Improvement of Transplanting Rice Yield and Nitrogen Use Efficiency by Increasing Planting Density in Northeast China Under the Optimal Nitrogen Split-Fertilizer Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Soil Properties
2.2. Experimental Design
2.3. Sampling and Measurements
2.3.1. Grain Yield and Yield Components
2.3.2. Nitrogen Use Efficiency
2.3.3. SPAD Value
2.3.4. Root Traits
2.3.5. Root Activity
2.3.6. Root Enzyme Activity
2.3.7. Statistical Analysis
3. Results
3.1. Yield and Yield Components
3.1.1. Yield and Yield Components in 2021
3.1.2. Yield and Yield Components in 2022
3.2. N Use Efficiency
3.3. SPAD Value
3.4. Net Photosynthetic Rate
3.5. Root Traits
3.5.1. Root Physical Properties
3.5.2. Root Activity
3.5.3. Enzyme Activity of Roots
4. Discussion
4.1. Effects of Different Planting Density, N Management Mode, and N Application Rate on Yield and Yield Components
4.2. Effects of Different Planting Density and N Application Rate on N Use Efficiency and Photosynthetic Rate
4.3. Effects of Different Planting Density and N Application Rate on Roots
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Peng, S.B.; Buresh, R.J.; Huang, J.L.; Zhong, X.H.; Zou, Y.B.; Yang, J.C.; Wang, G.H.; Liu, Y.Y.; Hu, R.F.; Tang, Q.Y. Improving nitrogen fertilization in rice by site-specific N management. A review. Agron. Sustain. Dev. 2010, 30, 649–656. [Google Scholar] [CrossRef]
- Zeng, X.M.; Han, B.J.; Xu, F.S.; Huang, J.L.; Cai, H.M.; Shi, L. Effects of modified fertilization technology on the grain yield and nitrogen use efficiency of midseason rice. Field Crops Res. 2012, 137, 203–212. [Google Scholar] [CrossRef]
- Yan, W.J.; Zhang, S.; Sun, P.; Seitzinger, S.P. How do nitrogen inputs to the Changjiang basin impact the Changjiang River nitrate: A temporal analysis for 1978–1997. Glob. Biogeochem Cycles 2003, 17, 4. [Google Scholar] [CrossRef]
- Lin, X.Q.; Zhu, D.F.; Chen, H.Z.; Cheng, S.H.; Uphoff, N. Effect of plant density and nitrogen fertilizer rates on grain yield and nitrogen uptake of hybrid rice (Oryza sativa L.). J. Agric. Biotechnol. Sustain. Dev. 2009, 1, 044–053. [Google Scholar]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Sheng, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant Acidification in Major Chinese Croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef]
- Zhou, T.Y.; Cui, R.L.; Shu, C.C.; Zhu, K.Y.; Zhang, W.Y.; Zhang, H.; Liu, L.J.; Wang, Z.Q.; Gu, J.F.; Yang, J.C. Combining urea and controlled release nitrogen fertilizer to enhance lodging resistance of rice (Oryza sativa L.) by altering accumulation of silicon and cell wall polymers at high yielding levels. Field Crops Res. 2024, 315, 109459. [Google Scholar] [CrossRef]
- Cai, S.Y.; Zhao, X.; Pittelkow, C.M.; Fan, M.S.; Zhang, X.; Yan, X.Y. Optimal nitrogen rate strategy for sustainable rice production in China. Nature 2023, 615, 73–79. [Google Scholar] [CrossRef]
- Liu, Q.; Zhou, X.; Li, J.; Xin, C. Effects of seedling age and cultivation density on agronomic characteristics and grain yield of mechanically transplanted rice. Sci. Rep. 2017, 7, 14072. [Google Scholar] [CrossRef]
- Chong, H.T.; Jiang, Z.Y.; Shang, L.Y.; Shang, C.; Deng, J.; Zhang, Y.B.; Huang, L.Y. Dense Planting with Reduced Nitrogen Input Improves Grain Yield, Protein Quality, and Resource use Efficiency in Hybrid Rice. J. Plant Growth Regul. 2023, 42, 960–972. [Google Scholar] [CrossRef]
- Zhou, X.T.; Zhang, H.C.; Xu, K.; Guo, B.W.; Chen, H.C.; Cao, L.Q.; Dai, Q.G.; Huo, Z.Y.; Wei, H.Y.; Li, M.Y.; et al. Effects of Different Bowl Types and Densities on Grain Yield, Characteristics of Photosynthesis and Dry Mass Production of Bowl Transplanted Japonica Super Rice. Sci. Agric. Sin. 2013, 46, 3545–3561, (Chinese with English Abstract). [Google Scholar]
- Zhou, J.M.; Zhao, L.; Dong, Y.Y.; Xu, J.; Bian, W.Y.; Mao, Y.C.; Zhang, X.F. Nitrogen and transplanting density interactions on the rice yield and N use rate. J. Plant Nutr. Fertil. 2010, 16, 274–281. [Google Scholar]
- Zhou, C.C.; Huang, Y.C.; Jia, B.Y.; Wang, Y.; Wang, Y.; Xu, Q.; Li, R.F.; Wang, F.; Dou, F.G. Effects of Cultivar, Nitrogen Rate, and Planting Density on Rice-Grain Quality. Agronomy 2018, 8, 246. [Google Scholar] [CrossRef]
- Hou, W.F.; Khan, M.R.; Zhang, J.L.; Lu, J.W.; Ren, T.; Cong, R.H.; Li, X.K. Nitrogen rate and plant density interaction enhances radiation interception, yield and nitrogen use efficiency of mechanically transplanted rice. Agric. Ecosyst. Environ. 2019, 269, 183–192. [Google Scholar] [CrossRef]
- Liu, Z.C.; Shang, L.Y.; Dai, S.J.; Ye, J.Y.; Sheng, T.; Deng, J.; Liu, K.; Fahad, S.; Tian, X.H.; Zhang, Y.B.; et al. Optimizing nitrogen application and planting density improves yield and resource use efficiency via regulating canopy light and nitrogen distribution in rice. J. Integr. Agric. 2024, in press. [CrossRef]
- Gu, J.F.; Chen, Y.; Zhang, H.; Li, Z.K.; Zhou, K.; Yu, C.; Kong, X.S.; Liu, L.J.; Wang, Z.Q.; Yang, J.C. Canopy light and nitrogen distributions are related to grain yield and nitrogen use efficiency in rice. Field Crops Res. 2017, 206, 74–85. [Google Scholar] [CrossRef]
- Andrianary, B.H.; Tsujimoto, Y.; Ozaki, R.; Rakotonindrina, H.; Ramifehiarivo, N. Optimizing transplanting densities for lowland rice production under low-yielding environments in the Madagascar highlands. Field Crops Res. 2024, 318, 109601. [Google Scholar] [CrossRef]
- Xing, Z.P.; Wu, P.; Zhu, M.; Qian, H.J.; Hu, Y.J.; Guo, B.W.; Wei, H.Y.; Xu, K.; Huo, Z.Y.; Dai, Q.G.; et al. Temperature and solar radiation utilization of rice for yield formation with different mechanized planting methods in the lower reaches of the Yangtze River, China. J. Integr. Agric. 2017, 16, 1923–1935. [Google Scholar] [CrossRef]
- Huang, Z.C.; Yao, Y.; Fu, D.H.; Cheng, S.; Xing, Z.P. Effects of basic seedling density and nitrogen fertilizer management practices on rice yield and quality formation and quality formation of rice. Jiangsu Agric. Sci. 2023, 51, 34–39, (Chinese with English Abstract). [Google Scholar]
- Huang, L.Y.; Sun, F.; Yuan, S.; Peng, S.B.; Wang, F. Different mechanisms underlying the yield advantage of ordinary hybrid and super hybrid rice over inbred rice under low and moderate N input conditions. Field Crops Res. 2018, 216, 150–157. [Google Scholar] [CrossRef]
- Fu, Y.Q.; Zhong, X.H.; Zeng, J.H.; Liang, K.M.; Pan, J.F.; Xin, Y.F.; Liu, Y.Z.; Hu, X.Y.; Peng, B.L.; Chen, R.B.; et al. Improving grain yield, nitrogen use efficiency and radiation use efficiency by dense planting, with delayed and reduced nitrogen application, in double cropping rice in South China. J. Integr. Agric. 2021, 20, 565–580. [Google Scholar] [CrossRef]
- Liu, Z.C.; Shang, L.Y.; Ye, J.Y.; Sheng, T.; Li, R.J.; Deng, J.; Tian, X.H.; Zhang, Y.B.; Huang, L.Y. Effects of Dense Planting with Reduced Nitrogen Input Cultivation on the Grain Quality of Hybrid Rice. Crops 2024, 5, 194–203, (Chinese with English Abstract, in press). [Google Scholar]
- Clemensson-Lindell, A. Triphenyltetrazolium chloride as an indicator of fine-root vitality and environmental stress in coniferous forest stands: Applications and limitations. Plant Soil 1994, 159, 297–300. [Google Scholar] [CrossRef]
- Tian, G.L.; Gao, L.M.; Kong, Y.L.; Hu, X.Y.; Xie, K.L.; Zhang, R.Q.; Ling, N.; Shen, Q.R.; Guo, S.W. Improving rice population productivity by reducing nitrogen rate and increasing plant density. PLoS ONE 2017, 12, e0182310. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.B.; Zhou, X.F.; Jiang, P.; Chen, J.N.; Zhang, R.C.; Wu, D.D.; Cao, F.B.; Shan, X.L.; Huang, M.; Zou, Y.B. Effect of Low Nitrogen Rate Combined with High Plant Density on Grain Yield and Nitrogen Use Efficiency in Super Rice. Acta Agron. Sin. 2015, 41, 1591–1602, (Chinese with English Abstract). [Google Scholar] [CrossRef]
- Zhou, C.C.; Huang, Y.C.; Jia, B.Y.; Wang, F.; Dou, F.G.; Samonte, O.P.; Chen, K.; Wang, Y. Optimization of nitrogen rate and planting density for improving the grain yield of different rice genotypes in Northeast China. Agronomy 2019, 9, 555. [Google Scholar] [CrossRef]
- Zhu, X.C.; Zhang, Z.P.; Zhang, J.; Deng, A.X.; Zhang, W.J. Effects of increased planting density with reduced nitrogen fertilizer application on rice yield, N use efficiency and greenhouse gas emission in Northeast China. Chin. J. Appl. Ecol. 2016, 27, 453–461. [Google Scholar]
- Jiang, P.; Xu, F.X.; Zhang, L.; Zhou, X.B.; Zhu, Y.C.; Guo, X.Y.; Liu, M.; Chen, L.; Zhang, R.; Xiong, H. Effect of increased plant density with reduced nitrogen on yield formation and nitrogen use efficiency of hybrid rice under high temperature and high humidity conditions. Chin. J. Eco-Agric. 2021, 29, 1679–1691. [Google Scholar]
- Datta, S.D. Improving nitrogen fertilizer efficiency in lowland rice in tropical Asia. Springer Neth. 1986, 9, 171–186. [Google Scholar] [CrossRef]
- Zhao, F.; Cheng, J.P.; Wang, B.F.; Zhang, X.F.; Wu, D.J.; Li, L.; You, A.B.; Zhang, L.F.; Zhang, T.J. Effect of Nitrogen Management Patterns to Root Traits and Yield of Mechanical Planting Early Rice Variety Liangyou 287. Hubei Agric. Sci. 2013, 52, 1505–1509, (Chinese with English Abstract). [Google Scholar]
- Zhang, Y.F.; Wang, Y.L.; Zhang, C.S.; Dong, G.C.; Yang, L.X.; Huang, J.Y.; Long, Y.C. Relationship between N Accumulation and Root Traits in Conventional Indica Rice Varieties (Oryza sativa L). Acta Agron. Sin. 2006, 8, 1121–1129. [Google Scholar]
- Zhang, Y.; Qin, H.D.; Huang, M.; Jiang, L.G.; Xu, S.H. Effect of different nitrogen application modes on root growth, rhizosphere soil characteristics and rice yield under no-tillage. Guihaia 2014, 34, 681–685, (Chinese with English Abstract). [Google Scholar]
- Zhang, W.J.; Li, G.H.; Yang, Y.M.; Li, Q.; Zhang, J.; Liu, J.Y.; Wang, S.H.; Tang, S.; Ding, Y.F. Effects of nitrogen application rate and ratio on lodging resistance of super rice with different genotypes. J. Integr. Agric. 2014, 13, 63–72. [Google Scholar] [CrossRef]
- Clerget, B.; Bueno, C.; Domingo, A.J.; Layaoen, H.L.; Vial, L. Leaf emergence, tillering, plant growth, and yield in response to plant density in a high-yielding aerobic rice crop. Field Crops Res. 2016, 199, 52–64. [Google Scholar] [CrossRef]
- Yan, J.; Yin, B.; Zhang, S.L.; Shen, Q.R.; Zhu, Z.L. Effect of nitrogen application rate on nitrogen uptake and distribution in rice. J. Plant Nutr. Fertil. 2008, 14, 835–839. [Google Scholar]
- Li, Y.D.; Huang, J.B.; Ye, C.; Shu, S.F.; Sun, B.F.; Chen, L.C.; Wang, K.J.; Cao, Z.S. Plant type and canopy light interception characteristics in double cropping rice canopy under different nitrogen rates. Acta Agron. Sin. 2019, 45, 1375–1385, (Chinese with English Abstract). [Google Scholar]
- Xu, R.; Chen, S.; Xu, C.M.; Liu, Y.H.; Zhang, X.F.; Wang, D.Y.; Chu, G. Effects of nitrogen fertilizer rates on grain yield and nitrogen use efficiency of japonica-indica hybrid rice cultivar Yongyou 1540 and its physiological bases. Acta Agron. Sin. 2023, 49, 1630–1642, (Chinese with English Abstract). [Google Scholar]
- Zhou, Q.; Yuan, R.; Zhang, W.Y.; Gu, J.F.; Liu, L.J.; Zhang, H.; Wang, Z.Q.; Yang, J.C. Grain yield, nitrogen use efficiency and physiological performance of indica/japonica hybrid rice in response to various nitrogen rates. J. Integr. Agric. 2023, 22, 63–79. [Google Scholar] [CrossRef]
- Kong, L.L.; Hou, Y.P.; Yin, C.X.; Li, Q.; Zhang, L.; Zhao, Y.K.; Xu, X.B. Nitrogen fertilizer management for high nitrogen utilization efficiency and rice yield under straw incorporation in a cold region. J. Plant Nutr. Fertil. 2021, 27, 1282–1293, (Chinese with English Abstract). [Google Scholar]
- Liu, W.X.; Qing, X.; Ai, Z.Y.; Zhu, J.W. Effects of Transplanting Density and Nitrogen Fertilizer Rate on Canopy Characteristics and Yield of Luliangyou 996. Acta Agric. Boreali-Sin. 2013, 28, 213–220, (Chinese with English Abstract). [Google Scholar]
- Dass, A.; Chandra, S. Irrigation, spacing and cultivar effects on net photosynthetic rate, dry matter partitioning and productivity of rice under system of rice intensification in Mollisols of northern India. Exp. Agric. 2013, 49, 504–523. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Liu, M.J.; Saiz, G.; Dannenmann, M.; Guo, L.; Tao, Y.Y.; Shi, J.C.; Zuo, Q.; Butterbach-Bahl, K.; Li, G.Y.; et al. Enhancement of root systems improves productivity and sustainability in water saving ground cover rice production system. Field Crops Res. 2017, 213, 186–193. [Google Scholar] [CrossRef]
- Guan, X.J.; Chen, J.; Chen, X.M.; Xie, J.; Deng, G.Q.; Hu, L.Z.; Li, Y.; Qian, Y.F.; Qiu, C.F.; Peng, C.R. Root characteristics and yield of rice as affected by the cultivation pattern of strong seedlings with increased planting density and reduced nitrogen application. J. Integr. Agric. 2022, 21, 1278–1289. [Google Scholar] [CrossRef]
- Zhang, H.Z.; Khan, A.; Tan, D.K.Y.; Luo, H.H. Rational Water and Nitrogen Management Improves Root Growth, Increases Yield and Maintains Water Use Efficiency of Cotton under Mulch Drip Irrigation. Front. Plant Sci. 2017, 8, 912. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Min, D.H.; Gao, X.; Wang, Z.H.; Wang, J.; Liu, P.; Liu, X. Relationship between spatiotemporal distribution of roots and grain yield of winter wheat varieties with differing drought tolerance. Acta Ecol. Sin. 2019, 39, 2922–2934, (Chinese with English Abstract). [Google Scholar]
- Osaki, M.; Shinano, T.; Matsumoto, M.; Zheng, T.G.; Tadano, T. A root-shoot interaction hypothesis for high productivity of field crops. Springer Link 1997, 43, 1079–1084. [Google Scholar]
- Xu, G.H.; Fan, X.R.; Miller, A.J. Plant nitrogen assimilation and use efficiency. Annu. Rev. Plant Biol. 2012, 63, 153–182. [Google Scholar] [CrossRef]
- Chardon, F.; Noel, V.; Masclaux-Daubresse, C. Exploring NUE in crops and in Arabidopsis ideotypes to improve yield and seed quality. J. Exp. Bot. 2012, 63, 3401–3412. [Google Scholar] [CrossRef]
Year | Organic Matter (g kg−1) | Alkaline Dissolved Nitrogen (mg kg−1) | Available Phosphorus (mg kg−1) | Available Potassium (mg kg−1) | PH |
---|---|---|---|---|---|
2021 | 16.75 | 26.53 | 17.78 | 137.09 | 6.7 |
2022 | 14.20 | 33.89 | 29.42 | 137.09 | 6.7 |
Density | Nitrogen Fertilizer Rate | Panicle Number (m−2) | Spikelets Panicle−1 | Grain Filling (%) | Grain Weight (g/1000 Seeds) | Grain Yield (t hm−2) |
---|---|---|---|---|---|---|
D1 | T0 | 362.23 ± 4.62 bc | 135.45 ± 2.91 ab | 91.30 ± 1.70 cd | 22.18 ± 0.36 ab | 8.97 ± 0.15 ab |
T1 | 369.51 ± 16.50 bc | 134.24 ± 1.67 ab | 92.63 ± 0.88 bcd | 21.35 ± 0.64 b | 8.39 ± 0.32 bc | |
T2 | 353.23 ± 9.24 c | 138.41 ± 1.95 ab | 93.57 ± 0.35 ab | 22.05 ± 0.93 ab | 8.81 ± 0.10 abc | |
T3 | 339.42 ± 9.81 c | 144.27 ± 3.08 a | 94.82 ± 2.09 a | 22.72 ± 0.67 a | 9.06 ± 0.10 ab | |
D2 | T0 | 413.60 ± 12.50 a | 131.21 ± 7.04 bc | 88.65 ± 0.96 d | 22.18 ± 0.44 ab | 9.11 ± 0.31 ab |
T1 | 406.23 ± 14.23 a | 121.35 ± 3.28 d | 91.34 ± 1.62 bcd | 22.48 ± 0.13 a | 8.76 ± 1.04 bc | |
T2 | 417.54 ± 14.16 a | 125.86 ± 4.79 cd | 92.81 ± 1.10 abc | 22.94 ± 0.40 a | 9.51 ± 0.06 a | |
T3 | 386.47 ± 14.23 b | 137.53 ± 1.45 a | 93.57 ± 0.54 abc | 21.78 ± 0.37 ab | 8.21 ± 0.17 c | |
Analysis of variance | ||||||
D | ** | ** | NS | NS | NS | |
R | * | ** | ** | NS | NS | |
D × R | NS | * | NS | * | * |
Density | Nitrogen | Panicles Number (m−2) | Spikelets Panicle−1 | Grain Filling (%) | Grain Weight (g/1000 Seeds) | Grain Yield/ (t hm−2) |
---|---|---|---|---|---|---|
D1 | N0 | 129.2 ± 10.46 f | 167.80 ± 22.1 cd | 97.55 ± 1.53 a | 24.60 ± 0.52 a | 4.47 ± 0.34 d |
N1 | 258.4 ± 14.21 d | 184.7313.02 bc | 96.89 ± 1.64 a | 23.02 ± 0.58 b | 8.80 ± 0.11 c | |
N2 | 292.4 ± 14.22 cd | 190.90 ± 18.22 ab | 96.70 ± 1.82 a | 22.50 ± 1.40 b | 9.49 ± 0.17 b | |
N3 | 299.2 ± 32.14 bcd | 212.80 ± 18.74 a | 96.26 ± 0.95 a | 21.94 ± 0.71 b | 9.50 ± 0.15 b | |
D2 | N0 | 215.0 ± 9.14 e | 152.94 ± 15.09 d | 97.50 ± 0.86 a | 23.28 ± 0.61 ab | 4.85 ± 0.29 d |
N1 | 305.0 ± 16.14 bc | 199.14 ± 11.53 ab | 96.83 ± 2.02 a | 21.75 ± 0.73 b | 9.21 ± 0.30 bc | |
N2 | 362.5 ± 18.41 a | 202.50 ± 13.16 ab | 95.99 ± 2.66 a | 21.79 ± 0.33 b | 10.32 ± 0.26 a | |
N3 | 335.0 ± 13.78 ab | 197.47 ± 16.77 ab | 95.34 ± 1.35 a | 22.80 ± 1.10 b | 9.70 ± 0.34 ab | |
Analysis of variance | ||||||
D | ** | NS | NS | NS | ** | |
N | ** | ** | ** | ** | ** | |
D × N | NS | NS | NS | NS | NS |
Density | Nitrogen Rate | Total Nitrogen Accumulation | AEN | REN | NFP | NHI | PNUE |
---|---|---|---|---|---|---|---|
(kg hm−2) | (kg kg−1) | (%) | (kg kg−1) | (%) | (kg kg−1) | ||
D1 | N0 | 72.71 ± 6.35 e | |||||
N1 | 135.21 ± 9.36 c | 28.10 ± 2.54 b | 50.00 ± 0.88 c | 70.37 ± 6.28 a | 69.56 ± 3.75 b | 50.59 ± 1.34 a | |
N2 | 166.78 ± 9.77 b | 30.56 ± 1.15 bc | 62.71 ± 1.15 b | 63.29 ± 3.45 b | 71.64 ± 4.96 ab | 45.07 ± 1.55 bc | |
N3 | 180.70 ± 5.51 b | 28.76 ± 0.85 d | 61.71 ± 0.85 bc | 54.30 ± 3.15 c | 72.81 ± 2.36 ab | 39.24 ± 1.16 d | |
D2 | N0 | 91.35 ± 7.99 d | |||||
N1 | 166.55 ± 7.24 b | 34.91 ± 3.00 b | 60.16 ± 2.56 bc | 72.80 ± 4.58 a | 72.41 ± 4.92 ab | 51.97 ± 4.10 a | |
N2 | 209.31 ± 8.35 a | 39.02 ± 2.78 a | 78.64 ± 1.60 a | 70.13 ± 5.57 a | 74.77 ± 2.66 a | 48.97 ± 3.47 ab | |
N3 | 208.41 ± 10.80 a | 29.88 ± 1.92 cd | 66.89 ± 1.92 b | 55.42 ± 2.16 c | 70.46 ± 1.84 b | 40.53 ± 2.59 cd | |
Analysis of variance | |||||||
D | ** | NS | NS | ** | NS | NS | |
N | ** | ** | NS | ** | NS | ** | |
D × N | NS | NS | NS | * | NS | NS |
Density | Nitrogen | Pn (μmol·m−2 s−1) | |||
---|---|---|---|---|---|
MT | PI | HD | FS | ||
D1 | N1 | 20.23 ± 0.76 a | 20.15 ± 1.47 a | 17.73 ± 0.49 c | 13.23 ± 1.04 b |
N2 | 20.29 ± 0.21 a | 21.08 ± 1.66 a | 19.41 ± 0.97 b | 14.59 ± 0.29 a | |
N3 | 21.02 ± 0.33 a | 21.27 ± 0.35 a | 20.00 ± 0.72 ab | 14.75 ± 0.21 a | |
D2 | N1 | 20.31 ± 0.85 a | 20.41 ± 1.12 a | 18.19 ± 0.52 c | 13.64 ± 0.39 b |
N2 | 20.75 ± 0.93 a | 22.06 ± 1.12 a | 20.67 ± 0.33 a | 15.65 ± 0.39 a | |
N3 | 21.07 ± 0.51 a | 21.53 ± 1.43 a | 20.80 ± 0.62 a | 15.41 ± 0.32 a | |
Analysis of variance | |||||
D | NS | NS | ** | ** | |
N | NS | NS | * | * | |
D × N | NS | NS | NS | NS |
Density | Nitrogen Rate | Root Activity (μg·g−1 h−1) | |||
---|---|---|---|---|---|
MT | PI | HD | FS | ||
D1 | N1 | 116.20 ± 8.91 b | 191.55 ± 10.38 c | 127.99 ± 11.03 d | 108.89 ± 2.58 b |
N2 | 133.95 ± 16.24 ab | 221.48 ± 14.31 bc | 147.00 ± 7.97 c | 132.21 ± 4.25 a | |
N3 | 145.78 ± 8.58 a | 242.88 ± 16.76 ab | 150.96 ± 5.77 c | 110.45 ± 7.55 b | |
D2 | N1 | 123.85 ± 8.65 ab | 220.09 ± 14.11 bc | 159.01 ± 6.53 bc | 60.86 ± 8.88 d |
N2 | 139.34 ± 10.31 ab | 266.55 ± 12.10 a | 184.59 ± 7.33 a | 77.74 ± 10.28 c | |
N3 | 146.82 ± 7.01 a | 246.19 ± 13.93 ab | 166.49 ± 6.26 b | 84.53 ± 10.27 c | |
Analysis of variance | |||||
D | NS | NS | NS | NS | |
N | ** | NS | NS | NS | |
D × N | NS | NS | NS | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Li, W.; Geng, S.; Zhang, R.; Dou, M.; Wu, M.; Li, L.; Wang, D.; Wei, X.; Tian, P.; et al. Improvement of Transplanting Rice Yield and Nitrogen Use Efficiency by Increasing Planting Density in Northeast China Under the Optimal Nitrogen Split-Fertilizer Applications. Agriculture 2024, 14, 2015. https://doi.org/10.3390/agriculture14112015
Liu Z, Li W, Geng S, Zhang R, Dou M, Wu M, Li L, Wang D, Wei X, Tian P, et al. Improvement of Transplanting Rice Yield and Nitrogen Use Efficiency by Increasing Planting Density in Northeast China Under the Optimal Nitrogen Split-Fertilizer Applications. Agriculture. 2024; 14(11):2015. https://doi.org/10.3390/agriculture14112015
Chicago/Turabian StyleLiu, Zichen, Wanchun Li, Shujuan Geng, Rui Zhang, Man Dou, Meikang Wu, Liangdong Li, Dongchao Wang, Xiaoshuang Wei, Ping Tian, and et al. 2024. "Improvement of Transplanting Rice Yield and Nitrogen Use Efficiency by Increasing Planting Density in Northeast China Under the Optimal Nitrogen Split-Fertilizer Applications" Agriculture 14, no. 11: 2015. https://doi.org/10.3390/agriculture14112015
APA StyleLiu, Z., Li, W., Geng, S., Zhang, R., Dou, M., Wu, M., Li, L., Wang, D., Wei, X., Tian, P., Yang, M., Wu, Z., & Wu, L. (2024). Improvement of Transplanting Rice Yield and Nitrogen Use Efficiency by Increasing Planting Density in Northeast China Under the Optimal Nitrogen Split-Fertilizer Applications. Agriculture, 14(11), 2015. https://doi.org/10.3390/agriculture14112015