YOLOv8-GABNet: An Enhanced Lightweight Network for the High-Precision Recognition of Citrus Diseases and Nutrient Deficiencies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Data Acquisition
2.1.2. Data Enhancement
2.2. YOLOv8-GABNet Improvement
2.2.1. New Object Detection Algorithm: YOLOv8
2.2.2. Global to Local Space Aggregation Module: GLSA
2.2.3. Lightweight Subsampling Module: ADown
2.2.4. Weighted Bidirectional Feature Pyramid Network: BiFPN
2.2.5. YOLOv8-GABNet Model
3. Results and Discussion
3.1. Model Training Result
3.2. Ablation Experiment
3.3. Comparative Experiment of Different Network Models
4. Discussion
5. Conclusions
- (1)
- Data Collection and Augmentation: This study focused on collecting images of three common diseases and two nutrient deficiencies from “Citrus Planet” in Conghua District, Guangzhou, Guangdong Province. All images were taken with smartphones and annotated using the LabelImg tool. Data augmentation techniques were applied to enhance data diversity and improve the generalization ability of the detection model.
- (2)
- Technical Optimization and Model Improvement: The introduction of ADown lightweight subsampling convolution blocks replaced traditional convolution modules, significantly reducing the model’s parameter count and computational demand, increasing the detection speed, and reducing computational costs while maintaining high performance. Additionally, to address challenges of complex backgrounds and multi-object detection, an integrated weighted bi-directional Feature Pyramid Network (BiFPN) served as a feature fusion network, enhancing information flow between different feature levels, and improving detection accuracy and model robustness. The introduced Global-to-Local Spatial Aggregation (GLSA) module improved the model’s flexibility and accuracy in handling objects of various sizes and shapes in complex backgrounds by aggregating information across different spatial levels.
- (3)
- Reference for Other Regions: Although the research was concentrated in “Citrus Planet” in Conghua District, Guangzhou, Guangdong Province, the optimized techniques and model improvements not only enhanced the efficiency and accuracy of citrus disease and nutritional deficiency detection but also served as a robust case for agricultural disease and nutritional deficiency detection and management in other regions, providing feasible technical references and insights for global agricultural disease and nutritional deficiency monitoring.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Saleem, M.H.; Potgieter, J.; Arif, K.M. Automation in Agriculture by Machine and Deep Learning Techniques: A Review of Recent Developments. Precis. Agric. 2021, 22, 2053–2091. [Google Scholar] [CrossRef]
- Iqbal, Z.; Khan, M.A.; Sharif, M.; Shah, J.H.; Rehman, M.H.U.; Javed, K. An automated detection and classification of citrus plant diseases using image processing techniques. Comput. Electron. Agric. 2018, 153, 12–32. [Google Scholar] [CrossRef]
- Deng, L.; Wang, Z.; Zhou, H. Application of Image Segmentation Technology in Crop Disease Detection and Recognition. In Computer and Computing Technologies in Agriculture XI; IFIP Advances in Information and Communication Technology; Springer: Cham, Switzerland, 2019; Volume 545, pp. 365–374. [Google Scholar]
- Dimililer, K.; Zarrouk, S. ICSPI: Intelligent Classification System of Pest Insects Based on Image Processing and Neural Arbitration. Appl. Eng. Agric. 2017, 33, 453–460. [Google Scholar] [CrossRef]
- Wen, C.; Guyer, D.; Li, W. Local feature-based identification and classification for orchard insects. Biosyst. Eng. 2009, 104, 299–307. [Google Scholar] [CrossRef]
- Wen, C.; Guyer, D. Image-based orchard insect automated identification and classification method. Comput. Electron. Agric. 2012, 89, 110–115. [Google Scholar] [CrossRef]
- Liu, T.; Chen, W.; Wu, W.; Sun, C.; Guo, W.; Zhu, X. Detection of aphids in wheat fields using a computer vision technique. Biosyst. Eng. 2016, 141, 82–93. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, S.; Yang, J.; Shi, Y.; Chen, J. Apple leaf disease identification using genetic algorithm and correlation based feature selection method. Int. J. Agric. Biol. Eng. 2017, 10, 74–83. [Google Scholar]
- Chakraborty, S.; Paul, S.; Rahat-uz-Zaman, M. Prediction of Apple Leaf Diseases Using Multiclass Support Vector Machine. In Proceedings of the 2021 2nd International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), Dhaka, Bangladesh, 5–7 January 2021. [Google Scholar]
- Zhang, S.; Wu, X.; You, Z.; Zhang, L. Leaf image based cucumber disease recognition using sparse representation classification. Comput. Electron. Agric. 2017, 134, 135–141. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [Google Scholar] [CrossRef]
- Zhang, K.; Wu, Q.; Chen, Y. Detecting soybean leaf disease from synthetic image using multi-feature fusion faster R-CNN. Comput. Electron. Agric. 2021, 183, 106064. [Google Scholar] [CrossRef]
- Sun, H.; Xu, H.; Liu, B.; He, D.; He, J.; Zhang, H.; Geng, N. MEAN-SSD: A novel real-time detector for apple leaf diseases using improved light-weight convolutional neural networks. Comput. Electron. Agric. 2021, 189, 106379. [Google Scholar] [CrossRef]
- Bao, W.; Fan, T.; Hu, G.; Liang, D.; Li, H. Detection and identification of tea leaf diseases based on AX-RetinaNet. Sci. Rep. 2022, 12, 2183. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Matas, J.; Sebe, N.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Computer Vision—ECCV 2016; Springer International Publishing: Cham, Switzerland, 2016; pp. 21–37. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Lippi, M.; Bonucci, N.; Carpio, R.F.; Contarini, M.; Speranza, S.; Gasparri, A. A YOLO-Based Pest Detection System for Precision Agriculture. In Proceedings of the 2021 29th Mediterranean Conference on Control and Automation (MED), Puglia, Italy, 22–25 June 2021. [Google Scholar]
- Liu, J.; Wang, X. Plant diseases and pests detection based on deep learning: A review. Plant Methods 2021, 17, 22. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, X. Tomato Diseases and Pests Detection Based on Improved Yolo V3 Convolutional Neural Network. Front. Plant Sci. 2020, 11, 898. [Google Scholar] [CrossRef]
- Wang, X.; Liu, J. Tomato Anomalies Detection in Greenhouse Scenarios Based on YOLO-Dense. Front. Plant Sci. 2021, 12, 634103. [Google Scholar] [CrossRef]
- Li, K.S.; Wang, J.C.; Jalil, H.; Wang, H. A fast and lightweight detection algorithm for passion fruit pests based on improved YOLOv5. Comput. Electron. Agric. 2023, 204, 107534. [Google Scholar] [CrossRef]
- Alam Soeb, J.; Jubayer, F.; Tarin, T.A.; Al Mamun, M.R.; Ruhad, F.M.; Parven, A.; Mubarak, N.M.; Karri, S.L.; Meftaul, I.M. Tea leaf disease detection and identification based on YOLOv7 (YOLO-T). Sci. Rep. 2023, 13, 6078. [Google Scholar]
- Deng, J.; Yang, C.; Huang, K.; Lei, L.; Ye, J.; Zeng, W.; Zhang, J.; Lan, Y.; Zhang, Y. Deep-Learning-Based Rice Disease and Insect Pest Detection on a Mobile Phone. Agronomy 2023, 13, 2139. [Google Scholar] [CrossRef]
- Solimani, F.; Cardellicchio, A.; Dimauro, G.; Petrozza, A.; Summerer, S.; Cellini, F.; Renò, V. Optimizing Tomato Plant Phenotyping Detection: Boosting YOLOv8 Architecture to Tackle Data Complexity. Comput. Electron. Agric. 2024, 218, 108728. [Google Scholar] [CrossRef]
- Xu, L.; Wang, Y.; Shi, X.; Tang, Z.; Chen, X.; Wang, Y.; Zou, Z.; Huang, P.; Liu, B.; Yang, N.; et al. Real-Time and Accurate Detection of Citrus in Complex Scenes Based on HPL-YOLOv4. Comput. Electron. Agric. 2023, 205, 107590. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Khoshtaghaza, M.H.; Minaei, S.; Jamshidi, B.J.C. Vision-based pest detection based on SVM classification method. Comput. Electron. Agric. 2017, 137, 52–58. [Google Scholar] [CrossRef]
- Dai, Q.; Guo, Y.; Li, Z.; Song, S.; Lyu, S.; Sun, D.; Wang, Y.; Chen, Z. Citrus Disease Image Generation and Classification Based on Improved FastGAN and EfficientNet-B5. Agronomy 2023, 13, 988. [Google Scholar] [CrossRef]
- Studies on Manganese Deficiency in Citrus. III. Available online: https://www.jstage.jst.go.jp/article/jjshs1925/36/1/36_1_55/_article (accessed on 22 October 2024).
- Wang, Y.; Long, Q.; Li, Y.; Kang, F.; Fan, Z.; Xiong, H.; Zhao, H.; Luo, Y.; Guo, R.; He, X.; et al. Mitigating Magnesium Deficiency for Sustainable Citrus Production: A Case Study in Southwest China. Sci. Hortic. 2022, 295, 110832. [Google Scholar] [CrossRef]
- Ying, Z.; Li, G.; Ren, Y.; Wang, R.; Wang, W. A New Image Contrast Enhancement Algorithm Using Exposure Fusion Framework. In Computer Analysis of Images and Patterns; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2017; pp. 36–46. [Google Scholar]
- DeVries, T.; Taylor, G.W. Improved Regularization of Convolutional Neural Networks with Cutout. arXiv 2017, arXiv:1708.04552. [Google Scholar]
- Shorten, C.; Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef]
- Zhong, Z.; Zheng, L.; Kang, G.; Li, S.; Yang, Y. Random Erasing Data Augmentation. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 13001–13008. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556. [Google Scholar]
- Takahashi, R.; Matsubara, T.; Uehara, K. Data Augmentation Using Random Image Cropping and Patching for Deep CNNs. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 2917–2931. [Google Scholar] [CrossRef]
- Tang, F.; Xu, Z.; Huang, Q.; Wang, J.; Hou, X.; Su, J.; Liu, J. DuAT: Dual-aggregation transformer network for medical image segmentation. In Proceedings of the Chinese Conference on Pattern Recognition and Computer Vision (PRCV), Xiamen, China, 13–15 October 2023; pp. 343–356. [Google Scholar]
- Wang, C.-Y.; Yeh, I.-H.; Liao, M.H.-Y. Yolov9: Learning what you want to learn using programmable gradient information. arXiv 2024, arXiv:2402.13616. [Google Scholar]
- Tan, M.; Pang, R.; Le, Q.V. EfficientDet: Scalable and efficient object detection. arXiv 2019, arXiv:1911.09070. [Google Scholar]
- Chollet, F. Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [Google Scholar]
- Laurent, S. Rigid-Motion Scattering for Image Classification. Ph.D. Thesis, Ecole Polytechnique, Palaiseau, France, 2014. [Google Scholar]
- Zhu, H.; Wang, D.; Wei, Y.; Zhang, X.; Li, L. Combining Transfer Learning and Ensemble Algorithms for Improved Citrus Leaf Disease Classification. Agriculture 2024, 14, 1549. [Google Scholar] [CrossRef]
- Dhiman, P.; Kaur, A.; Hamid, Y.; Alabdulkreem, E.; Elmannai, H.; Ababneh, N. Smart Disease Detection System for Citrus Fruits Using Deep Learning with Edge Computing. Sustainability 2023, 15, 4576. [Google Scholar] [CrossRef]
- Yang, C.; Teng, Z.; Dong, C.; Lin, Y.; Chen, R.; Wang, J. In-Field Citrus Disease Classification via Convolutional Neural Network from Smartphone Images. Agriculture 2022, 12, 1487. [Google Scholar] [CrossRef]
- Apacionado, B.V.; Ahamed, T. Sooty Mold Detection on Citrus Tree Canopy Using Deep Learning Algorithms. Sensors 2023, 23, 8519. [Google Scholar] [CrossRef] [PubMed]
- Ferentinos, K.P. Deep Learning Models for Plant Disease Detection and Diagnosis. Comput. Electron. Agric. 2018, 145, 311–318. [Google Scholar] [CrossRef]
- Qin, D.; Leichner, C.; Delakis, M.; Fornoni, M.; Luo, S.; Yang, F.; Wang, W.; Banbury, C.; Ye, C.; Akin, B.; et al. MobileNetV4—Universal Models for the Mobile Ecosystem. arXiv 2024, arXiv:2404.10518. [Google Scholar]
Name | Proportion | Number of Pictures | Number of Labels |
---|---|---|---|
Training Set | 80% | 881 | 3016 |
Validation Set | 10% | 110 | 383 |
Test Set | 10% | 111 | 385 |
Total Set | 100% | 1102 | 3784 |
Diseases | Anthracnose | Canker | Yellow Vein Disease | Mg Deficiency | Mn Deficiency |
---|---|---|---|---|---|
Original Data | 1140 | 1105 | 326 | 716 | 497 |
Data Augmentation | 9308 | 9031 | 2693 | 5881 | 4075 |
Model | mAP50(%) | mAP50:95(%) | Model Size(MB) | Params(MB) | FLOPs(G) | FPS(Frames/s) | P(%) | R(%) |
---|---|---|---|---|---|---|---|---|
v8 | 0.824 | 0.629 | 6.2 | 3.15 | 8.7 | 163.5 | 0.829 | 0.750 |
v8 + G | 0.855 | 0.631 | 8.0 | 4.02 | 9.2 | 110.2 | 0.799 | 0.779 |
v8 + A | 0.856 | 0.618 | 5.2 | 2.59 | 7.4 | 149.7 | 0.873 | 0.737 |
v8 + B | 0.845 | 0.634 | 4.1 | 1.99 | 7.1 | 131.2 | 0.850 | 0.750 |
v8 + G + A | 0.831 | 0.613 | 7.2 | 3.61 | 8.5 | 101.4 | 0.774 | 0.772 |
v 8 + G + B | 0.865 | 0.636 | 4.4 | 2.14 | 7.6 | 97.0 | 0.870 | 0.712 |
v8 + A + B | 0.841 | 0.622 | 3.4 | 1.65 | 6.3 | 123.1 | 0.821 | 0.751 |
v8 + G + A + B | 0.867 | 0.638 | 3.8 | 1.79 | 6.8 | 93.3 | 0.897 | 0.770 |
Model | mAP50(%) | mAP50:95(%) | Model Size(MB) | Params(MB) | FLOPs(G) | FPS(Frames/s) | P(%) | R(%) |
---|---|---|---|---|---|---|---|---|
Faster R-CNN | 0.718 | 0.503 | 323.1 | 41.37 | 33.2 | 62.7 | 0.718 | 0.581 |
SSD | 0.672 | 0.445 | 190.4 | 24.28 | 30.6 | 94.7 | 0.672 | 0.585 |
YOLO5s | 0.820 | 0.617 | 18.5 | 9.11 | 23.8 | 136.9 | 0.856 | 0.711 |
YOLOv8n | 0.824 | 0.629 | 6.2 | 3.15 | 8.7 | 163.5 | 0.829 | 0.750 |
YOLO8s | 0.823 | 0.628 | 22.5 | 11.12 | 28.4 | 150.6 | 0.815 | 0.765 |
YOLOv9t | 0.818 | 0.627 | 6.1 | 2.62 | 10.7 | 141.5 | 0.852 | 0.708 |
YOLOv10n | 0.817 | 0.614 | 5.8 | 2.27 | 6.5 | 139.9 | 0.795 | 0.719 |
YOLOv8-GABNet | 0.867 | 0.638 | 3.8 | 1.79 | 6.8 | 93.3 | 0.897 | 0.770 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, Q.; Xiao, Y.; Lv, S.; Song, S.; Xue, X.; Liang, S.; Huang, Y.; Li, Z. YOLOv8-GABNet: An Enhanced Lightweight Network for the High-Precision Recognition of Citrus Diseases and Nutrient Deficiencies. Agriculture 2024, 14, 1964. https://doi.org/10.3390/agriculture14111964
Dai Q, Xiao Y, Lv S, Song S, Xue X, Liang S, Huang Y, Li Z. YOLOv8-GABNet: An Enhanced Lightweight Network for the High-Precision Recognition of Citrus Diseases and Nutrient Deficiencies. Agriculture. 2024; 14(11):1964. https://doi.org/10.3390/agriculture14111964
Chicago/Turabian StyleDai, Qiufang, Yungao Xiao, Shilei Lv, Shuran Song, Xiuyun Xue, Shiyao Liang, Ying Huang, and Zhen Li. 2024. "YOLOv8-GABNet: An Enhanced Lightweight Network for the High-Precision Recognition of Citrus Diseases and Nutrient Deficiencies" Agriculture 14, no. 11: 1964. https://doi.org/10.3390/agriculture14111964
APA StyleDai, Q., Xiao, Y., Lv, S., Song, S., Xue, X., Liang, S., Huang, Y., & Li, Z. (2024). YOLOv8-GABNet: An Enhanced Lightweight Network for the High-Precision Recognition of Citrus Diseases and Nutrient Deficiencies. Agriculture, 14(11), 1964. https://doi.org/10.3390/agriculture14111964