change. The Working Group on Coupled Modeling (WGCM)
was established by the World Climate Research Program (WCRP) in 1995 to spearhead and
coordinate research efforts. A pivotal development stemming from the WGCM’s inception
was the initiation of the CMIP [51]. The Scenario Model Comparison Project (Scenario
MIP) is a key subproject within CMIP6. It integrates various Representative Concentration
Pathways (RCPs) with Shared Socio-economic Pathways (SSPs) to develop its scenarios.

Meteorological projections for future periods are based on the Canadian Earth System
Model version 5 (CanESM5), the best climate model selected in CMIP6 for simulating
warming trends in northeastern China [52]. Since most CMIP6 models underestimate the
multi-year variability in the regional mean temperature and its linear trend, bias correction
is needed, and the future climate is predicted based on the bias correction results [53]. The
quantile mapping method was applied to bias-correct the temperature data in three different
scenarios for the future period of the preferred climate model. The basic assumption is
that the difference between the climate model and the observed values for a given quantile
during the training period will remain consistent in the future period. The correction
method for temperature can be written mathematically as follows [54]:

x̃m−p.adjust = xm−p + (F−1
o−c(Fm−p(xm−p))− F−1

m−c(Fm−p(xm−p)) (1)

where F represents the cumulative distribution function, F−1 represents quantile cumulative
distribution function, both of which apply to either observations (o) or model outputs (m)
during a historical training period or the current climate (c), as well as the future projection
period (p). x̃m−p.adjust represents the model value after bias correction, and xm−p represents
the model value before bias correction.

The climate model data utilized in this study consisted of monthly temperature
simulations generated by the CanESM5 global climate model for 2021–2100 from the
CMIP6 data. CanESM5 is the current version of the Canadian Centre for Climate Modeling
and Analysis’s global model, with a resolution of 2.81◦ × 2.81◦. There are three scenarios as
follows: the low emission scenario SSP1-RCP2.6 (SSP126), the medium emission scenario
SSP2-RCP4.5 (SSP245), and the high emission scenario SSP5-RCP8.5 (SSP585). Data were
obtained from https://esgf-node.llnl.gov/search/cmip6 (accessed on 23 September 2023).

2.3. Methods
2.3.1. MODIS Data Preprocessing

The MODIS data from 2000 to 2020 were preprocessed using Environment for Visual-
izing Images (ENVI), which included coordinate system conversion, data splicing, clipping,
and cloud pollution removal. The images were subjected to band operation to obtain the
NDVI, EVI, and LSWI spectral indices. Pure pixels were averaged to obtain representative

https://esgf-node.llnl.gov/search/cmip6
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time series images for various categories, including the Normalized Difference Vegetation
Index (NDVI), Land Surface Water Index (LSWI), and Enhanced Vegetation Index (EVI).

The extraction of each land type primarily relies on the phenological characteristics
in different periods. Some studies show that the classification accuracy based on the
vegetation index is higher than that of other methods [55]. The EVI is not only easily
saturated in high biomass areas but can also reduce the influence of background values
and atmospheric conditions; it is more suitable for extracting paddy field information. The
NDVI is commonly used to assess vegetation growth and coverage, while the LSWI is a
normalized index that incorporates the near-infrared and shortwave infrared bands. The
shortwave infrared band is particularly responsive to variations in water and can effectively
distinguish water, paddy fields, and waterless land. The value range of the LSWI is [−1, 1].
The above three indices were calculated by using the band calculation tools in ENVI. The
calculation formulas of the EVI, NDVI, and LSWI are as follows [56]:

EVI = 2.5 × ρnir − ρred
ρnir + 6ρred − 7.5ρblue + L

(2)

NDVI =
ρnir − ρred
ρnir + ρred

(3)

LSWI =
ρnir − ρswir

ρnir + ρswir
(4)

where ρnir represents the reflectance of the near-infrared channel; ρswir represents the
reflectance of the shortwave thermal infrared channel; ρred represents the reflectance of the
red channel; ρblue represents the reflectance of the blue channel; and L is the soil regulation
parameter, which is set to 1.

2.3.2. Land Use Classification Method

The primary land types in Northeast China include grassland, dry fields, paddy fields,
woodland, construction land, water, and unused land. The spectral characteristics and
phenological characteristics of these 7 land types are different. According to the features
of the study area and its land ecological characteristics, the classification system was
established by using the two-grade classification method. Cropland can be subdivided into
paddy fields and dry fields, as the phenological characteristics and geographical range vary
considerably between the different crop types grown.

Reference pixels were selected for spectral feature analysis, time series curve analysis,
and classification accuracy evaluation. A time-consuming and laborious approach involves
obtaining the ideal reference pixels through fieldwork. It is simpler and more effective
to use high spatial resolution images to validate low spatial resolution images [57]. The
visual interpretation of approximately 500 pixels of each of the seven land classes from
Google Earth imagery and a comparison with the CLCD data (http://doi.org/10.5281/
zenodo.4417810 (accessed on 23 September 2023)) and Chinese Academy of Sciences (http:
//www.resdc.cn (accessed on 23 September 2023)) classification results was conducted to
obtain reference pixels.

The classification method is based on the decision tree algorithm, supplemented
by the maximum likelihood method, threshold method, and phenological features [58].
The decision tree uses a top-down recursive approach, using appropriate classification
algorithms to create classification nodes and branches based on the spectral characteristics
of various land types [59], gradually classifying these various land types. The maximum
likelihood method automatically identifies the land class based on the specific time series
curve of that land class [60]. The threshold method applies one or more band thresholds to
identify a land type based on its band interval characteristics [61,62]. Phenological features
are used to identify land types based on the spectral features generated by the growth
features of plants.

http://doi.org/10.5281/zenodo.4417810
http://doi.org/10.5281/zenodo.4417810
http://www.resdc.cn
http://www.resdc.cn
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The classification process was based on multitemporal MODIS images, preprocessed
surface reflectance data and vegetation index data, analyzed time-series curves and spec-
tral characteristics according to characteristic variables and surface reflectance bands, a
constructed decision tree model, and the output classification results. Finally, the accuracy
of the classification results was assessed using the confusion matrix method.

According to the analysis of the spectral features and index time series curves, and
after iterative trials, the land use types were extracted according to the following rules:

(1) Water. The reflectance of the water land type in band 6 on 2 June and 8 October
was significantly different than the reflectance of the other land types in band 6. The
water body on 8 October was not yet frozen, the surface was not covered by aquatic
vegetation, and the water body was clearly visible. Water bodies were extracted using
band 6 > 1000 on 2 June and band 6 > 1000 on 8 October.

(2) Woodland. The EVI for woodland differed significantly from that of the other land
types on 25 May and 2 June. Woodland was extracted based on EVI > 0.44 on 25 May
or EVI > 0.48 on 2 June.

(3) Unused land. Unused land has no surface cover, high surface albedo year-round, and
low vegetation and moisture indices. It was extracted using a band 6 > 4000 on 7 April,
EVI < 0.379 on 12 July, EVI < 0.3488 on 28 July and LSWI < −0.03.

(4) Paddy field. Referring to Google Maps images from 2000 to 2010, paddy fields were
jointly discriminated using band 6 on 2 June and LSWI on 28 July with threshold
conditions of <1600 and >0.3, respectively.

(5) Construction land. The LSWI on 7 April, NDVI on 28 July, LSWI on 8 October, and
band 6 on 24 October were used to identify construction land, with values ranging
from −0.15 to −0.02, 0.1 to 0.5, −0.1 to 0.1, and 1000 to 2600, respectively.

(6) Dry field. The LSWI and EVI time series curves of the dry fields were significantly
different from those of the grasslands, which were extracted according to the maximum
likelihood method.

(7) Grassland. The remaining pixels were classified as grassland.

2.3.3. Classification Accuracy Verification

According to the above methods and processes, the land in Northeast China from
2000 to 2020 was classified. The period from 2000 to 2010 served as the calibration period,
while the period from 2011 to 2020 was used for validation. The calibration period data were
used to determine the model threshold of 7 land type classifications, and the validation
period data were used to test the time extension of the model. The confusion matrix
method was utilized to compare the consistency of the reference pixel classes with the
classification results at the same location. Producer accuracy is the proportion of correctly
classified elements relative to the total number of elements in the entire image. The kappa
coefficient (K) and the total precision (Po, %) were utilized to determine the accuracy of the
classification results [56]. The equations are as follows:

Po =
S
n
· 100% (5)

Pc =
(g1 · f1 + g2 · f2)

n2 (6)

K =
(Po − Pc)

(1 − Pc)
(7)

where Po represents the total precision, indicating the probability that the classification
result accurately reflects the actual land use type, %; n represents the total number of pixels
in the image; S represents the number of pixels in the same position where the reference
pixel land type and the classification result land type agree; Pc is the chance agreement rate,
where the probability of the joint occurrence of the two is the product of the probability
of the separate occurrence when the classification result is not related to the actual land
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use type; g1 indicates the number of pixels corresponding to a land type in the reference
pixel; g2 indicates the number of pixels corresponding to other land types in the reference
pixel; f 1 indicates the number of pixels corresponding to a land type in the classification
result; and f 2 indicates the number of pixels corresponding to other land types in the
classification result.

2.3.4. Paddy Field Centroid

The centroid method was employed to determine the geographical centroid of paddy
fields in Northeast China. The centroid was calculated by averaging the coordinates of
each unit of a certain land type. The dynamics of the paddy fields from 2000 to 2020 were
obtained from the changes in the centroid. The equations are as follows:

Xk,t =

n
∑

i=1
Xi,k,t

n
(8)

Yk,t =

n
∑

i=1
Yi,k,t

n
(9)

where Xk,t represents the longitude and Yk,t represents the latitude of the geographical
centroid of land use k, respectively; t represents the year; Xi,k,t and Yi,k,t denote the centroid
coordinates of pixel i of a certain land use type; and n represents the total number of paddy
field pixels.

2.3.5. Quantifying the Impact of Drivers of Paddy Field Area Change

The drivers of paddy field area change in Northeast China can be categorized into
three groups, namely, scientific and technological development factors, climatic factors, and
policy factors. The contribution of each factor to paddy field area change was quantitatively
identified by multiple linear regression methods [63,64]:

At =
1

∑
j

αjBj,t +
1

∑
j

β jCj,t + γDt (10)

where At represents the area of paddy fields in year t; Bj,t represents the technological
development factor, including the total power of agricultural machinery and effective
irrigated area in year t, which was obtained from the China National Bureau of Statis-
tics (https://www.stats.gov.cn/sj/ (accessed on 23 September 2023)); and Cj,t represents
climatic factors, which consist of average air temperature and annual precipitation. The
policy factor Dt is set as a dummy variable, where Dt = 1 indicates the presence of favorable
policies for paddy field development and Dt = 0 indicates the absence of such policies. The
estimated parameters are αj, βj, and γ.

2.3.6. Climate Change Analysis

Historical temperature changes in Northeast China were analyzed based on the NMO
station data. The spatial distribution of annual average temperature in 2000 and 2020 in the
study area was derived using kriging spatial interpolation. Kriging was best cross-validated
in the study area.

Analysis of future temperature changes in Northeast China and the adjacent regions
was based on the CMIP6 data. The future time period is 2021–2100, and the climate change
scenarios used were SSP126, SSP245, and SSP585. Trends in annual average temperature
change were calculated using trend analysis, and a pixel-by-pixel linear trend analysis was

https://www.stats.gov.cn/sj/
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used to identify trends in annual average temperature variables over a long time series
as follows:

slope =

n ×
n
∑

j=1
j × Xj −

n
∑

j=1
j

n
∑

j=1
Xj

n ×
n
∑

j=1
j2 −

(
n
∑

j=1
j

)2 (11)

where Xj denotes the time series variable, with j denoting the sample series number and
t ranging from 1 to n, where n is the total number of years. A slope value greater than
0 signifies an upward trend in the corresponding variable, while a slope value less than
0 indicates a downward trend. The absolute value of the slope reflects the magnitude of
the change.

3. Results and Discussion
3.1. Land Use Classification and Accuracy Verification

The time series curves of the NDVI, EVI, and LSWI, drawn according to the reference
pixels of seven land types, are shown in Figure 2. In different time intervals, the phenolog-
ical characteristics and population characteristics were different, and the corresponding
spectral characteristics and time series curves were significantly different. Different time
intervals exhibit variations in the phenological characteristics and community traits of
land use types, which accordingly influence the spectral characteristics and time series
curve of indices [65]. For instance, before transplantation, paddy fields are flooded, while
post-transplantation, the paddy area consists of both water bodies and seedlings [10]. The
spectral characteristics of paddy fields during the transplantation period are unique com-
pared to other land use types. Affected by human or natural factors, the corresponding
time series curve fluctuated and changed.
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Figure 2. Time series mean curves of three indices under different land use types: (a) NDVI, (b) EVI,
and (c) LSWI.

The vegetation had unique spectral characteristics from seedling emergence to mature
harvest or wilting, and the corresponding vegetation index time series curve showed a
rising and then declining trend. From early April to early June, when the woodlands are
in the germination stage and the rice and dry crops are in the transplanting and seedling
stages, the NDVI and EVI of the woodlands were notably higher compared to those of other
land types, with the maximum differences reaching 0.3 and 0.2, respectively. The LSWI for
water was always greater than that for other land types and fluctuated less. Unused land is
without any cover year-round, the curve of each index is smooth, the moisture content is
lower, the LSWI is significantly smaller than the LSWI of other land types, and the peak
fluctuates around 0. Grassland waveforms were similar to those of the woodland, but the
indices were low overall. Rice was in the transplanting period from mid-May to early June,
as it was irrigated with flooded water, and the LSWI for paddy fields was considerably
higher than the LSWI for dry fields, grassland, and construction land, but similar to the
LSWI of the water and woodland land types. All indices were lower in construction land,
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with a small amount of vegetation cover such as greenery, so the vegetation index was
slightly higher than that of unused land.

The confusion matrix was used for accuracy verification, and the classification accuracy
evaluation of the calibration period is shown in Table 1. The producer accuracy of the
seven types of land from 2000 to 2010 was >0.773, the accuracy of the woodland type
ranged from 0.893 to 0.934, the accuracy of the paddy field type ranged from 0.884 to 0.931,
and the overall accuracy varied between 84.3% and 87.3%, while the kappa coefficient
ranged from 0.797 to 0.825, which indicated good classification accuracy. The classification
accuracy was higher for paddy fields, dry fields, and woodlands, with large areas and
concentrated distributions, and lower for grasslands, unused lands, and construction lands,
with small areas and fragmented distributions. The reason for this is that there are more
mixed pixels in the more fragmented land types, and the presence of mixed pixels reduces
the classification accuracy when the basic unit of detection and acquisition of feature
information is the pixel [66]. The validity and suitability of different classification rules are
different, the maximum likelihood method is sensitive to the sample size and composition,
and its classification results will change with the instability of the sample.

Table 1. The evaluation index derived from the confusion matrix from 2000 to 2010.

Year

Producer Accuracy
Overall

Accuracy/%
Kappa

CoefficientPaddy
Field Dry Field Grassland Unused

Land Water Woodland Construction
Land

2000 0.907 0.881 0.841 0.786 0.865 0.923 0.863 86.0 0.813
2001 0.915 0.873 0.822 0.741 0.906 0.913 0.827 85.6 0.809
2002 0.885 0.885 0.785 0.784 0.875 0.909 0.841 84.3 0.797
2003 0.917 0.884 0.849 0.835 0.827 0.916 0.822 84.9 0.802
2004 0.874 0.831 0.745 0.721 0.844 0.898 0.833 83,9 0.788
2005 0.931 0.897 0.863 0.771 0.891 0.934 0.785 86.4 0.816
2006 0.884 0.906 0.873 0.766 0.894 0.913 0.849 86.7 0.819
2007 0.897 0.911 0.842 0.803 0.891 0.896 0.863 86.5 0.817
2008 0.906 0.905 0.894 0.846 0.862 0.916 0.873 87.3 0.825
2009 0.884 0.886 0.773 0.766 0.894 0.893 0.849 86.7 0.819
2010 0.897 0.891 0.842 0.803 0.801 0.896 0.863 86.5 0.817

The evaluation index of classification accuracy during the validation period is shown
in Table 2. The 2011–2020 mapping accuracy for the seven land types was >0.716, with
paddy field accuracy ranging from 0.849 to 0.909, overall accuracy varying between 80.5%
and 83.9%, and kappa coefficients varying between 0.761 and 0.793, which basically met
the application requirements. Similarly, the classification accuracy was higher for lands
with large areas and concentrated distributions (paddy fields, dry fields, and woodlands)
and lower for lands with small areas and fragmented distributions (grasslands, unused
lands, and construction lands).

Table 2. The evaluation index derived from the confusion matrix from 2011 to 2020.

Year

Producer Accuracy
Overall

Accuracy/%
Kappa

CoefficientPaddy
Field Dry Field Grassland Unused

Land Water Woodland Construction
Land

2011 0.867 0.875 0.805 0.735 0.871 0.861 0.825 83.9 0.793
2012 0.887 0.853 0.721 0.743 0.833 0.855 0.833 81.4 0.769
2013 0.863 0.865 0.821 0.781 0.832 0.825 0.815 80.5 0.761
2014 0.861 0.835 0.766 0.716 0.799 0.777 0.835 80.8 0.764
2015 0.854 0.867 0.821 0.762 0.767 0.841 0.807 80.8 0.764
2016 0.889 0.881 0.823 0.753 0.815 0.844 0.743 81.6 0.771
2017 0.849 0.834 0.731 0.729 0.844 0.851 0.799 81.7 0.772
2018 0.909 0.871 0.826 0.768 0.846 0.833 0.831 82.3 0.778
2019 0.882 0.858 0.803 0.755 0.815 0.831 0.791 81.3 0.768
2020 0.899 0.854 0.791 0.754 0.856 0.831 0.811 82.0 0.775
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3.2. Spatiotemporal Changes in Paddy Fields

The classification results from 2000 to 2020 are shown in Figure 3 (showing one every
2 years). The woodland and dry field types were the largest land types, and the woodland
type was primarily distributed in northern Inner Mongolia, the northwest, central, and
southeastern regions of Heilongjiang, and the eastern parts of Jilin and Liaoning. The dry
field was predominantly found in the central region of the study area and the northeastern
part of Heilongjiang Province. Most of the forestland was distributed in the high elevation
area, while other land types were located in the plains. Grassland and unused land were
mainly distributed in the western part of the study area. It was obvious that some dry fields
and grasslands in the northeast were gradually transformed into paddy fields. Due to the
farmers’ preference for cultivating rice, they have abandoned dryland crops in favor of rice
cultivation. The areas of paddy fields, dry fields, and woodlands all showed a continuous
upward trend. The most notable change was the expansion of dry fields, followed by that
of woodlands and paddy fields. The rates of increase for paddy fields, dry fields, and
woodlands were 1.51 × 103 km2/a, 4.03 × 103 km2/a, and 3.00 × 103 km2/a, respectively.
The land type with the largest decreasing area was the grassland type, with a decrease of
approximately 14.67 × 104 km2. The spatial change in paddy fields was most obvious from
2000 to 2020, mainly in expansion, especially in the Sanjiang Plain and Songnen Plain of
Heilongjiang Province [8]. The woodlands in the northwest of the study area are mixed in
the figure, and the main land types resulting in mixing are dry fields and grasslands. There
were mixed pixels in the identification of land use types, but the distribution of the seven
land types in the study area was continuous and complete, which significantly minimized
the effect of mixed pixels on the accuracy of the results.

Northeast China, as a key grain production base, is the country’s primary rice-
producing region. In particular, rice production in Northeast China has seen rapid growth in
recent years. Its contribution to the total output value of grain in China is important. Much
attention has been given to the development of rice in Northeast China [16,18,67,68]. More-
over, in recent decades, paddy fields in Northeast China have changed considerably [69].

Changes in paddy fields prior to 2000 have been extensively studied [19,20]. Since
1950, the development of rice has gradually improved. At first, rice cultivation was mainly
favored in Liaoning and Jilin. In 1949, Heilongjiang Province had only 1.116 × 105 ha of
rice. In 1985, the technique of dry cultivation and sparse planting of rice was popularized in
Heilongjiang Province, resulting in the rapid development of rice cultivation in the whole
province. The area used for rice cultivation reached 15.64 × 105 ha in 1999, representing a
13-fold expansion. Spatially, this area also gradually expanded from the southernmost part
to all parts of the province. According to the statistical data, the total rice cultivation area
in Northeast China saw minimal change during the 1950s and 1960s. In the 1970s–1980s,
paddy field area had a fluctuating growth stage that increased from 8.861 × 105 ha in
1987 to 16.352 × 105 ha in 1990, with an average annual growth rate of 5.23% [19]. Rice
production in Northeast China has been developing rapidly since 1990. Rapid development
has led to a significant change in the regional layout of rice in China. Building on the
findings of Gao and Liu [70], Heilongjiang Province experienced an increase in paddy fields
by approximately 40,065 km2 between 1958 and 2018, with 18,461 km2 of this expansion
occurring from 1958 to 2000. As the climate has warmed, rice cultivation has expanded
rapidly, pushing the northern boundary up to 52◦ N [71]. The share of rice production in
grain production in the Northeast has also gradually increased, and rice has replaced wheat
as the most important grain. Between 1980 and 2010, the rice cultivation area in Northeast
China experienced a rapid expansion, increasing by nearly 4.5 times [15]. Meanwhile, the
expansion rates of paddy areas were 504 km2/a and 369 km2/a during 1958–1980 and
1980–2000, respectively [72]. The timely updating of land use data in Northeast China is
essential. The paddy field area in Northeast China increased by 36.8 × 105 ha from 2000 to
2017 [18], making this region known as the new “China’s bowl” [16].
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The centroids were calculated by averaging the coordinates of each field unit (Figure 4).
The centroids of paddy fields and dry fields are distributed in Heilongjiang and Jilin. The
centroids of dry fields are relatively concentrated and do not change much. The centroids
of the paddy fields showed an obvious banded distribution. They gradually shifted toward
the northeast, from Jilin Province to Heilongjiang Province (Figure 5), and the migration
distance was 292 km. Before 2010, the centroids were more dispersed and moved farther
away; after 2010, they were concentrated and moved less. This indicates that the spatial
distribution of paddy fields in the northeast changed rapidly in the first decade and slowed
down in the second decade.
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3.3. Drivers of Paddy Field Change

The reasons behind the expansion of paddy fields are complex. Many scholars have
analyzed and studied them. Drivers such as climate change, technology development,
farmland policies, and agricultural inputs have been proposed successively. The contribu-
tions of each factor were assessed using a multiple linear regression model, with the results
presented in Table 3. The total power of agricultural machinery, effective irrigated area,
policy support, and average air temperature all positively influenced the area dedicated to
rice cultivation, while annual precipitation negatively affected it. Notably, the total power
of agricultural machinery and effective irrigated area had a more substantial impact on
paddy field area growth, likely because rice cultivation inherently relies on both agricultural
machinery and irrigation. Specifically, for every 1% increase in average temperature, the
area under rice production increased by nearly 0.02%.

Table 3. Estimated paddy field area function for Northeast China from 2000 to 2020.

Explanatory Variables Estimated Coefficients t-Values

Total power of agricultural machinery 0.618 2.202
Effective irrigated area 0.582 1.872

Policy support 0.254 2.770
Average air temperature 0.021 2.298

Annual precipitation −0.028 −0.465

Climate change plays a crucial role in influencing rice development. Many studies
have identified it as the primary driver behind the expansion of rice cultivation. It was
proven that climate change, especially temperature increase, greatly affects the changes
in paddy field area [15]. Precipitation has not increased significantly during the rice
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growth period in recent decades, and it even showed a decreasing trend in Northeast
China [72,73]. Rice cultivation in Northeast China primarily relies on groundwater and
surface water irrigation rather than precipitation [74]. Therefore, the expansion of paddy
fields in Northeast China is not closely related to regional precipitation changes [15]. Past
studies have proven that temperature fluctuations increased in Northeast China from 1950
to 2020. The increase in temperature provided more heat resources for crop production.
Rice growth duration also improved and shortened in response to climate change. Climate
warming in Northeast China has expanded the paddy field area and caused significant
changes in the cropping structure of food crops. In the past 30 years, the cumulative
temperature in the northeast has increased, and the cumulative temperature zone has
shifted northward and eastward. The annual average temperature decline trend at the
centroid is 0.0454 ◦C/a, which is less than the annual average temperature decline trend
associated with the latitude (Figure 6). Climate warming has eased the constraints of cooler
northern temperatures on the northward migration of paddy fields. The temperature in
Northeast China is gradually rising. As shown in Figure 7, the high-temperature area
expanded from 2000 to 2020, and the isotherms moved northward. Climate warming in
the northeast cold region was a major reason for the northward shift in the rice planting
centroid [70,75].
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Additionally, the techniques of greenhouse seedling raising and well water tempera-
ture heightening have been gradually popularized, reducing chilling injury in rice seedlings,
which is another main reason for the expansion of paddy fields. The continuous improve-
ment of rice farming technology is another important factor for the development of rice
in cold regions [76]. Regarding seedling planting, Jilin and Heilongjiang have focused
on the promotion of dry seedling technology in greenhouses, while Liaoning has mainly
experimented with the promotion of nonwoven fabric cover insulation seedling technology.
With the continuous improvement and popularization of greenhouse seedling cultivation
and well water warming technologies, frost damage to rice seedlings has been reduced. In
the transplanting link, Jilin and Heilongjiang promoted sparse planting and super sparse
planting technology. Drought and water-saving cultivation techniques were also suggested.
For example, in Jilin Province, comprehensive water-saving and drought-resistant cultiva-
tion techniques were vigorously promoted, and in Liaoning Province, drought-resistant
and water-saving techniques such as dry seedlings, dry land preparation and intermittent
irrigation were promoted, which eased the pressure on water resources [71]. Rice produc-
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tion mechanization has also developed quickly. In 2006, the integrated mechanization rate
of field operations in Heilongjiang Reclamation reached 92%, more than 50% higher than
that of the whole country. The expansion of rice cultivation has been supported by the
development of cultivation techniques, particularly against chilling injury [77,78].
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Figure 7. Spatial distribution of annual average temperature in Northeast China: (a) 2000, (b) 2020.

To bolster national food security, China’s central government has introduced a range
of policies in Heilongjiang that offer economic incentives and preferential policies for
agricultural development and farmland preservation. These measures have encouraged
local governments and farmers to actively participate in land reclamation and crop culti-
vation [78,79]. Since 1979, the state has significantly increased the purchase price of grain,
resulting in an increase in the price of rice in the Northeast region. The benefits of rice
cultivation are higher than those of dry crops [80,81]. Moreover, many people in China
believe that rice from Northeast China tastes better and there is less concern about soil
and water contamination than rice from southern China, which has contributed to the
higher profitability and expansion of paddy fields in Northeast China [82]. Farmers have a
stronger willingness to cultivate rice with policy and market support.

3.4. Prediction of Future Paddy Fields Under Future Climate Scenarios

The conditions that need to be met for rice to grow include water, heat, and space.
Rice cannot be cultivated in areas with low annual average temperatures [27]. Northeast
China was too cold to grow rice before the 1980s [83,84]. However, the above discussion
shows that the paddy boundary is gradually moving to the northeast as the climate warms,
so it is possible that rice will continue to develop to the northeast and even cross the
Russian–Chinese border and grow in the southern part of Far East Russia due to climate
change. The future temperature change in Northeast China from 2021 to 2100 was analyzed
based on the bias correction results of the CMIP6 data (Figure 8) to determine whether
it can reach the suitable temperature of 10–38 ◦C for rice growth [85]. The latest trans-
planting period for rice in Northeast China generally occurs in May. If the temperature in
May reaches 11.5 ◦C, the rice growth requirements can be met [86]. In this study, it was
determined that the temperature conditions required for rice cultivation were satisfied
if the local average temperature in May steadily exceeded 11.5 ◦C (greater than 11.5 ◦C
for five consecutive years), and the site was considered a potentially suitable area for rice
cultivation (Figure 9).
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According to the results, the average temperature in Northeast China and most of
its surrounding areas will continue to rise under the three scenarios of SSP126, SSP245,
and SSP585 in 2021–2100. The climate in the Far East Russia border with Northeast China
will gradually warm, with a significant upward trend in average temperatures. Under
the SSP126 scenario, the average temperature in most regions shows an upward trend.
The temperature will increase fastest in the Far East Russia border with Northeast China,
reaching 0.021 ◦C/a. The temperature in May will reach a maximum of 13.26 ◦C in 2100,
which just meets the temperature conditions for rice growth [22]. The area that achieves the
temperature requirement for rice growth will be small until 2050 in Far East Russia, and the
suitable growth area for rice will increase by 2100. Under the SSP245 scenario, the increase
in temperature will be fastest in Far East Russia and in the northeastern border region of
Northeast China, reaching 0.065 ◦C/a. The annual average temperature in May could reach
16.40 ◦C in 2100, which meets the temperature conditions for rice growth. In 2050, there
will be some areas that meet the requirements for rice cultivation, and in 2100, the areas of
Far East Russia near Northeast China will basically meet them. Under the SSP585 scenario,
the fastest rate of temperature increase in the northeast and the surrounding regions is
0.104 ◦C/a. In 2100, the May average temperature in Far East Russia could reach 20.38 ◦C,
which will completely meet the temperature conditions for rice growth. Due to the rapid
increase in temperature, Far East Russia will have many areas near China that could meet
the temperature requirements for rice growth by 2100. The potential suitable area for rice
cultivation is the largest in the SSP585 scenario. The area suitable for rice cultivation under
the three scenarios tends to expand to the northeast in 2021–2100. The higher the future
emissions are, the larger the potentially suitable area for rice planting in 2100. Therefore,
Far East Russia will likely meet the temperature conditions for growing rice in the future,
and paddy fields can be developed if water and land resources are sufficient. There exists
the potential to continue the development of rice cultivation from China to the northeast.

4. Conclusions

Land use and land cover in Northeast China has changed considerably. MODIS remote
sensing data were used to identify land use types from 2000 to 2020 through the decision
tree method and to analyze the main land type changes. The future development trend of
paddy fields from 2021 to 2100 was also explored based on the temperature predicted by
the CMIP6 climate model.

A decision tree model was constructed based on the phenological features of each
land type to identify the spatiotemporal distribution of each land type in Northeast China.
The overall accuracy in the calibration period ranged from 84.3% to 87.3%, and the kappa
coefficient ranged from 0.797 to 0.825. The overall accuracy during the validation period
varied between 80.5% and 83.9%, and the kappa coefficient ranged from 0.761 to 0.793.

LUCC in Northeast China is dominated by the expansion of woodlands, paddy fields,
and dry fields, with the area of grasslands gradually decreasing. Among them, paddy
fields show a gradual northward shift, with the centroids gradually shifting toward the
northeast. Paddy fields are mainly transformed from dry fields. Woodlands and dry fields
are mainly converted from grasslands.

The expansion of paddy fields in Northeast China is influenced by several factors. The
natural factor is the warming climate that meets the necessary growth conditions for rice.
Technological factors include the continuous progress in rice planting techniques, such as
the gradual improvement and expansion of local well water heating and greenhouse rice
growing techniques. The social factor is the strong support of the national government in
terms of policy.

According to the future temperature under different scenarios of CMIP6, the temper-
ature in Far East Russia and northern Northeast China will gradually rise. These areas
will thus meet the temperature conditions for rice growth in SSP126, SSP245, and SSP585.
Under the SSP585 scenario, the temperature will rise the fastest, and the area suitable for
rice cultivation will be the largest. Therefore, the climatic conditions for the continuous
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northward movement of paddy fields will be met. It will be possible to grow rice in Far-East
Russia in the future.
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