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Abstract: A rapid and accurate determination of large-scale winter wheat yield is significant for
food security and policy formulation. In this study, meteorological data and enhanced vegetation
index (EVI) were used to estimate the winter wheat yield in Henan Province, China, by constructing
a deep learning model. The deep learning model combines CNN feature extraction and makes
full use of the sequence data processing capability of the LSTM and a multi-head attention mech-
anism to develop a novel CNN-MALSTM estimation model, which can capture the information
of input sequences in different feature subspaces to enhance the expressiveness of the model. A
CNN-LSTM baseline model was also constructed for comparison. Compared with the baseline
model (R2 =0.75, RMSE = 646.53 kg /ha, and MAPE = 8.82%), the proposed CNN-MALSTM model
(R =0.79, RMSE = 576.01 kg/ha, MAPE = 7.29%) could more accurately estimate the yield. Based
on the cross-validation with one year of left-out data and the input of the fertility period by fertility
period to explore the sensitivity of the model to data from different fertility periods to the final yield,
an annual yield distribution map of Henan Province was constructed. Through cross-validation,
the stability of the model in different years was assessed. The results showed that the model could
obtain the best prediction of the yield approximately 20 days in advance. In terms of the spatial
distribution of the yield in Henan Province on a yearly basis, the estimated yield showed an overall
uptrend from west to east, consistent with the trend in the statistical yearbook of the yield for Henan
Province. Thus, it can be concluded that the proposed CNN-MALSTM model can provide stable
yield estimation results.

Keywords: enhanced vegetation index (EVI); meteorological data; long short-term memory networks
with multiple attention mechanism (MALSTM); yield estimation; winter wheat

1. Introduction

As one of the important cereal crops, wheat is a vital food source for human beings.
With global climate change, the frequent occurrence of various extreme climate events,
and the growing global population, food security has become a major concern [1]. In
this context, an accurate estimation of wheat production plays a significant role in the
stable development of agricultural production, ensuring the effective supply of important
agricultural products, improving the agro-ecological environment, and promoting food
security [2].

Conventional crop yield estimation mainly relies on human labor, and it is difficult to
perform on a large scale. In recent years, multi-source data have played an increasingly
important role in crop yield estimation [3-5]. Crop yield estimation methods can be
mainly classified into crop growth model estimation based on the crop growth process
and empirical model estimation based on conventional statistics. Crop growth models
(e.g., DSSAT, WOFOST, ASPIM) can simulate the growth of crops at different time steps,
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as well as the process of yield formation under extreme climatic conditions, with good
physical interpretation [3,6-9]. However, due to the excessive number of input parameters
(e.g., varieties, field management data, soil properties), the difficulty in obtaining these
parameters, and the strong influence of spatial heterogeneity, the model applicability is low,
the simulation is time-consuming, and it is difficult to realize an accurate yield estimation
over a large-scale region [10,11].

Empirical statistical models (conventional statistical models and machine learning
models) have shown advantages in large-scale crop yield estimation compared with crop
growth models based on crop growth processes. In recent years, conventional empirical
statistical models have produced better yield estimation results [12]. For example, Ren [13]
et al. constructed a linear relationship between the Normalized Difference Vegetation Index
(NDVI) and yield; this relationship effectively helped estimate the winter wheat yields in
the Yellow—Huaihua Plain of China, with an estimation accuracy of R? > (.86 for different
prefecture-level cities. However, since conventional empirical statistical models rely only
on the linear relationship between vegetation indices (VIs) and target yields, it is difficult
to dig deeper into the relationship between data and yields when the linear relationship
is not satisfied. Machine learning algorithms [14,15], such as random forest (RF), support
vector machine (SVM), gaussian process regression (GPR), partial least squares (PLS), etc.,
can be used to construct nonlinear relationships between environmental factors and yield.
Various optimization algorithms can be used to optimize the model and identify features
from data that play a key role in yield estimation [16,17]. For example, Son [18] et al. used
the Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI series data to develop
a machine learning model based on the RF to estimate rice yields in both seasons in Taiwan,
China; the coefficient of determination R? was greater than 0.84.

With the continuous development of satellite technology, large amounts of remote
sensing data have been applied in various fields, and multi-source remote sensing data are
widely used in crop yield estimation [19,20]. Currently, most studies have employed the
MODIS image data and Landsat to obtain relevant VIs, such as the NDVI, EVI, leaf area
index (LAI), etc., to construct a relationship between the index and yield [21-23]. Huang [10]
et al. predicted the yield in Hebei Province, China, by assimilating the LAI obtained from
Landsat TM and MODIS data into a crop growth model with an RMSE = 151.29 kg/ha.
Douglas K. Bolton [24] developed empirical models for predicting corn and soybean yields
in central U.S. The use of the MODIS two-band enhanced vegetation index (EVI2) for
corn yield estimation, compared with the widely used NDVI, resulted in better estimates.
Due to the limitations of MODIS and the spatiotemporal resolution of Landsat, although
better yield information can be obtained, there are some drawbacks in interpreting the
complex relationship between crop yields over time. Therefore, an increasing number of
studies have adopted Sentinel-2 image data and calculated the correlation indices for yield
estimation, achieving better results for both conventional linear and nonlinear models.

The booming development of computer technology has provided powerful arithmetic
support. Several algorithmic models have emerged, and the deep learning technique has
been widely used. Deep learning, which is an advanced machine learning algorithm, is
more advantageous than conventional linear models in dealing with nonlinear relationships
by continuously learning layer by layer from low-level features to high-level features, and
it has been widely used in various fields [25-28]. As a result, the application of deep
learning models has gradually gained attention, especially combining the feature extraction
capability of convolutional neural networks (CNNSs) [29,30] with the advantages of long
short-term memory networks (LSTMs) in processing time series data [31]. This algorithmic
fusion not only improves the prediction performance of the model but also identifies the
key factors affecting yield during crop growth more effectively. By using CNN to extract
spatial features, the model is able to analyze important information in satellite images
in greater depth, while L5TM is able to deal with dependencies in time-series data, thus
capturing dynamic changes at different growth stages. In addition, the introduction of
the multi-attention mechanism enables the model to focus on multiple relevant features,
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thus enhancing the identification and weighting of important variables. This integrated
approach effectively enhances the accuracy and reliability of yield estimation and can
provide farmers and policymakers with more accurate forecasting information.

In the yield estimation process for crops, accumulating and learning from historical
information is crucial. However, since 1D-CNNSs lack a recurrent mechanism, integrating
historical data into the learning process can be challenging. Xiao [32] et al. constructed
a novel deep learning framework, ACNN, with Sentinel-2 raw bands as input data and
effectively identified the key spectral bands by placing a weighted calculation of the ex-
tracted features after a number of convolutional layers. By placing attention channels
and weighting the extracted features after several convolutional layers, the key spectral
bands were effectively identified, overcoming the problems of high-yield underestima-
tion and low-yield overestimation; the R> and RMSE values of the model were 0.44 and
1544 kg /ha, respectively. Clearly, the CNN has strong feature extraction capability and the
advantage of the attention mechanism in determining the contribution of features. Tian [23]
constructed a deep learning framework based on the attention mechanism (ALSTM). The
LSTM network has the advantage of processing temporal data, and the incorporation of the
attention mechanism improves the internal interpretability of the model. It can also identify
the importance of input variables in determining the yield at different fertility periods.
Wang [33] et al. combined a CNN with a GRU network to estimate the wheat yield in the
Guanzhong Plain of Shaanxi; in terms of prediction accuracy, the R* and RMSE values of
the model were 0.64 and 462.56 kg/ha, respectively. This demonstrates the advantages
of the CNN combined with RNN for yield estimation. Sun [34] introduced an innovative
multi-level CNN-LSTM model designed to extract spatiotemporal features for predicting
maize yield, showcasing the benefits of integrating CNN with RNN. Nonetheless, research
focusing on the use of CNN in combination with LSTM and attention mechanisms for crop
yield estimation remains limited.

Hence, in this study, a CNN-ALSTM deep learning model was developed, and its
performance and effectiveness in estimating wheat yield across different years and fertility
periods were assessed. A CNN-MALSTM yield estimation framework was constructed
by combining remote sensing and meteorological data to estimate winter wheat yield in
the counties of Henan Province. The advantage of the LSTM in processing time-series data
was utilized, combined with the powerful spatial feature extraction capability of the CNN
and the identification capability of different input features contributing to the yield by the
multi-attention mechanism, in order to improve the interpretability of the model between
the input data and the target yield. The EVI, temperature, and precipitation were used as
input data for the yield estimation, and the reason for choosing these parameters as the
model input features is that the EVI often responds to crop growth, while temperature
and precipitation as meteorological data are crucial in the crop growth process. The main
objectives of this study were as follows:

(1) Investigating the differences between the CNN-MALSTM model and the baseline
model for county crop yield estimation in terms of their accuracy and performance.

(2) Investigating the stability of the CNN-MALSTM model in yield estimation by fertility
period for each year and the spatial and temporal distribution of production estimates
in counties in different years.

(3) Determining the optimal fertility period for yield estimation.

2. Material and Methods
2.1. Study Area

The study area selected for this work was the main wheat-growing area in Henan
Province, China. The area ranges from 110°21’ to 116°39" E and 31°23' to 36°22’ N, with
Shandong and Anhui to the east, Shaanxi to the west, Hebei and Shanxi to the north,
and Hubei to the south. The province covers a total area of 167,000 km?. The terrain is
high in the west and low in the east, with most of it located in the warm temperate zone,
which experiences four distinct seasons and simultaneous rain and heat. The average
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annual temperature of the province from south to north ranges from 10.5 to 16.7 °C,
and the average annual precipitation ranges from 407.7 to 1295.8 mm. Rainfall peaks
during the June—August period, and the province receives an average annual sunshine
of 1285.7-2292.9 h. October through June is the main fertility period of winter wheat
(Table 1). This study was based on eight fertility periods for modeling and estimating yields
(Figure 1).

Table 1. Winter wheat fertility period.

Month Fertility Period
mid-October to mid-November seedling stage
late November to mid-December tillering stage
late December to late February overwintering stage
early March to late March greening stage
early April to mid-April jointing stage
late April to early May heading stage
mid-May to late May anthesis stage
early June to mid-June maturity stage
75°0'0"E  90°0'0"E  105°0'0"E  120°0'0"E  135°0'0"E 112°0'0"E 114°0'0"E 116°0'0"E
I 1 1 I 1
N / N
A | A :
S o
(=0 =
) )
o (]
Z Z
° o
& &
i L% %
[aa] o
z z
§ = o
OO ] L d i Oo
n
Legend o el _ &
— Chi OIHenan Province
1na ’ ;
) 0 800 1600 City boundary 0 80 160
| ™= Henan Province L m— = == Winter wheat areas e km
T T T T T T T T
75°0'0"E 90°0'0"E 105°0'0"E 120°0'0"E 135°0'0"E 112°0'0"E 114°0'0"E 116°0'0"E

Figure 1. Study area.

2.2. Data Acquisition and Pre-Processing
2.2.1. Satellite Data

Studies have shown that the EVI (Enhanced Vegetation Index) provides more informa-
tion about crop growth and plays an important role in yield estimation [35]. The Sentinel-2
satellite, operated by the European Space Agency (ESA), is an Earth observation project
that provides high spatial resolution and multispectral observation data globally. The high
spatial and temporal resolution of the Sentinel-2 satellite facilitates the calculation of EVL.
We collected the Sentinel-2 (5 d, 10 m) Level 2A image dataset of winter wheat fertility in
Henan Province to calculate EVI and used the B2, B4, and B8 bands to calculate EVI as

shown in Equation (1).

NIR - R
EVI= 2'SNIR +6R—-75B+1 @
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Here, the NIR denotes the near-infrared band (B8), R denotes the infrared band (B4),
and B denotes the blue band (B2).

Due to the effects of clouds, rain, etc., which can cause discontinuity in EVI calculation,
Level 2A images (5 d, 10 m) with a cloud cover of less than 40% were screened. The
median-value synthesis method was used to generate image data within each fertility
period according to the division of the fertility period (Table 1). According to Equation (1),
the EVI values were calculated, and the EVI time-series values were reconstructed using
the Savitzky—Golay (SG) filtering [36], along with the winter wheat distribution maps for
masking. Finally, the mean EVI values for each county were calculated on a fertility-by-
fertility basis. All the above calculations were performed on the Google Earth Engine (GEE,
Google, Mountain View, CA, USA) platform.

2.2.2. Meteorological Data

Winter wheat is often affected by meteorological factors in different fertility stages,
and the formation of the final yield is inextricably linked to changes in climate. Studies
have shown that accurate access to meteorological data in all fertility stages of the winter
wheat can help improve the accuracy of yield estimation.

In this study, the ERA5 dataset (ERA5,European Centre for Medium-Range Weather
Forecasts, Reading, UK), which is the fifth generation of atmospheric reanalysis of the global
climate provided by the European Centre for Medium-Range Weather Forecasts (ECMWF),
was used. Temperature and precipitation data were selected based on meteorological
driver data commonly used in crop growth models to simulate winter wheat growth. The
meteorological data used in this study were obtained from the GEE platform. Hour-by-hour
data with a spatial resolution of 0.1° x 0.1° were selected according to the needs of this
study, using 24-h averages as the precipitation and temperature for the day. These averages
were then computed to each fertility stage using the mean method based on the fertility
stages of winter wheat (Table 1). The same approach was used for the mask aggregation to
the county level using the distribution map of winter wheat.

2.2.3. Winter Wheat Mask Data and Yield Data

To accurately obtain the distribution data of winter wheat cultivation in Henan Province, a
winter wheat extraction model based on spectral features, vegetation features, texture features,
and terrain features was constructed in past research. This model can provide high-precision
extraction of winter wheat planting areas (OA = 92.7%, Kappa = 0.902) [37]. Using GEE as the
data processing platform, the NDVI values of the features in the study area were calculated, the
climatic periods that were easy to distinguish between winter wheat and other features were
selected, a synthesis window for the remote sensing images was determined, and the Sentinel-2
images were synthesized to finally obtain the pre-wintering and post-wintering images. The RF
algorithm was used to identify the preferred feature images and produce the distribution map
of the winter wheat for Henan Province.

According to the Henan Provincial Statistical Yearbook (https://www.stats.gov.cn/,
accessed on 31 May 2024), the change in the winter wheat planting area in Henan Province
over the past five years was less than 1%. Therefore, the winter wheat distribution in 2019
was used instead of the winter wheat distribution in the 20192023 period. The sown area
and yield data for the winter wheat in the 2019-2023 period were obtained from the Henan
Provincial Statistical Yearbook. Based on the yield data, 101 major wheat-growing counties
with yields in the range of 3000-9000 kg /ha were selected for modeling and analysis.

2.3. Methods
2.3.1. LSTM Neural Network Models and Multi-Head Attention Mechanisms
The LSTM is a special type of RNN structure that typically processes and learns from

time-series data through three key gating units: an input gate, a forget gate, and an output
gate. These gating units control the flow of information during learning, which facilitates
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the LSTM network to better deal with long-term dependencies. Figure 2 shows the internal
structure of the LSTM.

Rest gate  Update gate Output gate
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Figure 2. Diagram of the internal parameters of the LSTM model.

For a given time step t and input X;, each LSTM unit is defined as follows (Figure 2):
(1) Forget gate:

fo =Wy, %] + by) @)
(2) Input gate:
ir = o(Wrlh—1, x¢] + ;) 3)
(3) Updating unit status:
Cr = tanh(Welhy 1, x:]) + be (4)
(4)  Unit state:
Cr=fi*Co1+irC (5)
(5) Output gate:
0r = c(Wolhi—1, x¢] + bo) (6)

(6) Hide status updates:
he = of * tanh(Cy) )
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In this context, o represents the sigmoid function.

The multi-head attention (MHA) mechanism splits the input query, key, and value
matrices into multiple heads and computes the attention independently in each head.
It then combines the outputs of these heads into a linear transformation to achieve the
simultaneous capture and integration of multiple interactions in different representation
subspaces, enhancing the expressive power of the model. The output of the LSTM, h;, is
used as the input to the MHA mechanism, which is calculated as follows:

For each input /;, a linear transformation is performed using different weight matrices
W;, Wi, and Wy, to generate the query, Q, key K, and value V.

Qi=hmhW,, Vi=mhW,, K;=hW 8)
For each query Q; and all keys K;, the attention score e;; is computed as follows:
QiK;
eij =
Vg

where dj is the dimension of the key vector, which is scaled to avoid excessive inner product
results as the dimension increases.

The attention score e;j, was subjected to softmax operation to obtain the attention
weight a;;.

©)

)
Yk exp(eix)
For each value V;, a weighted summation is performed using the attention weights a;;
to obtain the final attention output.

(10)

Zi = ZHIJVJ (11)
i

The MHA mechanism parallelizes the above computation process h times (i.e., the
number of multi-heads), using a different weight matrix each time. The output of each
head is as follows:

7 =L v (12)
j
@) _ 2)y,(2)
z;” = Zaij Vi (13)
]
The final output is obtained by a linear layer transformation:

Output; = Z;W, (14)

where W, is the output projection matrix of the MHA mechanism.

The output processed by the multi-attention mechanism passes through the residual
connectivity and normalization layers to ensure stability and information flow through the
network. It is subsequently flattened to fit subsequent fully connected layers for further
prediction of the yield.

2.3.2. CNN-MALSTM Model

The CNN has made significant achievements in the field of object detection and image
recognition with its powerful feature extraction capability. Traditionally, CNNs have made
significant strides in target detection and image recognition due to their robust feature
extraction capabilities. Similarly, 1D-CNNs are specifically designed for one-dimensional
data, such as time series or text sequences. By applying convolution operations to this
data, 1D-CNN:Ss effectively capture local features and enhance feature learning. The MHA
mechanism captures richer features and contextual information on the basis of self-attention
by adding multiple attention heads to allocate attention to different dimensions of the input
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information in parallel. This enables the model to capture key features in the input infor-
mation from different angles and dimensions, which significantly enhances the expressive
ability and learning efficiency of the model [38].

The model proposed in this study combines a convolutional neural network (1ID-CNN),
a long short-term memory network (LSTM), and a multi-head attentional mechanism,
which is the new fusion method we propose to enhance the prediction of winter wheat
yield. The model first extracts features through a 1D convolutional layer and reduces the
dimensionality using a maximum pooling layer, followed by the introduction of a Dropout
layer to prevent overfitting. Next, an LSTM layer processes the sequence data, and another
Dropout layer is added to enhance the robustness of the model. On this basis, the multi-
head attention mechanism is used to further optimize the feature extraction capability, and
the attention output is summed with the LSTM output to stabilize the training process
through layer normalization, thus enhancing the effectiveness of the information flow.
Finally, the output is passed through the fully connected layer, which is set to univariate
prediction, aiming to improve the accuracy and stability of the prediction. The specific
model framework is shown in Figure 3.

Layer normalization

505x8
g —\’\ : 8 X 3 8 x 32 4 X 32 : \ Attention out + LSTM out 5l2 :
N o = o[ 59— 8—‘ :
Y i - i .
AR (e o[ | aei || E= 91 g\ Ouput vied
5058 | . ' \ - \:\
._—‘*\*1*5 =) -—) R — : E ®
] | Xt [ o T t —e—e@ "
. relshape RELU Droi)oulL TTTTTTTTTTTT });O:.)Ol(l:‘oncatenatlon Flatten F lly D[‘Dpout
‘ _ T a 1 t L a T g T ' Connlected
input layer CNN layer MaxPooling1D LSTN Multi-head Attention layer

Figure 3. Diagram of the CNN-MALSTM fusion framework.

2.3.3. Hyperparametric Sensitivity Analyses

The choice of hyperparameters for the model has a significant impact on the predic-
tion accuracy. Specifically, the following (Table 2) several parameters affect the model’s
performance to varying degrees. The model was trained with different combinations of
parameters through grid search and the performance (mean squared error or R? value) of
the validation set was compared. This identifies which parameters have a greater impact
on the accuracy of the model and adjusts the parameters to optimize model performance.
After extensive experiments, hyperparameter results were obtained as shown in Table 2.
The obtained hyperparameters are inputted into the model to obtain the training error plot
(Figure 4). The training error plot shows the trend of the model’s loss (error) during the
training process, which consists of two curves, the training error and the validation error,
with the increase in the number of training rounds (Epochs), the training error gradually
decreases with the training and tends to stabilize, while the validation error decreases with
the increase of training rounds and then also tends to stabilize. This indicates that the
model is gradually learning and improving, and can be adjusted to optimize the model’s
performance without any obvious overfitting phenomenon.

Table 2. Hyperparameter ranges.

Hyperparameter Range of Analyses Optimal Results
kernel_size 2,5) 2

Istm_units (16, 256) 64

num_heads (1,16) 2

key_dim (16, 128) 64

Dropout (0.1,0.5) 0.1

learning_rate (0.0001, 0.01) 0.001
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Figure 4. CNN-MALSTM training error plot (Epochs = 150, batch size = 15).

2.3.4. CNN-MALSTM Estimation Technology Route

The data collection and pre-processing steps are shown in Figure 5, where the pro-
cessed data are normalized to the range [0, 1] for each feature before being input into the
model. This step ensures that all input variables contribute equally to the learning process
of the model, thus avoiding bias towards features with a large range of values. The input
data consisted of three variables (EVI, mean temperature, and mean precipitation) for each
of the 101 counties for the period 2019 to 2023, reshaped into a 505 x 8 x 3 format. Here, the
data were reshaped into a three-dimensional tensor, with 505 indicating a total of 505 data
points, where 8 represents the time step (eight reproductive periods), and 3 corresponds to
the three features (EVI, temperature, and precipitation). This allows the model to exploit
temporal dependencies in the data. The input model was preceded by a random dataset,
i.e., 80% (404) training and 20% (101) validation. The model was built on TensorFlow
version 2.0. After conducting a grid search and sensitivity analysis, the following model
parameters were determined: a single convolutional layer with a 32 filter, a kernel size of 1,
and a step size of 2, an activation function ReLu, a maximal pooling layer with a pooling
window of 2, a 64-unit LSTM, and lastly a 32-unit fully connected layer. The optimizer
is a gradient descent method with a learning rate of 0.001. The loss function is the mean
squared error, and L2 regularization is applied. The model was trained for 150 batches with
a batch size of 15. Figure 5 shows the flowchart of data processing and the construction of
the CNN-MALSTM model to estimate the yield.

2.3.5. Assessment of Models

K-fold cross-validation is a technique commonly used in model evaluation, aiming
to effectively assess the performance and generalization ability of models. In this article,
five-fold cross-validation was chosen to evaluate deep learning models, and its specific
steps are as follows (Figure 6): First, the original dataset is divided into five disjoint subsets
according to the year (2019-2023), with each year’s data in this study comprising 101 entries.
Then, iterations are performed; in the five iterations, one of the subsets is sequentially
selected as the test set, while the remaining four subsets (404 entries) are grouped into
the training set. The model is trained on the training set, and the model’s performance
is evaluated on the test set. In each iteration, the model is given a performance metric,
i.e.,, R and RMSE on the test set. Averaging these metrics gives the final cross-validation
performance. The performance metrics at different vintages show the stability of the model
at different vintages and its generalization ability in the face of variations, helping to
identify whether the model has overfitting or underfitting problems.
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Figure 6. Overview of the one-year cross-validation process.

To compare the model performance and the advantages of the MHA mechanism, a
separate CNN-LSTM was selected as a comparison model, with the input data and basic
parameter settings the same as those of the CNN-MALSTM. This comparison was used to
assess the advantages of the MHA mechanism in nonlinear information extraction. Data
from different years and fertility-by-fertility data were input to evaluate the model’s ability
to explore the input data at the county scale and across different fertility stages. Specifically,
model performance at the county scale and the model’s ability to recognize the importance
of different fertility data as they accrue were explored. To quantify the importance of
different fertility data for the final yield and the model’s ability for early predictions, i.e.,
how far in advance and how accurate the model can predict wheat yield, three metrics
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were chosen: the correlation coefficient R?, root mean squared error (RMSE), and mean
absolute percentage error (MAPE). The formulas for R* and RMSE are given below:

R2—1_ e (%i — vi)® (15)
(i —5i)
1
RMSE = \/ — Y (i) (16)
1 wn |yi—x o
MAPE = - Y o= i £1100% (17)

where x; is the statistical yield of the wheat, y; is the estimated yield of the winter wheat, ;
is the mean statistical yield of wheat, and 7 is the number of samples in the test set.

3. Results and Analysis
3.1. Yield Estimation Using CNN-MALSTM and Baseline Model

Figure 7 shows the scatter plot of the yield estimation for the test set across 101 counties
of Henan Province. The results indicated that the R2, RMSE, and MAPE of the CNN-
MALSTM model and the baseline model, CNN-LSTM, were 0.79 and 0.75, 576.01 kg/ha
and 646.53 kg/ha, and 7.29% and 8.82%, respectively. The overall performance of the CNN-
MALSTM model was better; in comparison with the CNN-LSTM model, the R? increased
by 0.04, and the RMSE and MAPE decreased by 70.52 kg/ha and 1.53%, respectively. From
the yield scatter plot, the data are distributed on both sides of the 1:1 line, exhibiting a
linear relationship. The MAPE of the CNN-MALSTM model was 7.29%, which means
that the model could explain more than 90% of the yield variations. This demonstrates the
effectiveness of the combination of the CNN and multi-attention mechanism in extracting
the relevant features from the original data and the fact that the model can pay attention to
the differences in the contribution of different features.
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Figure 7. Comparison of the performance of the two models in terms of the county-level yield
statistics and estimated data, where (a) is the CNN-MALSTM model and (b) is the CNN-LSTM
baseline model.

Compared with the CNN-LSTM model, the slope of the trend line for the CNN-MALSTM
model was closer to 1. In the yield intervals of 3000-5000 kg/ha and 7000-8000 kg/ha, con-
sidered low-yield and high-yield, respectively, the scatter plots of the two models showed
that the CNN-MALSTM model can alleviate the problems of high-yield underestimation and
low-yield overestimation in the yield estimation process. This also verifies the effectiveness
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of the multi-attention mechanism to solve these problems. Compared with the CNN-LSTM
model, the proposed model performed well for both high- and low-yield samples; however,
the overall slope was still less than 1, and there was still an underestimation of high yields and
an overestimation of low yields in some areas. Based on the density of the scatterplot in differ-
ent yield intervals, the yield data were mainly concentrated in the range of 5000-7500 kg/ha,
compared with the low-yield samples and high-yield samples, which also explains the lower
accuracy of the two models for the high and low yields from one aspect. Deep learning typically
requires a large sample size, and the sample size in this study resulted in the model’s inability
to learn high-yield features. From the 600 kg/ha error line on the three scatter plots, combined
with the evaluation metrics R? and RMSE, the CNN-MALSTM model fell the least outside of
the error line and was closer to the trend line, whereas the CNN-LSTM model suffered from
significant underestimation of high yields. This further suggests that a combination of CNN
and the multi-attention mechanism allows for better extraction of important features.

3.2. Comparison of CNN-MALSTM Model in Terms of County Residuals

In this study, the difference between the official statistical yields and the predicted
yields was used to calculate the residuals. We took into account the specific yield char-
acteristics of the study area and referred to the threshold-setting method for wheat yield
estimation from similar areas [39]. We used the absolute value threshold method to set
a fixed absolute value threshold of 600 kg/ha. Specifically, residual values greater than
600 kg/ha were considered underestimates, while those less than 600 kg/ha were consid-
ered overestimates. Figure 8 shows the histograms of the residuals in counties with the
CNN-MALSTM model. Overall, the yield errors in most areas were within 600 kg/hm?,
and the overall residuals followed a normal distribution and were uniformly distributed on
both sides of zero. Based on the residual box plots, high yields showed different degrees of
underestimation, while the medium- and low-yield residuals were both positive and nega-
tive. The average residuals for the high yield were 337.50 kg /ha, which was much higher
than the residuals for the medium and low yields of —230.29 kg/ha and —183.05 kg/ha.
These results indicated that the model performed well in medium- and low-yielding areas.
From the size of the residual violin plot shown in Figure 9, it can be seen that the number of
medium-yield samples is high, consistent with the distribution of the collected yield data.
During model training, the use of fewer high-yield data resulted in the model performing
poorly in estimating high yields and better in estimating low and medium yields, with the
CNN-MALSTM model performing the best. Overall, the model can learn the relationship
between different features to better relate to the final yield.

Box plots are an effective statistical chart used to demonstrate the variability and
distributional characteristics of data. They help researchers quickly understand the dis-
tribution of data by displaying key statistical indicators of the dataset, such as minimum,
first quartile (Q1), median (Q2), third quartile (Q3), and maximum values. Thus, box
plots can help in analyzing the variations of different ranges of yields in winter wheat
yield prediction results. Further analysis of the cause of the residuals through box plots
reveals that the unevenness of the data distribution may be a key factor contributing to
this phenomenon. The scarcity of high-yield samples makes the model’s learning ability
in these areas insufficient to capture the key factors affecting high yields, such as climate
change and corresponding remote sensing data. In addition, feature selection and model
complexity also affect the prediction results. In order to improve the performance of the
model in high-yield areas, future research could consider introducing more high-yield
data or applying data enhancement techniques to improve the accuracy of the model in
high-yield estimation.
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Figure 9. Residual violin plots for different yield ranges.

3.3. Model Robustness Assessment

To further assess the robustness and generalizability of the model, cross-validation
was used for model training, i.e., one year’s data were used for model validation, while
the data from other years were used for model training. The model performance was then
assessed for each year until all the year’s data had been used as the test set in turn.

Figure 10 shows the results of the cross-validation evaluation of the model for different
years, with R? ranging from a minimum of 0.70 to a maximum of 0.74 and the corresponding
RMSE ranging from 718.40 kg/ha to 697.58 kg/ha. Overall, the estimation accuracy of
the model was more stable across all years, with an average R? of 0.73 and an RMSE of
690.82 kg /ha. The interannual differences in the estimation results of the different years
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were relatively small, indicative of the robustness of the CNN-ALSTM model (Table 3 and
Figure 10).

Table 3. “One-year-out” cross-validation.

Maturity 2019 2020 2021 2022 2023 Average
RMSE (kg/ha) 697.58 672.85 700.44 718.40 664.82 690.82
R2 0.74 0.74 0.72 0.70 0.74 0.73
800 0. 80
[ 1 RMSE
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Figure 10. RMSE and R? trends for “one-year sabbatical” cross-validation for the 2019-2023 period.

3.4. Fertility-by-Fertility CNN-MALSTM Model Performance Analysis

To explore the cumulative effect of input feature time on the final yield estimation,
a stepwise sensitivity analysis was used to quantify the changes in the model’s yield
estimation performance with the increase in the feature data. The evaluation metrics used
R? and RMSE to compare and analyze the accuracy of the yield estimation for 2019-2023 in
each county by the fertility period. Figures 11 and 12 show the results.

Before the overwintering period, winter wheat grows slowly, soil background informa-
tion has a large impact, and it is difficult to obtain yield-related information from satellite
images. On the other hand, meteorological data inputs are small, and it is difficult to
distinguish the impact of environmental factors on winter wheat, resulting in the model
being inaccurate in the early stage.

As shown in Table 4, in five years, the mean values of the yield estimation for the same
fertility period were 0.43 and 999.84 kg /ha for R> and RMSE in the overwintering period,
respectively. After winter, wheat enters the greening period; the temperature gradually
rises, and under the influence of photosynthesis, winter wheat grows rapidly, and the
chlorophyll content of the plant body rises substantially until it reaches the maximum value
before the tassel filling period. Accordingly, this is reflected in remote sensing imagery.
After overwintering, with the increase in the input model data over time, the model R?
increased significantly, and the RMSE decreased significantly, indicating that the complex
nonlinear relationship between the input characteristics and yield could be significantly
captured; the model accuracy leveled off from the late stage of filling to maturity. During
the gradual input of data from different fertility stages, the effect of the data on final
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yield varies across fertility periods, and there was an evident rising interval in the model
accuracy. The mean R? increased by 0.25, and the RMSE decreased by 261.52 kg/ha from
the overwintering to the heading stage. In terms of wheat growth stage, the dramatic
increase in chlorophyll content, enhanced photosynthesis, and increased demand for
water and nutrients in winter wheat from jointing to heading are important factors in the
formation of wheat yields, and the model could successfully identify the contribution of
the characteristics of this stage. The performance of the model was consistent from year to
year, as seen in different years.
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Figure 11. Trends in the multi-feature R? by the fertility period, 2019-2023.
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Figure 12. Trends in the multi-characteristic RMSE by fertility period for the 2019-2023 period.
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Table 4. Mean values of R* and RMSE by the fertility period, 2019-2023.
Fertility Period R? Change RMSE (kg/ha) Change (kg/ha)
Tilleri . 1062.7
o i e.rmg.stage 0.36 0.07 062.78 62.94
verwintering stage 0.43 999.84
Greeni 0.10 90.37
reening stage 0.53 909.47
L 0.10 104.19
Jointing stage 0.63 805.28
. 0.05 66.96
Heading stage 0.68 738.32
A 0.03 17.49
Anthesis stage 0.71 0.02 720.83 9791
Maturity stage 0.73 ' 693.62 ’

An analysis of Table 4 shows that with the gradual increase in the input data, the
model can better capture the critical period of wheat growth and gradually improve the
ability of yield estimation. In the later stage of growth, as the growth of winter wheat
reaches its peak and gradually undergoes senescence, the chlorophyll and water contents in
the plant body decline rapidly. The input data reflecting the yield information also tends to
be saturated, and the model accuracy is slow to improve and tends to be stable, achieving
a better effect in the anthesis period. The five-year average R? and RMSE were 0.71 and
720.83 kg /ha, respectively. In summary, the model can obtain good yield estimation around
the anthesis period.

3.5. Analysis of the Spatiotemporal Distribution of County-Level Estimates of the Winter Wheat
Yield for the CNN-MALSTM Model

Figure 13 shows the predicted and residual distributions of the model in each year,
where Figure 13a—e are the county-level estimated yield distribution maps of the model
for the 2019-2023 period, and Figure 13a’—e’ are the differences between the statistical and
predicted values of the model in each year. The estimated yield distribution map shows that
the forecast results are overall consistent with the trend in the yield distribution in Henan
Province, with lower values in the west and higher values in the center and east. This is
related to the undulating terrain. The western part of the country is at a higher altitude,
and the central and northern plains are suitable for wheat cultivation, while the southern
Xinyang area has limited wheat cultivation due to topographical and climatic factors,
resulting in lower yields. From the residual plot, the high-yielding areas in the east-central
part, such as Boai County, Wuzhi County, Wen County, Yanling County, Xiangcheng County,
Joon County, Changge City, and Shangshui County, were underestimated to varying
degrees. Low-yielding areas in the west, such as Luanchuan County, Luoning County,
Ruzhou City, Xixia County, Xichuan County, and others, were overestimated. Among them,
Xixia County had an error greater than 600 kg/ha in all five years of yield estimation, and
the area has a high degree of topographic relief, which is affected by topographic shading,
leading to a decline in image quality and variations that may be significant across years and
locations, further exacerbating the fluctuations in yield. Therefore, these factors may have
contributed to the bias in yield estimates. Overall, the yield production in Henan Province
increased steadily; the model’s estimation results for each year were consistent with the
official statistical distribution, the absolute value of the model’s overall residuals remained
within 600 kg/ha, and the performance of the CNN-MALSTM model in estimating the
yields in each county in Henan Province was overall better.
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Figure 13. Spatiotemporal distribution of the winter wheat yield estimates and residuals for the 2019-
2023 period, (a—e) spatial and temporal distributions of the yield estimates for the 2019-2023 period,
and (a’-e’) spatiotemporal distributions of the residuals of the yield estimates for the 2019-2023 yield.
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4. Discussion
4.1. Analysis of the Advantages of the CNN-MALSTM Model

The CNN-MALSTM model proposed in this paper effectively estimates the yield of
winter wheat at the county level in Henan Province by integrating multi-source remote
sensing data. The model not only realistically reflects the distribution of the data but also
captures the key variables that affect the yield of winter wheat throughout the growth
and development process. Compared with the baseline model CNN-LSTM, the CNN-
MALSTM model incorporates a multi-attention mechanism, which significantly improves
the accuracy of yield estimation, especially in overcoming the problem of underestimation
of high yield. The yield estimation of the model highly matches the actual yield distribution
in Henan Province.

In the cross-validation of the “one year on leave” approach, the model’s yield pre-
dictions show stability, although the prediction accuracy varies slightly across years. In
addition, the model performed well in the fertility-based sensitivity analysis in different
years. Using the sensitivity analyses in Table 4, we found that gradually adding fertility
data to the model was effective in quantifying the accuracy of predicted yields and that the
model accurately predicted yields as early as 20 days before the harvest of winter wheat,
which is in line with the results of a previous study [40]. This 20-day lead time is important
for early decision-making and planning by farmers and policymakers to help them adjust
their strategies in time to maximize yield potential and resource allocation.

In order to deeply explore the changes in the contribution of CNN-MALSTM to
winter wheat yield estimation compared to CNN-LSTM in different years and different
fertility periods, we conducted fertility-by-fertility sensitivity analyses of CNN-LSTM and
calculated the R? and RMSE in each year. By averaging the results of the two models
over five years in each fertility period (shown in Figure 14), we are able to intuitively
observe the trend of changes in the estimation accuracy of the models at different fertility
periods. Before the greening period of winter wheat, the factors affecting the yield are
relatively simple due to weak crop growth, such as temperature, precipitation, and other
basic meteorological data. These factors can be effectively captured by the CNN-LSTM
model, so the model performs well at this stage even without the help of the attention
mechanism. However, as the growth of winter wheat advances, the meteorological data
(e.g., temperature and precipitation) and remote sensing data are gradually fused, at which
point the advantage of the attention mechanism begins to emerge. It can help the model
focus more precisely on key yield-related features, which in turn improves the prediction
ability. Both models were able to identify important fertility stages of winter wheat (e.g.,
the jointing to anthesis stage), where the link between key crop characteristics and yield
potential became clearer, especially when the EVI reached saturation. The introduction of
the multiple attention mechanism allows the model to capture these key characteristics at
an early stage, resulting in earlier and more accurate yield predictions, providing relatively
accurate predictions about 20 days in advance.

In summary, by combining CNN-LSTM models with multiple attention mechanisms,
we revealed the cumulative effects and nonlinear relationships between the influencing
factors and yield, and explored the timeliness of crop yield prediction as well as the con-
tribution of multivariate variables to yield estimation at different growth stages. Simple
feature relationships in the early stage may allow the model without the attention mecha-
nism to perform better, while in the later stage, as the feature relationships become more
complex, the inclusion of the attention mechanism can effectively improve the model’s
performance. This phenomenon reflects the different needs for model structure and fea-
ture extraction capability at different stages. The model not only improves the reliability
and timeliness of yield prediction but also provides a solid scientific basis for relevant
management decisions.
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Figure 14. Mean R? and RMSE for fertility-by-fertility projections, 2019-2023.

4.2. Generalisation Performance of the Model

Based on the data processing and preparation in Chapter 2, we applied the CNN-
MALSTM model to Pingyuan County, Shandong Province, for a heterogeneous gener-
alization experiment to estimate winter wheat yield between 2019 and 2023. Under the
premise of keeping the model structure and parameters unchanged, the prediction accuracy
performance of the model in these five years is shown in Table 5.

Table 5. Winter wheat acreage and production in Pingyuan County, 2019-2023.

2019 2020 2021 2022 2023
Official yield (kg/ha) 6612.75 6872.70 7022.55 7085.55 7100.85
Estimation yield (ka/ha) 6373.43 6375.14 6588.78 6647.14 6559.97
Accuracy (%) 96.38% 92.76% 93.82% 93.81% 92.38%

During the study period from 2019 to 2023, the model achieved an R? value of 0.73
and an RMSE of 422.21 kg/ha, showing good performance of the model in different years.
The average accuracy was as high as 93.80%, and the maximum inter-annual gap was only
4.0%. This result indicates that despite the increased fluctuation in yields in the county
after 2019 (Table 5) and the decrease in the accuracy of the model compared to 2019, the
overall high predictive ability was still maintained. There is a subtle underestimation of
the overall yield, potentially because the distribution of training data features in Henan
may be significantly different from those in Shandong, and this distributional difference
can affect the predictive accuracy of the model, especially when regional extrapolation is
prone to bias. Specifically, the model is able to adapt to climate change and agricultural
management practices in different years, ensuring that a high level of prediction accuracy
is maintained despite data changes. In addition, the ability to effectively integrate remotely
sensed data with meteorological information enhances its applicability to different regions
and time periods.

In summary, the performance of the CNN-MALSTM model in heterogeneous general-
ization confirms its reliability and adaptability in winter wheat yield estimation, and lays
the foundation for future applications in other regions.

4.3. Analysis of Model Limitations

Although the proposed CNN-MALSTM model performs well at the county level,
there are still some limitations. One of the main challenges is related to data collection. Due
to the relatively short runtime of Sentinel-2’s binary star network, the model may have a
more limited sample size, which affects its robustness and generalization ability. Faced with
the discrepancy between the high-frequency temperature and precipitation data and the
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low-frequency satellite imaging data, we unified all the data to the same time step, i.e., the
fertility interval, according to the research needs. The other high-frequency meteorological
data can be fulfilled within the current time interval only if the satellite images satisfy the
prerequisites. To cope with this problem, data augmentation methods such as generative
adversarial networks (GANs) and variational autoencoders (VAEs) can be considered in
the future to extend the diversity of the dataset. In addition, when Sentinel-2 data are not
available at a certain growth stage of winter wheat due to factors such as clouds and rain, a
potential solution is to integrate Landsat and Sentinel-2 data through multi-source image
fusion techniques to ensure the completeness of the images during the reproductive period.
Second, this study explored the ability of the model to be applied in winter wheat yield
estimation, mainly from the perspective of the fertility period. Thanks to the high temporal
resolution of Sentinel-2, future studies can further explore yield estimation at finer time
scales (e.g., 5-, 10-, and 15-day intervals). It is also important to perform a detailed data
quality assessment, including the detection of missing values, outliers, and erroneous data,
before using meteorological datasets. Consider using interpolation techniques (e.g., mean
interpolation, linear interpolation, or model-based interpolation) to fill in missing values
and ensure the integrity of the dataset. In cases where there are fewer missing values, there
is an option to remove missing data points to avoid any impact on model training.

The diversity of cultivars and field management practices within the vast winter
wheat growing region of Henan Province, coupled with the fact that it spans a significant
north-south distance, poses additional challenges for yield estimation. For example, there
are differences in the phenological periods of winter wheat in northern and southern Henan
Province. Although this study used a uniform standard to delineate fertility periods across
the province, this may not fully explain the regional differences. Future studies could adjust
fertility intervals based on recognized phenological differences to improve the accuracy of
input data and ultimately enhance the precision of yield estimates. Additionally, certain
factors that significantly influence yield, such as elevation, soil properties, human field
management, and irrigation practices, were not included in this study due to limitations in
feature quantification and data acquisition. Jiang et al. [41] showed that the introduction
of these factors can effectively help the model identify spatial heterogeneity in yield.
Although the model performed well on the existing dataset, the inclusion of these additional
factors is expected to further enhance its predictive ability. For example, solar-induced
fluorescence (SIF), which reflects crop photosynthesis, and the vegetation temperature
condition index (VTCI), which is sensitive to moisture stress during the growing season [42],
can be integrated into the yield estimation model to further improve its accuracy.

Although deep learning models like CNN-MALSTM are good at revealing complex
relationships between data, they are often criticized as “black boxes” due to the black-box
nature of their internal computational processes. This lack of transparency can lead to
uncertainty, as the intrinsic relationship between input features and target yield remains
unclear. In contrast, traditional crop growth models provide a more explanatory charac-
terization of crop growth processes and mechanisms. Future research could attempt to
combine crop growth models with deep learning methods to improve the interpretability
of the models and apply them to large-scale yield estimation. This hybrid approach could
combine both the predictive power of deep learning and the explanatory advantages of
crop growth models.

In addition, the model in this study has only been tested on winter wheat and has not
been validated for other crops (e.g., corn and soybean). This limits the applicability of the
model to some extent, as its accuracy and reliability for other crops cannot be guaranteed.
Different crops have different growth cycles and phenological characteristics and therefore
require independent modeling and validation to ensure generalization and accuracy of the
predictive model. In addition, the model has only been tested in wheat-producing areas in
Henan Province and Pingyuan County, and further validation in other areas in the future
will help to improve the applicability of the model. Therefore, the generalization and wide
applicability of the method still need further research and validation.
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5. Conclusions

In this study, we developed a CNN-MALSTM deep learning framework that combines
the spatial feature extraction capability of convolutional neural networks (1D-CNN) with
the advantages of long short-term memory (LSTM) networks in processing time-series data
and integrates a multi-attention mechanism to enable the model to efficiently capture the
contribution of various features to the final yield. All data processing steps were performed
on the Google Earth Engine (GEE) platform, including the pre-processing of Sentinel-2
imagery (resampling and masking) and computation of the EVI. In addition, meteorological
data (precipitation and temperature) were derived from the ERA5 dataset, extracted hour
by hour through GEE, and aggregated to the fertility scale. This processing method makes
the data processing more efficient and guarantees the spatial and temporal consistency of
the data.

The results show that the CNN-MALSTM model exhibits excellent accuracy in es-
timating winter wheat yield at the county level in Henan Province, outperforming the
baseline model CNN-LSTM. In particular, the model is able to accurately predict the yield
about 20 days before harvest, showing good robustness and reliability. In addition, the
spatio-temporal distribution map of county-level winter wheat yields in Henan Province
from 2019 to 2023 demonstrated a trend of lower yields in the western region and higher
yields in the central-eastern region, along with a reduction in inter-annual variability.
The results are highly correlated with the official statistics, indicating that the proposed
CNN-MALSTM framework has significant potential for yield estimation.

Future research could explore the application of the CNN-MALSTM framework to
other crops or regions to assess its generality and adaptability. In addition, incorporating
other variables that affect yield, such as soil, geographic, or pest and disease information,
may further improve the predictive power and robustness of the model. These research
avenues will help expand the range of model applications and provide broader technical
support for global agricultural yield prediction.
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