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Abstract: This study addresses the problem of detecting occluded apples in complex unstructured
environments in orchards and proposes an apple detection and segmentation model based on
improved YOLOv8n-SGW-YOLOv8n. The model improves apple detection and segmentation by
combining the SPD-Conv convolution module, the GAM global attention mechanism, and the Wise-
IoU loss function, which enhances the accuracy and robustness. The SPD-Conv module preserves
fine-grained features in the image by converting spatial information into channel information, which
is particularly suitable for small target detection. The GAM global attention mechanism enhances the
recognition of occluded targets by strengthening the feature representation of channel and spatial
dimensions. The Wise-IoU loss function further optimises the regression accuracy of the target frame.
Finally, the pre-prepared dataset is used for model training and validation. The results show that the
SGW-YOLOv8n model significantly improves relative to the original YOLOv8n in target detection
and instance segmentation tasks, especially in occlusion scenes. The model improves the detection
mAP to 75.9% and the segmentation mAP to 75.7% and maintains a processing speed of 44.37 FPS,
which can meet the real-time requirements, providing effective technical support for the detection
and segmentation of fruits in complex unstructured environments for fruit harvesting robots.

Keywords: fruit detection; fruit segmentation; deep learning; occluded targets; attention mechanisms

1. Introduction

As the fourth fruit in global production, the total annual production of apples is
about 82.934 million tonnes, while China, as the first big producer of apples, has a total
annual average apple production of nearly 45 million tonnes, accounting for about 53.66%
of the total global apple production [1]. These data indicate that apples occupy a very
important position in the fruit trade in China and the world. Behind the huge production
volume is the support of huge productivity; although the existing agricultural automation
equipment has greatly liberated the productivity and improved the efficiency of agricultural
production [2], as far as apple picking is concerned, the research and development of the
related agricultural automation equipment is still facing a lot of difficulties, the first and
foremost is how to make the automated picking equipment really like a human being who
can see the apples growing in the trees and real-time Detection and classification. Accurately
achieving the detection and classification of fruits and providing feasible picking goals for
automated picking equipment is to achieve the premise of automated fruit picking tasks.

In recent years, the integration of computer vision and artificial intelligence technology
has been widely applied to the process of agricultural production [3], and more and more
researchers and scholars are involved in using and optimising the means to promote the
research and development and application of intelligent agricultural equipment, which
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provides an effective method for solving the detection and classification of fruit in the
production task of fruit picking [4]. The development of image processing techniques for
fruit detection has gone through three stages: traditional digital image processing, machine
learning-based image processing and deep learning-based image processing.

YOLO (You Only Look Once), as a representative of the most commonly used deep
learning models, is favoured by scholars and researchers due to its end-to-end real-time
processing speed, high prediction accuracy, global feature learning, and simplified training
and inference process [5], and YOLOv8, as the newest deep learning model of the YOLO
series, with its agricultural Outstanding performance is considered to be the most suitable
deep learning model for outdoor complex unstructured environments [6]. Yang et al. [7]
proposed a new LS-YOLOv8s model for detecting and grading strawberry ripeness, which
is based on the YOLOv8s deep learning algorithm and integrates the LW-Swin Transformer
module in the feature fusion stage. The Swin Transformer module was added to the
TopDown Layer2 to capture long-range dependencies in the input data and to improve the
generalisation ability of the model using a multi-head self-attention mechanism. Finally, a
more efficient feature fusion network is achieved by introducing a residual network with
learnable parameters and scaling normalisation into the original residual structure of the
Swin Transformer, and ultimately LS-YOLOv8s achieves better detection accuracy and
speed than YOLOv8m, using only about 51.93% of the parameters to achieve 94.4% of the
detection accuracy and 19.23 fps detection speed, an improvement of 0.5% and 6.56 fps,
respectively. In order to detect the exact picking location of the main stem of lychee, Qi
et al. [8] proposed an open-access workflow using YOLOv5 and PSPNet as the main stem
detection and segmentation models, respectively. The flow combines deep learning with
traditional image processing algorithms to detect the main stem with YOLOv5, then use
PSPNet for semantic segmentation, and finally obtain the pixel coordinates of the main
stem picking point. The method has a recall of 76.29% and a precision of 92.50%, which
lays the foundation for the subsequent acquisition of 3D coordinates. Zhang et al. [9]
chose YOLOv8n as the base model and then replaced the YOLOv8n backbone structure
with the Fasternet main module to improve the computational efficiency in the feature
extraction process. Then, we redesign the PAN-FPN structure used in the original model to
BiFPN structure to make full use of the high-resolution features and extend the perceptual
field of the model while balancing the computational amount and model size and finally
get the improved target detection algorithm YOLOv8-FCS, and the experimental results
show that the grading accuracy of the YOLOv8-FCS model reaches 98.1%, the model size
is only 6.4 M, and the FPS is 130.3. Wang et al. [10] proposed an improved PAE-YOLO
model for the target detection problem of Yunnan millet spice in a complex background
environment. The model integrates the EMA attention mechanism and DCNv3 deformable
convolution to improve the feature extraction capability and model inference speed for
small targets. The experimental results show that the model achieves a mean average
precision (mAP) of 88.8%, an F1 score of 83.2, a model size of 5.7 MB, and GFLOPs of
7.6 G, which is better than the original model. Wang et al. [11] proposed an improved
YOLOv8n-vegetable model for the detection of small hot targets in Yunnan millet. The
new model enhances feature extraction through C2fGhost convolution and OAM attention
mechanism, adds a small target detection layer, and applies the HIoU loss function to
optimise regression. Experiments show that the model improves mAP by 6.46% on the
vegetable disease detection dataset while reducing parameters and model size. Zhou
et al. [12] proposed the DDSC-YOLO model by optimising the YOLOv8n model for the
challenge of small target detection in UAV aerial images. The DualC2f structure and
DCNv3LKA attention mechanism were introduced to enhance the feature extraction and
the ability to adapt to different target sizes. The SDI-FPN and CASFF mechanisms are
designed to improve the detection accuracy of small targets and the retention of contextual
information. Tests on datasets such as VisDrone2019 show that DDSC-YOLO improves
9.3% over YOLOv8n on mAP0.5, demonstrating its superior generalisation ability. Yang
et al. [13] improved YOLOv5s to recognise graspable (unobstructed) and non-graspable
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(obstructed) apples on apple trees. They replaced the original BottleneckCSP module with
the improved BottleneckCSP-2 module and inserted the SE module to enhance the feature
representation; the feature map fusion method and the initial anchor frame size were
optimised. These improvements enabled the model to excel in recall (91.48%), precision
(83.83%), mAP (86.75%), and F1 (87.49%), and the recognition time per image was reduced
to 0.015 seconds. The improved model has higher mAP and faster recognition speed
compared to the original and other models, such as YOLOv3, YOLOv4 and EfficientDet-D0.
Existing apple detection algorithms for apple-picking robots often perform poorly due to
leaf occlusion, complex lighting and dense small targets. For this reason, Zhang et al. [14]
designed an improved model based on the lightweight YOLOv4 with Ghost Net feature
extraction, depth-separated convolution, and coordinate attention module to enhance
detection accuracy and speed. On the Apple dataset, the improved model achieves a mAP
of 95.72%, which is 3.45% better than YOLOv4, and performs well under multiple lighting
conditions. Ma et al. [15] proposed a WL-YOLO model based on YOLOv5s to improve
lightweight wildlife detection in complex forest environments, which effectively reduces the
number of model parameters and enhances the feature representation by introducing depth-
separated convolution, compressed excitation module, and CBAM attention mechanism.
These improvements enable WL-YOLO to significantly enhance the detection performance
in highly covert natural environments, achieving 97.25% mAP, 95.65% F1 score and 95.14%
accuracy. Compared to YOLOv5m, WL-YOLO reduces the number of parameters by
44.73 per cent and cuts detection time by 58 per cent, dramatically improving detection
efficiency and accuracy. Yuan et al. [16] proposed a grapefruit tree detection method based
on attention mechanism and cross-layer feature fusion, introducing a hybrid attention
mechanism module based on YOLOx-nano to improve feature extraction in space and
on channel, using cross-layer feature fusion (CLFF) to exploit the complementarity of
shallow detail information and deeper semantic information, and using the Ghost module
instead of traditional convolution for feature extraction, reducing the influence of geometric
changes, the number of parameters and computational complexity. Compared with the
original model YOLOx-nano, the improved model has a significant increase in AP value
from 93.08% to 93.74%, and the model size is only 7.8 MB, which results in faster detection
speed, better small target detection capability and anti-obscuration performance. In order
to improve the accuracy of fruit tree canopy identification and counting, Zhu et al. [17]
proposed an improved YOLOv4 model combining Mobilenetv3, CBAM and ASFF, and
optimised pre-selected frame generation using K-means, trained with a cosine annealing
strategy. The model achieves fast and accurate detection and counting on UAV images
with a mAP of 98.21%, an FPS of 96.25, an F1 score of 93.60%, and an average overall
accuracy of 96.73%, which is suitable for digital and intelligent management of orchards.
To solve the problem of dense small objects and background noise faced by small object
detection in UAV image scenes, Ni et al. [18] proposed an enhanced YOLOv8s model by
introducing a parallel multiscale feature extraction module (PMSE) to enhance small object
feature extraction through parallel expansion and deformation convolution, and designing
a scale-compensated feature pyramid network (SCFPN) to integrate shallow and deep
feature information. In addition, the largest object detection layer is removed from the
original detection head, the ultra-small object detection layer is added, and the WIOU
loss function is used to balance the sample quality. Experiments show that the model
improves the accuracy of small object detection on public datasets. The above existing
studies were basically conducted in outdoor complex unstructured environments, and they
mainly focused on the improvement and optimisation of the three modules of the YOLOv8
network model, namely convolution, attention, and loss function, and ultimately achieved
the improvement of the improved model in terms of the average accuracy (mAP), F1 score,
and other performance mountains, which provides a good opportunity for subsequent
related studies. It provides a good reference for the subsequent related research.

This study focuses on how to solve the problem of detecting and segmenting apples
occluded by rigid obstacles (steel wires, steel pipes, thick branches) and flexible obstacles
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(leaves, thin branches) in complex unstructured environments by using a network algo-
rithm based on the YOLO deep learning to detect, classify, and segment apples (Obvious,
Occluded, and Risky) at different locations in a tree by using a network algorithm based on
the YOLO deep learning. This study improves the recognition and segmentation accuracy
of occluded targets in complex unstructured environments, improves the picking efficiency
of picking robots, and promotes the development of intelligent equipment for fruit picking.

2. Materials
2.1. Collection and Processing of Datasets

The team completed the acquisition of the image dataset on 31 July 2024 in a standard-
ised orchard in Yuncheng City, Shanxi Province, China, as shown in Figure 1.
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Figure 1. (a) An orchard in Yuncheng (b) A photograph of the fruit trees.

This dataset is acquired by the tracked automatic acquisition trolley shown in Figure 2.
The data acquisition process is as follows: firstly, the two Realsense depth cameras in
Figure 2 are used to realise the image acquisition, where camera b is about 2.1 m from the
ground, camera c is about 1.1 m from the ground, and the vertical distance between the
two cameras is 1 m. This layout not only enables a wider range of images to be acquired
but also allows the acquired images to have a lesser overlapping area, and then the two
depth cameras are connected to the laptop through the Type-C UCB3.0 data transfer cable
connects the two depth cameras and the laptop together, using the program to drive the
depth cameras and display the colour images acquired by the cameras in real-time on
the desktop of the laptop and the resolution of the colour images acquired by the depth
cameras is set to 640 × 480, and finally, the data acquired by the two depth cameras are
saved in the form of Rosbag by recording them into the corresponding Rosbag. Finally,
the data collected by the two depth cameras are saved to the corresponding Rosbag by
recording Rosbag. The tracked automatic acquisition trolley is manually operated by a
remote control, and the recorded Rosbag is used to separate the video stream into image
datasets by frame-splitting operation, which is then filtered by human beings to obtain the
final usable dataset.

The data collection work was carried out in three time periods, respectively, 7:00 to 9:00
a.m., 12:00 to 2:00 p.m., and 5:00 to 7:00 p.m. in the evening, and a total of 3091 pieces of pic-
ture data were collected, as shown in Figure 3, which covered various growth distributions
of apples on the fruit trees in the orchard at different times of the day and in different light
conditions, and then the data set was annotated by using a software called Anylabeling’s
automatic (https://pypi.org/project/anylabeling/0.1.2/, accessed on 5 October 2024). An
automatic labelling software called Anylabeling is used to annotate the dataset, and the
label file generated by the annotation is in json format, and then the json file is converted
into a txt file for YOLOv8 training through the program. As shown in Figure 4, based on the
experience of many experiments in the previous period and the orchard test, it was finally
determined that the growth of apples on the fruit tree was classified into the following
three categories: 1⃝ Obvious: completely exposed and unobstructed, or obstructed by
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leaves and branches not more than 50% of the area of the apple’s front view; 2⃝ Occluded:
obstructed by leaves and branches more than 50% of the area of the apple’s front view, or
in the edge area of the image; 3⃝ Risky: occluded by wire or steel pipe. Finally, the dataset
was randomly generated into a training set, test set and validation set for training in the
ratio of 8:1:1, of which 2473 were for the training set, 309 for the test set and 309 for the
validation set.
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2.2. Hardware and System Environment

The model training platform is equipped with NVIDIA’s GeForce RTX 4090 GPU
high-performance graphics card, which boasts 40.32 TFLOPS of floating-point computing
power and 24 GB of graphics memory, enough to complete the training of complex deep
learning models. The central processing unit is an Intel Xeon Platinum 8352 V with 10 cores
and a 2.10 GHz clock frequency, paired with 64 GB of system memory to support data
processing and multitasking needs. Moreover, 200 GB of storage space is used to ensure
sufficient data caching and fast accessibility.

For software, the stable and compatible Ubuntu 20.04 LTS was chosen as the oper-
ating system, which is particularly suitable for scientific research and high-performance
computing applications. The development environment includes Python 3.9 and Pytorch
2.0, both of which provide me with powerful programming and deep learning library
support. It also draws on NVIDIA’s CUDA 11.7 and cuDNN 8 plug-ins, which maximise
GPU performance for the massively parallel computations required in data science projects.

3. Methods
3.1. Network Model Based on Improved YOLOV8n—SGW-YOLOV8n

With the development of intelligent and automated agricultural machinery, the YOLO
series of deep learning network models have been widely used in agricultural fields such
as pest and disease detection and classification, crop maturity judgement, poultry counting,
fruit segmentation, etc. YOLO was initially proposed by Joseph Redmon [19] in 2016, which
is based on the principle of treating the target detection as a single regression problem by
a single forward propagation of a convolutional neural network (CNN), which directly
predicts multiple bounding boxes and categories in an image, thus greatly improving the
detection speed. After continuous development and production needs, YOLOv8 proposed
by Ultralytics in the USA in 2023 became the mainstream of the YOLO family of network
models, which builds on the real-time detection characteristics of the YOLO family of mod-
els by using optimised lightweight backbone networks (MobileNet [20], EfficientNet [21],
ShuffleNet [22]), multi-scale feature fusion (FPN [23], PANet [24], DeepLabV3+ [25], Re-
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fineNet [26], BiFPN [27]), the Anchor-Free [28] mechanism, and automated hyper-parameter
optimisation, which significantly improves the speed and accuracy of the target detection,
and also supports multi-task processing such as image segmentation and keypoint detec-
tion, which is suitable for a variety of practical application scenarios. In this study, YOLOv8
is chosen as the native network model for improvement, and the improved network model
is named SGW-YOLOv8n, whose network structure is shown in Figure 5. In order to
solve the problem of detecting and segmenting the different postures of apples on the tree,
such as 1⃝ Obvious, 2⃝ Occluded by leaves and branches, and 3⃝ Risky, and to provide
more accurate and feasible picking targets for apple picking robots under the complex and
unstructured outdoor environments, YOLOv8n is selected as the reference model among
the YOLO series of network models, and the optimised and improved network model
is designed.
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Firstly, the original convolution module is replaced with the SPD convolution module
in the backbone Backbone network structure of the YOLOv8n network model, which
effectively solves the performance degradation of low-resolution images and small object
detection by replacing the traditional step convolution and pooling layer with the spatial-
to-channel conversion and non-stepwise convolution; and then a global attention module
is added at the tail end of the Neck neck network module is added to the tail of the
Neck neck network, and the channel attention module and spatial attention module are
introduced to weight the input features to reduce the information reduction and amplify
the global dimensional interaction features; finally, in the segmentation head part, the
original CIoU (Complete Intersection over Union Loss) loss function is replaced by the
WIoU (Wise Intersection over Union (WIoU) loss function in the segmentation head part,
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the adaptive weighting mechanism is introduced to dynamically adjust the weights of the
loss function according to the shapes and sizes of different targets as well as other features,
which enhances the adaptive ability of the model to the complex scenes and targets, and
thus further improves the performance of the model. Since this model is based on the
YOLOv8n network architecture, replacing Conv with SPD-Conv in the convolutional layer
of the backbone network, adding a global attention module in the neck, and replacing the
CIoU loss function with the WIoU loss function, the improved network model is called
SGW-YOLOv8n.

3.2. SPD-Conv Module and Its Composition
3.2.1. Overview of the SPD-Conv Module

The original convolution module in YOLOv8 is shown in Figure 6, where the default
values of the convolution kernel size k and step size s are all 1, the default value of the
padding p is None, the activation function is SiLU, and the default in the state is True. From
the figure, it can be seen that the convolutional layer has a simple structure that is easy to
understand and implement, and it has a good ability to generalise, which can be achieved by
sharing the weights across the entire input image to reduce the model’s parameter number,
thus achieving the effect of reducing the risk of overfitting and increasing the speed of
model training, but since Conv is a standard convolutional layer, it is unable to capture
more complex or abstract features and a single size convolution is not enough to capture all
the feature information, all these will lead to unsatisfactory training results in the end.2022
Raja Sunkara et al. [29] proposed an improved Convolutional Neural Network (CNN)
innovative module SPDConv for processing images, replacing the step-size convolutional
and pooling layers in traditional CNN architectures. SPD-Conv consists of a space-to-depth
(SPD) layer and a non-step-size convolutional layer (Conv), and new CNN architectures
are created by applying SPD-Conv to YOLOv5 and ResNet, and experimentally showing
that the method significantly outperforms state-of-the-art deep learning models, especially
on more difficult tasks with low-resolution images and small objects. The principle of
operation is shown in Figure 7. The network components, the channel attention mechanism,
and the spatial attention mechanism are described in detail below.
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3.2.2. Space-to-Depth Layer (SPD)

SPD acts as a transformation layer that converts the spatial dimension of the input
image into a depth dimension, thereby increasing the depth of the feature map without
losing information. The reason for using the SPD layer is that when dealing with low-
resolution images and small objects, it is necessary to retain as much spatial information
as possible. The SPD layer avoids the loss of information in the traditional stepwise
convolution and pooling operations by converting the information from spatial dimension
to depth dimension; its principle is as follows.

Suppose there is a feature map F, with dimensionions H × W × C, where H is the
height, W is the width, and C is the number of channels. In performing the SPD transfor-
mation, we choose a scale factor s (here s = 2). The transformation rearranges each s x s
block in F to the channel dimension, a new feature map with dimensions is yielded so that
the new-to-feature map dimensions in the figure are. Assuming the position of any pixel
point in the feature map F, its new position in the feature map is calculated as:

i′ =
⌊

i
s

⌋
(1)

j′ =
⌊

j
s

⌋
(2)

c′ = c + (imods) · s + (jmods) · s · C (3)

In the above equations, i′, j′ are the spatial coordinates in the new feature map, c′ is
the new channel index, c is the channel index representing the original feature map F, and
C represents the total number of channels in the original feature map F.

3.2.3. Non-Step Convolutional Layers

The convolutional layer applied after the SPD transformation does not use a step size to
preserve fine-grained information. The reason for applying the non-step-size convolutional
layer after the SPD layer is that the non-step-size convolution is able to perform feature
extraction without reducing the size of the feature map, further preserving the fine-grained
information of the image, which is crucial for improving the recognition performance of
low-resolution images and small objects. Assuming that the number of filters for non-
stepwise convolution is set to be C2 (the number of output channels) and the filter size is
k × k, the size of the output feature map F′′ is H

s × H
s × C2. Assuming that the position

of any pixel points in the feature map F′ is B(i, j), its new position in the feature map is
calculated as follows:

F′′ (m, n, d) =
k−1

∑
i=0

k−1

∑
j=0

s2C−1

∑
c=0

K(i, j, c, d) · F′(m + i, n + j, c) + bd (4)

Equation (4) shows a standard convolution operation in convolutional neural networks
with a default step size of 1, which is mainly used to compute an element of the output
feature map. Specifically, for the position (m, n) and channel d in the output feature map F′′ ;
its value is obtained from the input feature map F′ with the convolution kernel K through
convolution, and finally a bias bd is added.

In summary, the SPD-Conv convolution module preserves a large amount of detailed
information through a spatial-to-depth transformation while reducing the spatial dimen-
sion. This transformation effectively reduces the loss of information by compressing the
spatial information into the channel dimension, which is especially effective for capturing
small objects or detailed features. The use of non-spanning convolution further enhances
the feature extraction capability of the network, allowing it to capture finer features while
preserving spatial location, making it ideal for applications requiring highly accurate fea-
ture recognition, such as fine-grained image classification. SPD-Conv is designed not only
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to be easy to integrate into existing CNN architectures but also to be flexible enough to
adapt to a wide range of complex vision tasks by adjusting its parameters, which makes
it show excellent performance in small object recognition and processing low-resolution
images. Moreover, its high compatibility and scalability make it a powerful and practical
tool for a wide range of vision-processing tasks.

3.3. Global Attention Mechanism Module
3.3.1. Overview of Global Attention Mechanisms

The global attention mechanism was proposed by Liu et al. [30] in 2021, and its
network structure is shown in Figure 8, assuming that the input is a three-dimensional
degree feature map F, where H is the height of the feature map, W is the width of the feature
map, and C is the number of channels of the feature map (also known as the number of
depths or convolutional kernels), and the input feature maps pass through the channel
attention module, in turn, The input feature maps are sequentially passed through the
channel attention module, which assigns weights to each channel in the channel dimension
to enhance the important channels; and then, through the spatial attention module, which
assigns weights to each pixel location in the spatial dimension to highlight the important
region where the target is located. Ultimately, the combination of channel attention and
spatial attention generates a more discriminative feature map, which is used to enhance
the performance of target detection or classification. Because of its ability to capture global
contextual information and dynamically adjust the feature maps, GAM performs well in
complex outdoor scenes and operates efficiently on edge computing devices. The network
components, channel attention mechanism and spatial attention mechanism, are described
in detail below.
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3.3.2. Channel Attention Mechanism

The working principle of the channel attention mechanism is shown in Figure 9,
assuming that the input is a three-dimensional feature map F ∈ RH×W×C, where H is
the height of the feature map, W is the width of the feature map, and C, which is the
number of channels of the feature map. The channel attention mechanism aims to enhance
the network’s attention to the important channels in the feature map and automatically
assign weights to different feature channels to improve the target’s feature extraction ability.
In the deep convolutional neural network, each channel represents a different feature,
such as colour, texture, edge, etc., while the channel attention mechanism improves the
performance of the model by emphasising the important channels and weakening the
irrelevant or redundant channels. The basic process of the channel attention mechanism
usually includes the following steps:

1. Global information extraction

Favg(C) =
1

H × W

H

∑
i=1

W

∑
j=1

Fc(i, j) (5)
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Equation (5) is a global average pooling of each channel of the feature map, calculating
the average of all pixel points on each channel. This will compress each channel into a
scalar and extract the overall feature information on the channel.

Fmax(C) = max
i,j

Fc(i, j) (6)

Equation (6) is to perform maximum pooling on each channel of the pair feature map
and extract the most significant feature value in each channel. Maximum pooling preserves
the feature with the strongest response in each channel.

2. Channel weight generation

WC = σ
(
W2

(
ReLU

(
W1

(
Favg/Fmax

))))
(7)

Equation (7) is a calculation formula of the weight generation process, where W1 and
W2 are weight matrices of the first and second layers, respectively, ReLU is an activation
function, and σ is a Sigmoid function for limiting the output weight value between 0 and 1.

3. Weight adjustment

Fout(i, j, c) = Wc · F(i, j, c) (8)

Equation (8) is to apply the generated channel weight Wc to the corresponding feature
map F, so as to adjust the feature intensity of each channel.

3.3.3. Spatial Attention Mechanism

The role of the spatial attention mechanism is to highlight the key areas in the image
and ignore the unimportant parts by analysing the importance of the feature map in the
spatial dimension (i.e., position in height and width). Different from the channel attention
mechanism, channel attention focuses on the weight of different features, while spatial
attention focuses on the pixel position of the feature map and strengthens the spatial region
where the target object is located, thus helping the model to locate the target more accurately.
The workflow of the spatial attention mechanism usually consists of the following steps:

1. Feature map aggregation

Favg(i, j) =
1
C

C

∑
k=1

F(i, j, k) (9)

Equation (9) is to calculate the average of the feature map at spatial location (i, j)
over the channel dimension. Where C is the number of channels and is averaged over all
channels at position (i, j). Therefore, this formulation is used to extract global features at
spatial locations but for the aggregated results of multiple channels.

Fmax(i, j) = max
k

F(i, j, k) (10)

Equation (10) is to calculate the feature value on the k(k ∈ [1, C]) channel of the feature
map at the spatial position (i, j) and output the maximum feature value and highlight
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the significant feature of each position in the image by selecting the maximum channel
response of each position.

2. Generate a spatial attention map

Fconcat(i, j) = Concat
(

Favg(i, j), Fmax(i, j)
)

(11)

Equation (11) is a splicing operation of the results of the global average pooling
(
Favg

)
and global maximum pooling (Fmax) in the channel dimension to generate a new feature
map F_concat, where F_concat ∈ RW×H×2 is a feature map containing two channels.

MS(i, j) = σ(Conv3×3(Fconcat(i, j))) (12)

Equation (12) is a representation of the process of generating the spatial attention
map Ms by the spatial attention mechanism. By performing convolution operation on the
spliced feature map F_concat, and then using the Sigmoid activation function to generate
the weight map Ms for each spatial location; its function is to assign different weights to
each spatial location so as to enhance the features of the important regions and ignore the
irrelevant background parts.

3. Weighting adjustment

Fout(i, j, k) = MS(i, j) · F(i, j, k) (13)

Equation (13) represents the process of generating the output feature map in the spatial
attention mechanism, by multiplying the spatial attention map Ms with the original feature
map F pixel by pixel, the feature value of each spatial location is adjusted, so that the
model can better focus on the important regions and ignore the unimportant background
information.

The Global Attention Mechanism (GAM) has shown significant benefits in target
detection tasks in outdoor environments, mainly because of its ability to efficiently capture
global contextual information and emphasise important regions, its principle is shown in
Figure 10. The GAM utilises both channel and spatial attention mechanisms to enhance the
feature representation of the target, improve the robustness of the model under complex
lighting and background interference, and also optimise the recognition of occluded targets,
especially in orchards where the fruit detection tasks. In addition, GAM is adaptable
to the detection of multi-scale targets and can enhance the model’s adaptability under
various lighting variations and extreme weather conditions while maintaining low compu-
tational complexity, making it ideal for applications in embedded and real-time processing
platforms. These features make GAM ideal for high-precision and high-efficiency target
detection in outdoor environments.
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3.4. Wise Intersection over Union (Wise-IoU) Loss Function Module
3.4.1. The Proposal of Wise-IoU and Its Core Mechanism

Wise-IoU was proposed by Zan et al. [31] in 2023 to improve the performance of
traditional IoU loss in Bounding Box Regression (BBR) mainly through a dynamic focusing
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mechanism. It combines distance and geometric factors by adjusting the gradient to help
the model optimise the bounding box more efficiently. The core mechanism of Wise-IoU
is as follows: firstly, it introduces a dynamic focusing mechanism, which dynamically
adjusts the loss value according to the quality of the overlap between the anchor box and
the target box. Lower-quality anchor frames will significantly amplify the loss and help
the model learn better from non-overlapping or less overlapping frames. And for higher
quality anchor frames (i.e., those that are highly overlapped with the target frame), it will
attenuate the effect of the loss value so as to reduce the unnecessary gradient interference;
the distance-attention mechanism is introduced, which pays particular attention to the
distance between the centroids of the bounding boxes. By calculating the distance between
the anchor frame and the centre point of the target frame, Wise-IoU is able to effectively
reduce the position error between the anchor frame and the target frame. This approach
helps the model to adjust the position of the anchor frame more accurately, especially in the
case of poor overlap between the two; the introduction of the weight dynamic adjustment
mechanism enables the model to converge faster by dynamically adjusting the gradient of
different anchor frames. Its dynamic adjustment not only relies on the distance between
the anchor frame and the target frame but also combines geometric information such as the
size ratio of the anchor frames, thus avoiding the problem of vanishing gradient in some
traditional IoU losses.

3.4.2. Schematic Diagram of Wise-IoU and Its Main Workflow

Figure 11 shows the schematic diagram of Wise-IoU, in which the blue bounding box
is the anchor box, the green bounding box is the target box, and the large black border is
the minimum enclosing box, which is the smallest external rectangle that can completely
enclose the blue anchor box and the green bounding box at the same time, and the role of
the minimum enclosing box is to be used for calculating the geometric difference between
the anchor box and the bounding box, so as to better optimise the positioning and size of
the anchor box. The main workflow is as follows:

1. Matching of anchor and target frames and calculation of loss function

IoU =
Area o f Overlap
Area o f Union

(14)

Equation (14) calculates the ratio of the area of the overlap region of the green bounding
box and the blue anchor box to the area of the union region to obtain the standard IoU
values for the anchor box and the target box.

LIoU = 1 − IOU (15)

Equation (15) is the standard IoU loss function, which measures the difference between
two boxes by calculating 1 minus the IoU value. The smaller the loss value, the smaller
the difference between the anchor box and the target box, and the more accurately the
model predicts. Therefore, the objective of the loss function is to minimise during the
training process.

2. Calculate the distance of the centre point.

RDIoU =

(
x − xgt

)2
+

(
y − ygt

)2

W2
g + H2

g
(16)

Equation (16) is used to calculate the distance between the centre points of the anchor
box and the target box and normalise them with respect to their minimum bounding
rectangles so as to optimise the bounding box regression in combination with other IoU
information. Where x and y are the abscissa and ordinate values of the centre point of the
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anchor box, xgt and ygt are the abscissa and ordinate values of the centre point of the target
box, and Wg and Hg are the width and height of the minimum bounding box.

RWIoU = exp

(
x − xgt

)2
+

(
y − ygt

)2(
W2

g + H2
g

)∗
 (17)

Equation (17) is used to generate a weight RWIoU that will be combined with the IoU
loss to adjust the difference in distance between the anchor and target boxes. In this way,
when the distance between the anchor box and the centre point of the target box is large,
the loss value will increase, which helps the model to better optimise the positioning of the
bounding box. The exponential function is used to smooth the influence of the distance
measure, and the value of the exponential function decays rapidly as the distance increases,

thus imposing a larger penalty on the anchor box farther away. And
(

W2
g + H2

g

)*
is used to

normalise the distance between the centre points, ensuring that the distance is not affected
by the size of the box. However, this value should not affect the update of the gradient
during the optimisation of the bounding box, so it is marked with an asterisk to indicate
that it will not participate in backpropagation.

3. Dynamic non-monotonic focusing mechanism

β =
L∗

IoU
LIoU

∈ [0,+∞) (18)

Equation (18) is to calculate the outlier measure β, which represents the ratio between
the expected IoU loss and the current IoU loss (i.e., the quality of the anchor box). β is used
in the IoU improvement loss function to dynamically adjust the loss weight in order to
better handle the regression problem between the anchor box and the target box.

r =
β

δ + αβ−δ
(19)

Equation (19) is to adjust the gradient gain value r by the outlier metric β, where δ is
the hyperparameter controlling the gradient gain, and when β = δ, the anchor box will get
the maximum gradient gain.

4. Loss function formula

LWIoU=r · LIoU · RWIoU =
β

δ + αβ−δ
· (1 − IOU) · exp

(
x − xgt

)2
+

(
y − ygt

)2(
W2

g + H2
g

)∗
 (20)

The loss function formula of Wise-IoU is finally determined as Equation (20) under
the influence of geometric factors such as the distance between the centre points of the
anchor frame and the target frame and the overlapping area. By dynamically adjusting the
gradient gain of the anchor frame, the harmful gradient caused by the low-quality anchor
frame is avoided, and the competitiveness of the high-quality anchor frame is also reduced,
which improves the model’s attention to the ordinary quality anchor frame.
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3.5. Relevant Evaluation Indicators of YOLO Deep Learning Network Structure

Based on several important evaluation indexes of the YOLOv8 network model and
the actual application, we evaluate the performance of the model from the following
aspects. The definitions of the corresponding performance indexes and related formulas
are as follows:

FPS =
Total Frames Processed
Total Time in Seconds

(21)

FPS refers to the number of frames or images processed by the model per second,
which directly reflects the response speed and processing ability of the model.

Recall =
True Positive

True Positive + False Negative
(22)

Recall is an indicator to evaluate the ability of the model to identify positive samples
(TP), which indicates the proportion of samples that are correctly predicted as positive by
the model among all samples that are actually positive.

Precision =
True Positive

True Positive + False Positive
(23)

Precision rate is an indicator to evaluate the prediction results of the classification
model, which represents the proportion of samples that are actually positive among all the
samples predicted to be positive by the model.

AP =
∫ 1

0
Percision(Recall)d(Recall) (24)
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mAP =

N
∑
1

∫ 1
0 Percision(Recall)d(Recall)

N
(25)

Box mAp @ 50 (%) measures the average precision mean of the model’s detection
boxes across all categories when the IoU threshold is set to 0.50.

Mask mAp @ 50 (%) measures the average accuracy of the model’s segmentation mask
across all classes when the IoU threshold is set to 0.50

F1 − Score = 2 × Percision × Recall
Percision + Recall

(26)

BOX F1 is an evaluation index used in the target detection task, which combines the
precision and recall of the detection box to measure the accuracy and completeness of the
detection box.

Mask F1 is an evaluation index used in the instance segmentation task, which combines
the precision and recall of the segmentation mask to measure the accuracy and completeness
of the segmentation mask.

4. Results
4.1. Ablation Experiment and Result Analysis

In order to verify the effectiveness of the improved network based on YOLOv8n,
SGW-YOLOv8n, in practical applications, we designed the following ablation experiments
to verify it. Firstly, the improved modules are applied to the YOLOv8n network and
named; that is, the network name obtained by applying the SPD-Conv module to the
YOLOv8n network is S-YOLOv8n. The network name obtained by applying the SPD-Conv
module and the GAM module to the YOLOv8n network is SG-YOLOv8n; the network name
obtained by applying the SPD-Conv module, the GAM module, and the Wise-IoU loss
function to the YOLOv8n network is SGW-YOLOv8n. Then, the model training equipment
mentioned above is used to train the four different YOLO networks on the data set prepared
in advance, in which the epoch, batch size and other parameters are the same, and the
training results are shown in Table 1.

Table 1. Ablation Experiment.

Model SPD-
CONV GAM Wise-

IoU
Box F1

(%)
Mask
F1 (%) FPS

Weight
Size
(MB)

Box mAP@50(%) Mask mAP@50(%)

1⃝ 2⃝ 3⃝ All 1⃝ 2⃝ 3⃝ All

Yolov8n x x x 70 70 48.96 6.44 92.9 63.3 60.5 72.2 92.7 63.7 61 72.5
S-Yolov8n

√
x x 72 72 45.72 50.5 93.6 63.7 63.9 73.7 93.3 64.3 64.8 74.1

SG-Yolov8n
√ √

x 72 72 42.18 52.6 93.5 66.6 63.2 74.4 93.5 67.9 636 75
SGW-

Yolov8n
√ √ √

74 74 44.37 52.3 93.2 67.7 66.8 75.9 93.1 68.1 66 75.7

As can be seen from Table 1, The training performance of the S-Yolov8n network,
which only applied the SPD-CONV convolution module, showed a 2% improvement in
both the Box and Mask F1 scores. For object detection of three categories at a threshold of
0.5, the average precision increased by 0.7%, 0.4%, and 3.4%, respectively. For instance, with
the segmentation of three categories at a threshold of 0.5, the average precision increased
by 0.6%, 0.6%, and 3.8%, respectively. The SG-Yolov8n network, which applied both
the SPD-CONV convolution module and the GAM global attention mechanism module,
showed the same improvement as the S-Yolov8n network in the Box and Mask F1 scores.
For object detection of three categories at a threshold of 0.5, the average precision increased
by 0.6%, 3.3%, and 2.7%, respectively. For instance, segmentation of three categories at
a threshold of 0.5, the average precision increased by 0.8%, 4.2%, and 2.6%, respectively.
When all three modules—SPD-CONV, GAM, and Wise-IoU—were applied to the network,
the SGW-Yolov8n achieved a 4% improvement in both the Box and Mask F1 scores. For
object detection of three categories at a threshold of 0.5, the average precision increased by
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0.3%, 4.4%, and 6.3%, respectively. For instance, with the segmentation of three categories
at a threshold of 0.5, the average precision increased by 0.4%, 4.4%, and 5%, respectively.
The detection mAP also improved from the original 72.2% to a maximum of 75.9%, and the
segmentation mAP increased from the original 72.5% to 75.7%. In terms of FPS, the image
processing speed of the improved network model decreased slightly from the original
48.96 FPS to 44.37 FPS. Despite this slight decrease, the FPS remains above 30, which
still meets the requirements for real-time inference. Regarding the size of the generated
weight files, apart from the smaller weight of the original YOLOv8n model, the size of the
weight files of the three improved models is around 50 MB. Since the model is deployed
on an edge computing platform in actual production, the size of the weight files of the
improved models will not affect deployment. Combining the above analyses and Table 1, it
concludes that the improved network based on YOLOv8n, SGW-YOLOv8n has the best
overall performance among the four network models mentioned above.

From Figure 12, it can be seen that when the eooch is 200, the minimum values of
Train Box Loss and Val Box Loss of the SGW-YOLOv8n network model are smaller than
those of the other three network models, and the model achieves the optimal effect of the
model in advance before the end of the 200 rounds of training and thus ends the training,
which indicates that the network model of SGW-YOLOv8n can converge quickly in fewer
training rounds, indicating that its learning algorithm and model architecture are very
effective and can quickly extract useful features and patterns from the training data; and
has strong applicability This ability indicates that the model may have good adaptability
and robustness to various datasets, especially on similar data distributions, and does not
need too much adjustment to achieve satisfactory results.
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As shown in Figure 13, after training, the YOLOv8n model achieved a Box PR mAP@50
value of 0.722 and the Mask PR mAP@50 value of 0.725. The S-YOLOv8n model achieved a
Box PR mAP@50 value of 0.737 and the Mask PR mAP@50 value of 0.741. The SG-YOLOv8n
model achieved a Box PR mAP@50 value of 0.744 and the Mask PR mAP@50 value of 0.75.
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The SGW-YOLOv8n model achieved a Box PR mAP@50 value of 0.759 and the Mask PR
mAP@50 value of 0.757. Except for the YOLOv8n model, the other three models reached
a stable performance stage around the 100th training epoch. Both their Box PR mAP@50
(Precision-Recall for Bounding Boxes) and the Mask PR mAP@50 (Precision-Recall for
Segmentation Masks) metrics were higher than those of the YOLOv8n model, with the
SGW-YOLOv8n achieving the highest values among all models. To further verify the
practical effectiveness of SGW-YOLOv8n, an additional batch of image data was collected
based on the previously prepared dataset. From this additional batch, three images were
selected to conduct inference experiments using the optimal weight files (bast.pt) generated
by the four aforementioned network models. The original graph and the inference result
graph of each model occupy one row, respectively, and the experimental results are shown
in Figure 14 below.
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It can be clearly seen from the second photo in Figure 14 that the image reasoning
effect of the three improved network models is better than that of the original YOLOv8
model. The original YOLOv8 only detects two apples with the label category of Obvious,
while the three improved network models not only improve the detection accuracy of the
three label categories of apples, but the SGW-YOLOv8 model also detected two additional
apples labelled Occluded, and the SGW-YOLOv8 model performed significantly better than
the other three models in the three photos because it detected an additional apple labelled
Occluded. These reasoning results show that the SGW-YOLOv8 model is significantly better
than the original YOLOv8n network model for fruit detection in outdoor unstructured
environments, especially for the detection of small occluded objects.
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4.2. Comparison with Other Networks

In order to verify the differences between the SGW-YOLOv8n model and other differ-
ent target detection and instance segmentation models, the following experiments were
conducted in this study: the data sets prepared in the early stage of the experiment were
trained with different models in Table 2 in turn, and the parameters such as the number
of training rounds and batch size were set to be consistent, and the same hardware and
system environment was used for training. The training results are shown in Table 2.
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Table 2. Comparison of the effectiveness of SGW-YOLOv8 with other node detection and segmenta-
tion models.

Model Precision (%) Recall (%) F1 Score (%) Box mAP@50
(%)

Mask
mAP@50 (%) FPS Weigth Size

(MB)

Yolov5 67.2 68.1 67.65 68.4 72.5 32.28 14.9
Yolov6 69.3 66.2 67.71 67.9 _ 30.94 8.28
Yolov7 66.8 63.5 65.11 64.8 _ 28.63 71.3
Yolact 44.8 45.7 45.25 45.1 54.4 23.44 413

Mask R-CNN 43.2 42.6 42.90 43.2 53.1 26.57 483
SGW-Yolov8n 78 78 74 75.9 75.7 44.37 52.3

Table 2 provides the training results of different object detection and instance segmen-
tation models (YOLOv5, YOLOv6, YOLOv7, YOLACT, Mask R-CNN, and SGW-YOLOv8n)
including multiple evaluation indexes. Deploy the six different models mentioned above
on a computer and set the same training parameters, such as the number of training epochs
and batch size. Then, these six models will be used to train on the same dataset separately.
In terms of precision and recall, SGW-YOLOv8n performs the best among all models,
showing its strong ability to identify the correct target and reduce missed detection, which
is also verified by the F1 score. The comprehensive performance of SGW-YOLOv8n is the
highest among all models. In the Box mAP @ 50 (%) metric, YOLOv5 is slightly better,
indicating that it performs best on bounding box localisation accuracy for object detection.
For instance, in terms of segmentation, Mask R-CNN and YOLACT’s Mask mAP @ 50
(%) are comparable, but Mask R-CNN is slightly better, indicating that it is slightly more
accurate in instance segmentation. In terms of processing speed, SGW-YOLOv8n leads the
way with 44.37 FPS, which makes it ideal for application scenarios requiring fast response.
In addition, in terms of weight size, Mask R-CNN and YOLACT are much larger than
other models, which reflects that they increase the model complexity and computational
burden to deal with instance segmentation tasks, so Mask R-CNN and YOLACT are not
suitable for deployment on edge computing platforms for real-time reasoning. Overall,
although each model has its own characteristics and advantages, SGW-YOLOv8n is the
most appropriate choice in terms of detection and segmentation accuracy, image processing
speed and weight size.

4.3. Conclusions

The comparative experiments of the aforementioned different network models demon-
strate that the improved SGW-YOLOv8n network model outperforms other models in
terms of inference speed, detection accuracy, and segmentation accuracy. Additionally, its
weight size meets the deployment requirements for edge computing platforms. In future
research, we plan to test the model under different lighting conditions (morning, noon, and
evening) to observe whether the SGW-YOLOv8n network model’s generalisation capability
and robustness in various outdoor environments are also effectively enhanced. The pro-
posed network model provides a valuable reference for the research on fruit detection and
segmentation in complex unstructured outdoor environments, promoting the development
and application of orchard-picking robots.
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