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Abstract: Predicting crop yield throughout its development cycle is crucial for planning storage,
processing, and distribution. Optical remote sensing has been used for yield prediction but has
limitations, such as cloud interference and only capturing canopy-level data. Synthetic Aperture
Radar (SAR) complements optical data by capturing information even in cloudy conditions and
providing additional plant insights. This study aimed to explore the correlation of SAR variables with
soybean yield at different crop stages, testing if SAR data enhances predictions compared to optical
data alone. Data from three growing seasons were collected from an area of 106 hectares, using eight
SAR variables (Alpha, Entropy, DPSVI, RFDI, Pol, RVI, VH, and VV) and four speckle noise filters.
The Random Forest algorithm was applied, combining SAR variables with the EVI optical index.
Although none of the SAR variables showed strong correlations with yield (r < |0.35|), predictions
improved when SAR data were included. The best performance was achieved using DPSVI with the
Boxcar filter, combined with EVI during the maturation stage (with EVI:RMSE = 0.43, 0.49, and 0.60,
respectively, for each season; while EVI + DPSVI:RMSE = 0.39, 0.49, and 0.42). Despite improving
predictions, the computational demands of SAR processing must be considered, especially when
optical data are limited due to cloud cover.

Keywords: precision agriculture; SAR vegetation index; backscatter coefficient; polarimetric decomposition;
EVI; machine learning

1. Introduction

Research has increasingly focused on maximizing quality and productivity while
minimizing the consumption of agricultural inputs and water resources, acknowledging
the limitations of natural resources [1]. In this context, predicting the productivity of an
agricultural crop enables the planning of the entire production chain, both at the national
and field levels, allowing for better control over price speculation; more efficient use of
storage, operational, and logistical resources; and improved planning for commercializa-
tion [2,3]. It also provides essential information for agricultural management adjustments
and validation of treatments. In this scenario, Precision Agriculture (PA) uses techniques
and technologies to maximize crop productivity, reduce costs and input usage, and manage
field variability. Among the technologies used in PA, remote sensing stands out, providing
information on the interaction of solar electromagnetic radiation with targets on the Earth’s
surface [4]. These data have been widely used to monitor crop development, investigate
potential issues, and predict agricultural productivity [5,6], with some techniques allowing
yield prediction while the crop is still growing [7].
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The popularization of knowledge about optical remote sensing has enabled the acqui-
sition of information about agricultural crops by data from spectral bands and vegetation
indices. These data are provided by platforms that acquire sensor data from satellites, such
as the Landsat and Sentinel-2 series [8]. However, data collection by these optical sensors is
limited due to cloud interference and the inability to capture images at night [9]. In Brazil,
optical remote sensing is already widely used in agricultural applications. Nevertheless,
the planting window for some crops, such as soybean, occurs during rainy and cloudy
periods, which reduces the availability of high-quality data throughout the soybean growth
development [10,11].

The Synthetic Aperture Radar (SAR) sensor, on the other hand, operates in the mi-
crowave range of electromagnetic wavelengths, where, depending on the wavelength, there
is minimal atmospheric attenuation [4], allowing data collection from agricultural areas
even under cloudy conditions or at night. The availability of free data and its temporal
resolution have sparked interest in studies using SAR sensors since the launch of Sentinel-1
in 2014. Although it operates in the C-band and has penetration limitations in the canopy
due to its intensity, it provides complementary information to optical sensors [12]. The
SAR signal response is sensitive to plant structure (size, shape, and orientation of leaves,
stems, and fruits) as well as the water volume in the vegetation canopy (at the molecular
level) [13,14]. Additionally, as with optical remote sensing, SAR vegetation indices allow
for more efficient crop information acquisition. Thus, radar sensing can generate different
images that relate in some way to the plant canopy.

Moreover, different results can be obtained from distinct SAR image preprocessing
techniques. These various SAR preprocessing have been used for agricultural purposes,
such as identifying phenological stages [15], crop monitoring [13,16], crop mapping and
classification [13,17], as well as estimating and predicting crop yields [18]. However, SAR
images have inherent noise: speckle noise, caused by the interaction of electromagnetic
waves with the Earth’s surface and the way the data is reflected to the sensor [19,20].
Nonetheless, various available filters can mitigate this noise when applied, but there are no
studies using different speckle noise filters for yield prediction in soybean crops. In addition
to speckle noise, the use of SAR data for agricultural fields faces challenges due to the
interference of canopy moisture, planting row orientation, and soil properties. Furthermore,
SAR images require complex processing, demanding high computational costs.

Optical remote sensing is already widely used to obtain yield prediction informa-
tion [21,22]. However, optical sensor data only capture the energy reflected from the top of
the canopy and are affected by clouds, whereas radar parameters can capture information
below the canopy top and are sensitive to canopy geometry and moisture, which can be
used to assist in crop yield prediction [14]. Recent studies, such as those conducted by
Hosseini et al. [23], Mestre-Quereda et al. [17], and Hashemi et al. [24], have highlighted
the potential of SAR images to improve crop yield prediction performance when integrated
with optical data. Hosseini et al. [23] achieved better soybean yield prediction performance
at the field level by integrating optical vegetation indices and SAR images (r2 = 0.85) com-
pared to using only optical indices (r2 = 0.65). Despite advancements in integrating optical
and radar remote sensing for soybean yield prediction, a substantial gap remains in explor-
ing different processing techniques and incorporating SAR vegetation indices for field-level
predictions. Identifying the most effective input data can boost predictive performance and
refine remote sensing-generated models. Additionally, determining optimal processing
approaches for SAR images is crucial for enhancing efficiency and accuracy, as these im-
ages require complex processing and involve high computational costs. By finding more
effective methods, we can not only improve prediction accuracy and increase reliability
for data users but also make better use of available resources. Therefore, the objectives
of this study were: (1) to explore the correlation of different SAR variables with soybean
yield using different types of speckle noise filters at different stages of crop development;
and (2) to test whether the use of these SAR variables improves soybean yield prediction
performance compared to the exclusive use of optical remote sensing using EVI.
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2. Materials and Methods
2.1. Experimental Site and Yield Data

This study was conducted in a commercial soybean production area of approximately
106 hectares, consisting of 10 fields (Figure 1). The area is located in the municipality
of Cosmópolis, in the interior of the state of São Paulo, Brazil. The experimental data
consist of dry soybean grain yield (t/ha) from three growing harvests. In the first and
second harvests, the M5917 IPRO (Itaberá, São Paulo, Brazil) cultivar was used, while
in the third harvest, the NS5933 IPRO (Pato Branco, Paraná, Brazil) and Coliseu 631X65
RSF12X (Pato Branco, Paraná, Brazil) cultivars were used. The cultivars exhibit medium
branching intensity in the first two harvests and medium to high in the third. These data
were obtained using a yield monitor installed on the harvester. The monitor components
were inspected before harvesting, and after the completion of the study site’s harvest, the
amount of grain collected was recorded in the monitor to determine the calibration factor,
adjusting all datasets to reflect a realistic grain yield. Even with calibration, it is essential to
review the entire dataset and eliminate any unrealistic data and some errors. To reduce
errors and inconsistencies in the data, the procedure suggested by Maldaner et al. [25]
was adopted.
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Figure 1. Experimental area with field boundaries marked in red and soybean yield data points in
each harvest.

2.2. Remote Sensing Data

SAR data were collected from Sentinel-1, which operates in the C-band at a frequency
of 5.405 GHz, corresponding to a wavelength of approximately 5.55 cm. The SAR data
were acquired at the GRD (Ground Range Detected) level in IW (Interferometric Wide
Swath) mode to obtain backscatter coefficients. Additionally, SAR data were acquired at the
SLC (Single Look Complex) level 1 in the same IW mode for polarimetric decomposition
processing. The spatial resolution is 5 × 20 m for SLC data and 10 m for GRD data. The
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mode used provided dual-polarization data: VH (vertically polarized waves emitted and
horizontally polarized waves received) and VV (vertically polarized waves emitted and
vertically polarized waves received).

Optical images were used from the Sentinel-2A/B satellite constellation, captured
by the Multispectral Instrument (MSI). Sentinel-2 is a satellite developed under the Eu-
ropean Space Agency’s Environmental Monitoring and Security Program. Sentinel-2, a
medium-resolution multispectral imaging satellite, equipped with a multispectral im-
ager, has a total of 13 spectral bands, with spatial resolution ranging from 10 to 60 m
and a revisit time of approximately 5 days for the same area. The bands utilized in
this study, which have the highest spatial resolution (10 m), include blue (≈465 nm), red
(≈665 nm), and near-infrared (NIR) (≈842 nm). The data were acquired through the Google
Earth Engine platform, using the collection “Harmonized Sentinel-2 MSI: MultiSpectral
Instrument, Level-2A”(https://developers.google.com/earth-engine/datasets/catalog/
COPERNICUS_S2_SR_HARMONIZED, accessed on 7 August 2024). Level-2A processing
includes atmospheric correction, which eliminates atmospheric effects such as scattering
and absorption by gases and aerosols, allowing for the recovery of surface reflectance
values and ensuring consistent information for studies of terrestrial targets.

2.3. Development Stages of the Crop

SAR and optical images were obtained at three development stages of the soybean
crop. These stages were selected based on the vegetative peak, determined by a time series
based on the EVI (Figure 2b). The maximum value of the EVI coincides with the vegetative
peak [6]. Moreover, this index is sensitive to dense vegetation, effectively reducing the
atmospheric and soil background noise [26]. The three crop development stages of interest
for image collection were:

• Stage 1: Between planting and the vegetative peak;
• Stage 2: During the vegetative peak;
• Stage 3: Between the vegetative peak and harvest.

SAR images were acquired on dates close to the optical images to minimize differences
in the crops’ phenological stages, with additional care taken to ensure no rainfall occurred
during data collection, as the C-band can be affected by precipitation [4].

During the first development stage (Stage 1), the plants are just beginning to grow, and
the radar (SAR) signal may be influenced by soil exposure, resulting in a low backscatter
coefficient. Nevertheless, the type of soil also influences the SAR signal response, as well
as soybean yield, potentially indicating a relationship between these factors. In the second
development stage (Stage 2), when the crop reaches its vegetative peak and fully covers the
area, the radar signal is influenced by the dense plant canopy. The backscatter coefficient
tends to increase due to multiple scattering within the vegetation and between the vegetation
and the soil. The density and structure of the canopy at this stage lead to a more complex
interaction with radiation, increasing the SAR’s sensitivity to biomass and vegetation water
content. Additionally, the vegetative peak correlates well with the EVI vegetation index
and soybean yield [27], suggesting that incorporating SAR data at this stage could enhance
predictive performance. In the third development stage (Stage 3), the area is fully senescent,
and both volume and moisture content begin to decrease. Despite this, the radar signal may
still be influenced by the remaining plant structure. At this stage, SAR can detect changes in
the texture and composition of senescent plants by interacting more with the dry branches
and pods, which tends to correlate with the final crop yield. Figure 2a shows the similarity
between EVI and VV and VH backscatter coefficient time-series.

https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR_HARMONIZED
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR_HARMONIZED
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2.4. Preprocessing of SAR Images

Initially, two types of preprocessing on the SAR images were performed: backscatter
to obtain the backscatter coefficients (σ0

VV and σ0
VH) (Figure 3a) and polarimetric decompo-

sition (angle α and entropy) (Figure 3b).
To obtain the VH and VV backscatter variables, the GRD data were processed following

the method proposed by Filipponi [28]: (1) applying orbit files to obtain accurate satellite
orbit and velocity vectors, ensuring proper georeferencing of the images; (2) thermal
noise removal to eliminate thermal antenna noise affecting the images; (3) edge noise
removal to eliminate noise at the edges of the images; and (4) radiometric calibration to
normalize the amplitude observed in each band concerning the radar cross-section and
obtain the backscattering coefficient (reflectivity per unit area) in β0 (a section necessary for
performing radiometric terrain corrections). To reduce speckle noise, the Boxcar, Gamma,
Lee, and Refined Lee filters available in the SNAP 10.0.0. software were evaluated using
a filtering window of 3 × 3 to avoid loss of detail [13]. Terrain correction was performed
using the digital elevation model (DEM) with a spatial resolution of 12.5 m from the
Palsar sensor (https://search.asf.alaska.edu/, accessed on 20 June 2024), transformed to
the UTM—23S coordinate system, datum WGS84. Finally, the backscatter coefficient was
converted to dB using a logarithmic transformation.

For the second processing, SLC data were used to perform polarimetric decomposition
and generate the Entropy and Alpha variables. With these data, we first performed the split
to select a subset and lighten the processing load. Next, we applied the orbit file to improve
accuracy, as described in the GRD data. After that, we conducted a deburst to remove the
bursts inherent to these images. The covariance matrix C2 was calculated, followed by
the Cloude and Pottier polarimetric decomposition for dual-polarization data, generating
Entropy (H) and Alpha. Multilooking was also applied to these images to regularize the
pixels [29], using a 4 (range) × 1 (azimuth) window, resulting in an image with a spatial
resolution of 14.05 m [30]. Finally, terrain correction was applied in the same manner as for
the GRD data.

https://search.asf.alaska.edu/
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Speckle Noise Filters

This study evaluated the most mentioned filters in the literature, namely Boxcar,
Lee, Gamma, and Refined Lee (Table 1). The Boxcar filter calculates the average value
of a window centered on each pixel to homogenize the image based on the surrounding
pixels [31]. The Lee filter assumes that the intensity of the image at each pixel follows a local
Gaussian distribution, which allows for speckle noise reduction without significant loss
of detail [32]. The Gamma filter focuses on minimizing texture information loss by using
the coefficient of variation (CV) and contrast ratios, with theoretical probability density
functions determining the smoothing process [33]. The Refined Lee filter is an enhancement
of the Lee filter, capable of preserving textural features, which is important for detecting
crops, soils, and other terrain characteristics [34].

Therefore, at the end of the image preprocessing, 16 SAR images were obtained for each
development stage: 8 from the backscatter coefficient data (considering the two polariza-
tions VH and VV, with 4 different filters) and 8 images from the polarimetric decomposition
(Alpha and entropy, using the 4 tested filters).

Table 1. List of tested filters and their mathematical approaches.

Filter Equation In Which:

Boxcar 1
N

N
∑

p=1
I(p,q)

N is the number of pixels in the
neighborhood, and I(p, q) are the

pixel values in the neighborhood.
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Table 1. Cont.

Filter Equation In Which:

Lee I(i, j) + σ2

σ2+Var(N)
[Mean(N)− I(i, j)]

σ2 is the global variance of the
image, Var(N) is the local variance
in the neighborhood, and Mean(N)

is the local mean
in the neighborhood.

Gamma ∑N
p=1 ω(p)×(p,q)

∑N
P=1 ω(p)

ω(p) weights are the values
assigned to the pixels
in the neighborhood

Refined Lee I(i, j) + ∝×σ2

σ2+Var(N)
∝ is an adjustment factor.

2.5. Variables

From these data, four SAR-derived vegetation indices were calculated from the
backscatter coefficients: DPSVI, RFDI, Pol, and RVI. Additionally, EVI was calculated using
optical data (Table 2). The EVI was used based on studies by [6,35], which demonstrated
that using this index in machine learning algorithms can assist in soybean yield prediction.

Table 2. Equations of the SAR and EVI vegetation indices used.

Index Equation Reference

DPSVI VV2+VV×VH√
2

[36]

RFDI
VV−VH
VV+VH [37]

Pol
VH−VV
VH+VV [38]

RVI
4×σ0

VV
σ0

VV+σ0
VH

[39]

EVI
2.5(NIR−R)

(NIR+6R−7.5B+1) [40]

Therefore, for this study, eight variables were generated from SAR data (Alpha, En-
tropy, DPSVI, RFDI, Pol, RVI, VH, and VV), in addition to the EVI. For the SAR data, each
of these variables was evaluated using the four different speckle noise filters. All SAR
variables and EVI were obtained for the three development stages of the crop and for the
three tested growing harvests. After obtaining all the images, a 15 m buffer was applied
along the field boundaries to crop the images, with the aim of eliminating the influence of
uncultivated areas in the pixels.

2.6. Correlation

To correlate yield values with the imagery outputs, the pixels from the input images
were extracted to match the coordinates of the yield data. From these data, we selected
15,000 points per growing harvest by a randomization process to continue the procedures,
aiming to optimize data analysis and processing. This random selection maintained
the frequency distribution of the data as well as the measures of central tendency and
dispersion (Table 3). Thus, the selection did not compromise the results but facilitated
the entire modeling and analysis process. Since the data often did not follow a normal
distribution, we used Spearman’s correlation.
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Table 3. Descriptive statistics of the full datasets in each area (after cleaning) and the 15,000 randomly
selected yield points. Data in tons per hectare.

Statistics
Harvest 1 Harvest 2 Harvest 3

Full Data 15 k Points Full Data 15 k Points Full Data 15 k Points

Mean 3.50 3.51 2.97 2.97 5.08 5.08
Median 3.44 3.44 2.99 2.99 5.05 5.05

Standard
deviation 0.77 0.78 0.86 0.86 0.72 0.72

CV% 22.20 22.23 28.98 29.14 14.20 14.14
Minimum value 1.14 1.18 1.01 1.04 2.84 3.00
Maximum value 5.95 5.86 5.47 5.46 7.93 7.93

Q1 2.93 2.93 2.38 2.38 4.58 4.58
Q3 4.04 4.05 3.53 3.54 5.54 5.55

Interquartile range 1.11 1.11 1.14 1.16 0.95 0.96
n 71,832 15,000 59,141 15,000 59,568 15,000

2.7. Predictions

Based on the correlation between SAR variables and their different speckle filters
and yield, the speckle filter that provided the best performance to do the predictions was
chosen. Additionally, when correlating the SAR variables, those with correlations higher
than 80% among themselves were discarded to avoid collinearity issues in the prediction
models. From there, predictions using only the selected filter and the SAR variables
with the lowest correlations among themselves were carried out, which could result in
complementary information.

Random Forest (RF) was the machine learning algorithm used in this study to estimate
soybean yield, due to its robustness and widespread use in yield predictions. For this, the
set of 15,000 yield data points for each harvest was randomly divided into 70% for training
and 30% for testing. The parameters used for the regressions were the default settings of
the algorithm: nodesize = 5, mtry = p/3, where p is the number of predictors, with the
only modification being the number of trees (ntree) reduced from 500 to 150 for reducing
operational costs. The RF models were evaluated using the coefficient of determination
(R2) and the root mean squared error (RMSE) for the testing set as error metrics.

For the predictions, models were evaluated exclusively with the optical vegetation
index (using only EVI) and models including EVI and SAR variables (Figure 4), to un-
derstand whether SAR variables improve the performance of soybean yield prediction.
Initially, a scenario was evaluated including all SAR variables and EVI from the three
development stages together, compared to using only EVI at all three stages (Figure 4a).
Subsequently, models were created using all SAR variables for each of the three stages sep-
arately, to determine if including SAR variables at separate stages optimizes performance
and which stage is better for predicting soybean yield (Figure 4b). Using the growing stage
that showed the best performance, models were evaluated with each SAR variable and
EVI separately to evaluate the performance of each individual SAR variable and further
optimize predictions (Figure 4c). This process led to the identification of the stage and SAR
variable that provided the best performance for soybean yield prediction.
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Figure 4. Prediction scenarios performed. Input data corresponding to each tested scenario (in red):
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3. Results and Discussion
3.1. Correlation Between Remote Sensing Data and Yield

In general, the SAR images did not show a direct relationship with soybean yield
in any of the three growth stages, analyzed filters, or SAR variables (Figure 5). The
correlation results were frequently low, remaining below ±0.35. This low association might
be attributed to the SAR image parameters, which are influenced by structural factors of the
crop, such as leaf area, biomass, and canopy height [14], aspects that may not have a direct
relation to soybean grain yield. Although planting density was consistent across the three
harvests and the cultivars had an indeterminate growth habit, factors that would affect SAR
signal response, no evident pattern was found between growth stages, vegetation indices,
and crop harvest in the correlations. Yield predictions using remote sensing rely on the
direct relationship between vegetation indices and biomass, and the relationship between
biomass and yield [3]. However, the number of pods per plant is the primary determinant
of grain yield [41], and there can be significant variation in biomass and pod and grain
formation, where higher biomass does not always result in higher yields. Additionally, the
correlation between EVI and yield (Table 4) did not exceed 0.5, indicating that soybean
shows a low correlation with optical remote sensing data, even when using other vegetation
indices [35]. The negative correlations of EVI observed during growth stages 1 and 2 for
harvest 3 and stage 3 for harvest 2 might indicate the presence of weeds [42]. Remote
sensing data are influenced not only by the cultivated plants but also by weeds in the area.
The interference from these weeds can distort the relationship between vegetative biomass
and yield, as they compete for resources and can reduce the yield of the main crop while
still reflecting a high EVI and distorting SAR data. Another factor to note is that filter
patterns are very similar within the same harvest, indicating that there are no consistent
variations in correlation with soybean yield when using different speckle noise filters.
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Figure 5. Spearman correlation coefficient between SAR data and soybean yield, including harvest,
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Table 4. Spearman correlation coefficient between EVI values and yield data at the three different
growth stages and three harvests. Significant correlations at 5%.

Harvest 1 Harvest 2 Harvest 3

Stage 1 0.27 0.51 −0.34
Stage 2 0.41 0.50 −0.17
Stage 3 0.54 −0.25 0.14

3.2. Speckle Filter Correlation with Soybean Yield

When statistically examining the filters for the VH index from the first harvest it
is evident that the Refined Lee filter stands out as the most divergent compared to the
other filters, as also shown in the correlation between filters (Table 5). The Refined Lee
filter introduces scattered black pixels into the images, making them noisier. Although
statistically robust, studies by [43] comparing the effectiveness of speckle noise filters
demonstrated that the Refined Lee filter is more effective for detecting small, distinct
features, making it less suitable for homogeneous crop cover. Therefore, for studies focused
on crop yield, particularly in soybean fields where the vegetation cover is uniform and
lacks sharp variations, the Refined Lee filter is not the optimal choice.

When correlating pixel values using VH across the development stages among the
speckle noise filters, significant similarities were observed between the filtering algorithms.
The Boxcar, Gamma, and Lee filters show correlations close to 1, suggesting no significant
distinction in their effects on yield relationships (Table 5). This high correlation between
Gamma, Lee, and Boxcar filters may be attributed to their adaptive nature, relying on
different methods of local pixel distribution within the window, thus preserving image
edges [44]. Nevertheless, in crops such as soybean, which present a homogeneous ap-
pearance with few abrupt variations, the influence of the filters is not significant in the
analyses. Therefore, as there are no significant differences in choosing between these filters,
the study proceeded with the Boxcar filter, since it is the simplest mathematically among
the others [45] and is commonly used in agricultural studies [23,46].
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Table 5. Spearman correlation coefficient between the tested filters based on VH polarization backscat-
ter coefficient values combined with SAR images across the three growing harvests and three devel-
opment stages. Significant correlations at 5%.

Harvest 1

Boxcar Gamma Lee Refined Lee
Boxcar 1 - - -

Gamma 0.999 1 - -
Lee 0.999 0.999 1 -

Refined 0.914 0.907 0.911 1

Harvest 2

Boxcar Gamma Lee Refined Lee
Boxcar 1 - - -

Gamma 0.999 1 - -
Lee 0.999 0.999 1 -

Refined 0.914 0.911 0.913 1

Harvest 3

Boxcar Gamma Lee Refined Lee
Boxcar 1 - - -

Gamma 0.999 1 - -
Lee 1 0.999 1 -

Refined 0.830 0.907 0.911 1

3.3. Correlation of SAR Variables with Soybean Yield

When correlating SAR variables derived from the processing of backscatter coefficients
(DPSVI, RFDI, RVI, Pol, VH, and VV), we observed some indices with correlations equal
to 1 and others below 0.2. With VV, except in the third development stage of the first
growing harvest (Table 6), the correlations with DPSVI, RFDI, RVI, and Pol were above
0.8, while VH correlations did not exceed 0.6. Additionally, studies by Le Toan et al. [47]
and McNair et al. [48] show that VH works better when plants do not grow straight up,
such as maize, and are not affected by the direction the rows are planted. Given that
soybean is an herbaceous plant, VH is more suitable than VV for this type of crop, and
VH showed a lower correlation with other SAR variables, while its correlation with yield
remained within a similar range to VV. The SAR vegetation indices (RFDI, Pol, and RVI)
showed an almost perfect correlation (r ~ 1), whereas with DPSVI, the correlation was
frequently below 0.70. The RFDI, Pol, and RVI indices were developed for monitoring plant
growth, crop classification, and land use but were not initially designed for agricultural
applications [41,47,49,50]. Thus, they may lack sensitivity to identify variability within the
same agricultural crop.

Table 6. Spearman correlation coefficient between SAR variables and vegetation indices derived from
backscatter coefficients. Significant correlations at 5%.

Harvest 1—Stage 1 Harvest 2—Stage 1

DPSVI −0.71 0.71 −0.71 −0.22 −0.97 DPSVI −0.72 0.72 −0.72 −0.35 −0.97
- Pol −1 1 −0.47 0.86 - Pol −1 1 −0.36 0.86
- - RFDI −1 0.47 −0.86 - - RFDI −1 0.36 −0.86
- - - RVI −0.47 0.86 - - - RVI −0.36 0.86
- - - - VH 0.021 - - - - VH 0.13
- - - - - VV - - - - - VV
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Table 6. Cont.

Harvest 1—Stage 2 Harvest 2—Stage 2

DPSVI −0.67 0.67 −0.67 0.31 −0.96 DPSVI −0.68 0.68 −0.68 0.22 −0.96
- Pol −1 1 −0.45 0.83 - Pol −1 1 −0.51 0.85
- - RFDI −1 0.45 −0.83 - - RFDI −1 0.51 −0.85
- - - RVI −0.45 0.83 - - - RVI −0.51 0.85
- - - - VH 0.001 - - - - VH 0.033
- - - - - VV - - - - - VV

Harvest 1—Stage 3 Harvest 2—Stage 3

DPSVI −0.58 0.58 −0.58 −0.43 −0.97 DPSVI −0.62 0.62 −0.62 −0.29 −0.96
- Pol −1 1 −0.42 0.76 - Pol −1 1 −0.52 0.80
- - RFDI −1 0.42 −0.76 - - RFDI −1 0.52 −0.80
- - - RVI −0.42 0.76 - - - RVI −0.52 0.80
- - - - VH 0.21 - - - - VH 0.039
- - - - - VV - - - - - VV

Harvest 3—Stage 1 Harvest 3—Stage 3

DPSVI −0.63 0.63 −0.63 −0.36 −0.96 DPSVI −0.61 0.61 −0.61 −0.32 −0.95
- Pol −1 1 −0.45 0.81 - Pol −1 1 −0.47 0.80
- - RFDI −1 0.45 −0.81 - - RFDI −1 0.47 −0.80
- - - RVI −0.45 0.81 - - - RVI −0.47 0.80
- - - - VH 0.12 - - - - VH 0.11
- - - - - VV - - - - - VV

Harvest 3—Stage 2

DPSVI −0.68 0.68 −0.68 0.25 −0.97
- Pol −1 1 −0.41 0.83
- - RFDI −1 0.41 −0.83
- - - RV −0.41 0.83
- - - - VH 0.12
- - - - - VV

For the variables generated from polarimetric decomposition (alpha and entropy),
both showed a high correlation with each other (r > 0.85—Table 7) across all development
stages of the crop. Entropy reflects the disorder of the reflected energy from a target, and
for soybeans, its value increases as the crop develops (Figure 2), indicating the presence
of multiple scattering events, which is expected in a crop canopy [14]. Therefore, entropy
is more appropriate in this context, as it better captures variations in crop growth over
time [51] and is not affected by the direction in which the rows are planted.

Table 7. Correlation between variables derived from polarimetric decomposition.

Stage 1 Stage 2 Stage 3

Harvest 1 0.90 0.90 0.93
Harvest 2 0.86 0.88 0.87
Harvest 3 0.93 0.91 0.90

To complement the information within a prediction algorithm, SAR variables with
less than 80% correlation with each other were used. This approach improves prediction
performance by including non-collinear variables in a predictive model [52]. Among the
backscatter-related variables, DPSVI, RVI, and VH were selected due to their lower correla-
tions with each other (Table 6), providing complementary information for the prediction
scenarios. Regarding the variables from polarimetric decomposition, alpha was excluded,
and only entropy was used. Thus, for the prediction scenarios, the selected SAR variables
were DPSVI, RVI, VH, entropy, and EVI across the three stages, using the Boxcar filter
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3.4. Predictions
3.4.1. Considering All Stages Together

Initially, the scenario using only SAR data was not viable due to the low correlations
with soybean yield (Figure 5). Using scenarios with data from all growth stages, the integra-
tion of EVI and all SAR variables showed superior performance in predicting soybean yield
compared to the model using only EVI (Figure 6). However, this improvement in prediction
performance was less than 2% in terms of R2 and 3% in RMSE, not exceeding the second
decimal place (Table 8). Despite the observed improvement by including SAR indices, the
high computational cost associated with processing SAR images must be considered. When
optical images are available for all three development stages of soybean, the performance
using only these optical images is like the performance with the inclusion of SAR. Therefore,
if optical images are available for all three stages, it is more economical and efficient to use
only these optical images rather than incorporating SAR data.
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Figure 6. R2 and RMSE values of predictions for each harvest individually with all stages of image
collection, using only optical data (EVI) compared to using optical data together with all SAR variables.

Table 8. Percentage difference in performance of R2 and RMSE when comparing scenarios that
include SAR data from all stages across different harvests with scenarios using SAR and EVI, versus
using only EVI.

Difference in %

R2 RMSE

Harvest 1 1.51 −2.89
Harvest 2 0.73 −1.76
Harvest 3 2.81 −0.89

Observing the harvests, there was a difference in prediction performance for harvest
3 compared to the other harvests. This can be seen in the actual yield maps (Figure 1),
where there were significant spatial differences as well as differences in yield values. In
the first and second harvests, the most productive area is concentrated in the south, while
in the third harvest, this pattern is reversed. Additionally, the change in cultivars in
harvest 3 compared to harvests 1 and 2 may have affected the SAR sensor’s response: in
harvest 3, a mix of cultivars was used, one of which has a high tendency for branching,
unlike the other harvests. This high branching alters the plant’s structure in terms of leaf
density, leaf and branch arrangement, and moisture, which directly influences how radar
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electromagnetic energy interacts with the target [13,14]. This can be observed in Figure 7,
where different patterns in DPSVI are noticeable, especially in stage 3 of harvest 3 in the
area with different cultivars.
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3.4.2. Predictions by Separating Stages

When predictions were made by separating the stages and including SAR variables
(DPSVI, RVI, VH, and entropy) along with EVI, better R2 values (Figure 8) and RMSE values
(Figure 9) were achieved compared to using all three stages together with both SAR and
optical data. Moreover, separating the stages showed that the performance of predictions
including SAR variables alongside EVI surpassed that of using EVI alone, resulting in
increases ranging from 6% to 18% in R2 values between the stages.
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Improved performance was observed when incorporating SAR data and separating the
analysis by development stages, resulting in higher coefficients of determination (R2) and
lower RMSE compared to using optical data alone (Figures 10 and 11; Table 9). In Stage 1,
the plants had not reached their full growth stage, with greater influence from soil moisture
or crop residue [53]. Similar effects of soil on backscattering response in the initial stages of
vegetative development are also reported by Cable et al. [54] and Mandal et al. [41]. In Stage
2, when the crop reaches peak vegetative growth, backscatter is primarily determined by
the scattering from the upper leaf layer [55], resulting in volumetric backscatter due to the
dense leaf cover. At this stage, the crop retains most moisture in the leaves, which increases
backscatter and interferes more with the radar signal [56]. Conversely, signal saturation
can occur due to the high canopy density of SAR and optical images [57]. Therefore, at
this stage, the radar signal is influenced by moisture and interaction with canopy biomass,
which does not relate directly to grain yield. In Stage 3, with plants in the maturation phase
and reduced leaf area, adding information from SAR data during this phase considers
the radar wave’s greater ability to penetrate moderately dry canopies, as variations in
vegetation water content can reduce SAR signal attenuation [58]. Thus, the inclusion of
SAR data in Stage 3 showed the most significant improvement compared to the other
stages when using only optical data, making it the best option for including SAR data to
enhance soybean yield predictions. This result highlights the ability of SAR data to provide
complementary information to that obtained from optical sensors [12], especially when the
availability of optical images before and during peak vegetative growth is more challenging
due to high cloud cover.
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Table 9. Difference (%) of tested scenarios using SAR + optical data compared to optical data only in
separate stages.

Difference in %

Stage 1 Stage 2 Stage 3

R2 RMSE R2 RMSE R2 RMSE

Harvest 1 14% −20% 11% −18% 12% −18%
Harvest 2 6% −14% 8% −17% 18% −27%
Harvest 3 13% 32% 12% −3% 15% −4%

3.4.3. The Best Growth Stage for Yield Prediction

When using scenarios with each SAR variable individually in conjunction with EVI
for stage 3, a maximum difference of 18% was obtained compared to the scenario that
included all SAR variables for stage 3 (Figure 12, Table 10). Utilizing only one SAR variable
reduces operational costs and makes the modeling process more efficient compared to
using all SAR variables combined with EVI. Moreover, for harvest 3, we achieved better
results by including only one SAR variable in the model along with EVI, specifically the
models used DPSVI, RVI, VH, and entropy separately with EVI. Among these variables, the
advantage of using DPSVI is greater, as it is derived from backscatter data and is available
in GRD data. Additionally, the predicted yield maps using this configuration showed a
good visual correlation with the actual yield maps (Figure 13). The prediction error map,
which compares predicted yield with actual yield, shows higher occurrences of errors at
the field boundaries (Figure 13).

Table 10. Percentage difference between scenarios using only one SAR index + EVI compared to the
scenario using all SAR variables combined with EVI at Stage 3.

Stage 3—Difference (%)

DPSVI RVI VH Entropy

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Harvest 1 −4% 6% −4% −49% −3% 5% −4% 6%
Harvest 2 −18% 27% −6% −37% −8% 14% −18% 27%
Harvest 3 104% −27% −8% 19% −11% 3% 106% −28%
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Although SAR data can enhance soybean yield predictions, there are some limita-
tions that may impact their implementation. Processing SAR data requires specialized
knowledge, as they provide information with different processing levels compared to
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optical sensors. Furthermore, the inherent noise in SAR images can influence the accuracy
of predictions, especially in areas with homogeneous vegetation cover, such as soybean
fields [59,60]. When compared with previous studies, such as Hosseni [23], which utilized
only entropy and alpha data, we observed that by employing a different polarimetric
decomposition method and a distinct deep learning algorithm, their prediction accuracy
surpassed ours (R2: Hosseni: 0.81 and ours: 0.76). However, the complexity and high
computational costs of these approaches make their implementation less viable for end
users. The Random Forest regression algorithm stands out for its ability to handle large
datasets, resulting in accurate predictions with lower computational costs than deep learn-
ing algorithms. This makes it a popular choice for yield prediction in agricultural scenarios.
Additionally, simpler regression algorithms can be adapted for use with SAR data and
have the potential to further enhance prediction accuracy in field-scale agricultural areas.
Therefore, it is essential for future research to address these limitations to strengthen the
validity and applicability of findings in precision agriculture.

4. Conclusions

SAR images do not show a direct correlation with soybean yield; thus, using SAR
data alone is not yet a viable alternative for predicting soybean yield within the fields in a
harvest when optical data is not available.

The filters evaluated for reducing speckle noise revealed that the Refined Lee filter
performed the worst compared to the others. However, evaluating the different filters did
not result in significant improvements in the correlation with yield. Therefore, choosing
the Boxcar filter is advantageous, since it has the lowest operational cost among all the
tested options.

Testing prediction scenarios that include SAR data alongside EVI showed improved
performance. Nonetheless, this difference was minimal in some situations (3–49%), but the
computational effort required to process SAR data must be considered.

Using only the DPSVI index and EVI after the vegetative peak resulted in superior
predictive performance compared to other stages or SAR variables, compared to the use
of optical data alone. This finding underscores the potential of SAR data to significantly
improve the accuracy of yield predictions. SAR data offers valuable complementary
insights that enhance those obtained from optical sensors, particularly in scenarios where
acquiring optical images before and during peak vegetative growth is difficult due to high
cloud cover.

Given that soybean yield does not correlate well with remote sensing data, further
studies with other crops may provide better predictive results using SAR imagery for yield
estimation. It is important to consider conducting experiments in more areas and testing
different cultivars to obtain a more comprehensive and accurate understanding of the
potential of SAR images in predicting soybean yield.

Author Contributions: Conceptualization, I.A.C. and L.R.A.; methodology, I.A.C., G.M.M.B. and
L.R.A.; validation, V.H.R.P. and G.M.M.B.; formal analysis, I.A.C.; investigation, I.A.C.; resources,
L.R.A.; data curation, I.A.C. and D.D.M.; writing—original draft preparation, I.A.C. and D.D.M.;
writing—review and editing, I.A.C., G.M.M.B., V.H.R.P., D.D.M. and L.R.A.; visualization, L.R.A.;
supervision, L.R.A. and G.M.M.B.; project administration, L.R.A. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the Coordination for the Improvement of Higher Education
Personnel—Brazil (CAPES)—Finance Code 001 and the São Paulo Research Foundation—FAPESP
(Process number 2022/03160-8).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy concerns regarding yield data.



Agriculture 2024, 14, 2032 19 of 21

Acknowledgments: The authors thank everyone who collaborated in the data collection and analysis
and the field experiment.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Van Ittersum, M.K.; Cassman, K.G.; Grassini, P.; Wolf, J.; Tittonell, P.; Hochman, Z. Yield gap analysis with local to global

relevance—A review. Field Crops Res. 2013, 143, 4–17. [CrossRef]
2. Jin, X.; Kumar, L.; Li, Z.; Feng, H.; Xu, X.; Yang, G.; Wang, J. A review of data assimilation of remote sensing and crop models. Eur.

J. Agron. 2018, 92, 141–152. [CrossRef]
3. Delécolle, R.; Maas, S.J.; Guerif, M.; Baret, F. Remote sensing and crop production models: Present trends. ISPRS J. Photogramm.

Remote Sens. 1992, 47, 145–161. [CrossRef]
4. Jensen, J.R. Sensoriamento Remoto: Uma Perspectiva em Recursos Terrestres, 2nd ed.; Parêntese: São José dos Campos, Brazil, 2009.
5. Fountas, S.; Espejo-García, B.; Kasimati, A.; Mylonas, N.; Darra, N. O futuro da agricultura digital: Tecnologias e oportunidades.

IT Prof. 2020, 22, 24–28. [CrossRef]
6. Richetti, J.; Judge, J.; Boote, K.J.; Johann, J.A.; Uribe-Opazo, M.A.; Becker, W.R.; Paludo, A.; Silva, L.C.A. Using phenology-based

enhanced vegetation index and machine learning for soybean yield estimation in Paraná State, Brazil. J. Appl. Remote Sens. 2018,
12, 026029. [CrossRef]

7. You, J.; Li, X.; Low, M.; Lobell, D.; Ermon, S. Deep Gaussian Process for Crop Yield Prediction Based on Remote Sensing Data. In
Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 1–9 February 2017; Volume 31, p. 1.

8. Dalla Betta, M.M.; Trabaquini, K.; Elias, H.T.; Silva, M.S. Mapeamento da soja por meio de imagens Landsat e Sentinel-2 nos
municípios de Lages e Capão Alto em Santa Catarina. Agropecuária Catarin. 2022, 35, 68–73. [CrossRef]

9. Silveira, H.L.F.; Eberhardt, I.D.R.; Sanches, I.D.A.; Galvão, L.S. Análise da Cobertura de Nuvens No Nordeste Do Brasil e Seus
Impactos No Sensoriamento Remoto Agrícola Operacional. Simpósio Brasileiro de Sensoriamento Remoto. 2017. Available
online: https://www.alice.cnptia.embrapa.br/alice/handle/doc/1074562 (accessed on 26 September 2024).

10. Eberhardt, I.D.R.; Schultz, B.; Rizzi, R.; Sanches, I.D.A.; Formaggio, A.R.; Atzberger, C.; Barreto Luiz, A.J. Cloud cover assessment
for operational crop monitoring systems in tropical areas. Remote Sens. 2016, 8, 219. [CrossRef]

11. Prudente, V.H.R.; Martins, V.S.; Vieira, D.C.; Silva, N.R.D.F.; Adami, M.; Sanches, I.D.A. Limitations of cloud cover for optical
remote sensing of agricultural areas across South America. Remote Sens. Appl. Soc. Environ. 2020, 20, 100414. [CrossRef]

12. Bahrami, H.; Homayouni, S.; Safari, A.; Mirzaei, S.; Mahdianpari, M.; Reisi-Gahrouei, O. Deep learning-based estimation of crop
biophysical parameters using multi-source and multi-temporal remote sensing observations. Agronomy 2021, 11, 1363. [CrossRef]

13. Nasirzadehdizaji, R.; Balik Sanli, F.; Abdikan, S.; Cakir, Z.; Sekertekin, A.; Ustuner, M. Sensitivity analysis of multi-temporal
Sentinel-1 SAR parameters to crop height and canopy coverage. Appl. Sci. 2019, 9, 655. [CrossRef]

14. McNairn, H.; Shang, J. A review of multitemporal synthetic aperture radar (SAR) for crop monitoring. In Multitemporal Remote
Sensing: Methods and Applications; Ban, Y., Ed.; Springer: New York, NY, USA, 2016; pp. 317–340.

15. Schlund, M.; Erasmi, S. Sentinel-1 time series data for monitoring the phenology of winter wheat. Remote Sens. Environ. 2020, 246, 111814.
[CrossRef]

16. Prudente, V.H.R.; Oldoni, L.V.; Vieira, D.C.; Cattani, C.E.V.; Sanches, I.D. Relationship between SAR/Sentinel-1 polarimetric and
interferometric data with biophysical parameters of agricultural crops. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42,
599–607. [CrossRef]

17. Mestre-Quereda, A.; Lopez-Sanchez, J.M.; Vicente-Guijalba, F.; Jacob, A.W.; Engdahl, M.E. Time-series of Sentinel-1 interferometric
coherence and backscatter for crop-type mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4070–4084. [CrossRef]

18. Mandal, D.; Kumar, V.; Ratha, D.; Dey, S.; Bhattacharya, A.; Lopez-Sanchez, J.M.; McNairn, H.; Rao, Y.S. Dual polarimetric radar
vegetation index for crop growth monitoring using Sentinel-1 SAR data. Remote Sens. Environ. 2020, 247, 111954. [CrossRef]

19. Yommy, A.S.; Liu, R.; Wu, S. SAR image despeckling using refined Lee filter. In Proceedings of the 2015 7th International
Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, China, 26–27 August 2015; pp. 260–265.

20. Argenti, F.; Lapini, A.; Bianchi, T.; Alparone, L. A tutorial on speckle reduction in synthetic aperture radar images. IEEE Geosci.
Remote Sens. Mag. 2013, 1, 6–35. [CrossRef]

21. Muruganantham, P.; Wibowo, S.; Grandhi, S.; Samrat, N.H.; Islam, N. A systematic literature review on crop yield prediction
with deep learning and remote sensing. Remote Sens. 2022, 14, 1990. [CrossRef]

22. Ali, A.M.; Abouelghar, M.; Belal, A.A.; Saleh, N.; Yones, M.; Selim, A.I.; Amin, M.E.S.; Elwesemy, A.; Kucher, D.E.; Maginan, S.; et
al. Crop yield prediction using multi sensors remote sensing. Egypt. J. Remote Sens. Space Sci. 2022, 25, 711–716.

23. Hosseini, M.; Becker-Reshef, I.; Sahajpal, R.; Lafluf, P.; Leale, G.; Puricelli, E.; Skakun, S.; McNairn, H. Soybean yield forecast
using dual-polarimetric C-band synthetic aperture radar. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 2022, 3, 405–410.
[CrossRef]

24. Hashemi, M.G.; Tan, P.N.; Jalilvand, E.; Wilke, B.; Alemohammad, H.; Das, N.N. Yield estimation from SAR data using patch-based
deep learning and machine learning techniques. Comput. Electron. Agric. 2024, 226, 109340. [CrossRef]

25. Maldaner, L.F.; Canata, T.F.; Molin, J.P. An approach to sugarcane yield estimation using sensors in the harvester and Zigbee
technology. Sugar Tech. 2022, 24, 813–821. [CrossRef]

https://doi.org/10.1016/j.fcr.2012.09.009
https://doi.org/10.1016/j.eja.2017.11.002
https://doi.org/10.1016/0924-2716(92)90030-D
https://doi.org/10.1109/MITP.2019.2963412
https://doi.org/10.1117/1.JRS.12.026029
https://doi.org/10.52945/rac.v35i2.1347
https://www.alice.cnptia.embrapa.br/alice/handle/doc/1074562
https://doi.org/10.3390/rs8030219
https://doi.org/10.1016/j.rsase.2020.100414
https://doi.org/10.3390/agronomy11071363
https://doi.org/10.3390/app9040655
https://doi.org/10.1016/j.rse.2020.111814
https://doi.org/10.5194/isprs-archives-XLII-3-W6-599-2019
https://doi.org/10.1109/JSTARS.2020.3008096
https://doi.org/10.1016/j.rse.2020.111954
https://doi.org/10.1109/MGRS.2013.2277512
https://doi.org/10.3390/rs14091990
https://doi.org/10.5194/isprs-annals-V-3-2022-405-2022
https://doi.org/10.1016/j.compag.2024.109340
https://doi.org/10.1007/s12355-021-01050-x


Agriculture 2024, 14, 2032 20 of 21

26. Jin, X.; Yang, G.; Xu, X.; Yang, H.; Feng, H.; Li, Z.; Shen, J.; Lan, Y.; Zhao, C. Combined multi-temporal optical and radar
parameters for estimating LAI and biomass in winter wheat using HJ and RADARSAT-2 data. Remote Sens. 2015, 7, 13251–13272.
[CrossRef]

27. Kross, A.; Znoj, E.; Callegari, D.; Kaur, G.; Sunohara, M.; Lapen, D.R.; McNairn, H. Using artificial neural networks and remotely
sensed data to evaluate the relative importance of variables for prediction of within-field corn and soybean yields. Remote Sens.
2020, 12, 2230. [CrossRef]

28. Filipponi, F. Sentinel-1 GRD preprocessing workflow. Proceedings 2019, 18, 11. [CrossRef]
29. Lee, J.S.; Pottier, E. Polarimetric Radar Imaging: From Basics to Applications; CRC Press: New York, NY, USA, 2009; p. 398.
30. Oldoni, L.V.; Sanches, I. D.A.; Prudente, V. H.R.; Vieira, D.C.; Gama, F.F. Caracterização da dinâmica da soja, milho e algodão com

base em dados SAR polarimétricos do Sentinel-1A. In Proceedings of the Anais do XIX Simpósio Brasileiro de Sensoriamento
Remoto, Santos, Brazil, 14–17 April 2019; pp. 692–695.

31. Bouchemakh, L.; Smara, Y.; Boutarfa, S.; Hamadache, Z. A comparative study of speckle filtering in polarimetric radar SAR
images. In Proceedings of the 3rd International Conference on Information and Communication Technologies: From Theory to
Applications, Damascus, Syria, 7–11 April 2008; pp. 1–6.

32. Lee, J.S. A simple speckle smoothing algorithm for synthetic aperture radar images. IEEE Trans. Syst. Man Cybern. 1983, 1, 85–89.
[CrossRef]

33. Lopes, A.; Nezry, E.; Touzi, R.; Laur, H. Maximum a posteriori speckle filtering and first order texture models in SAR images. In
Proceedings of the IGARSS’90, College Park, MD, USA, 20–24 May 1990; Volume 3, pp. 2409–2412.

34. Lee, J.S.; Wen, J.H.; Ainsworth, T.L.; Chen, K.S.; Chen, A.J. Improved sigma filter for speckle filtering of SAR imagery. IEEE Trans.
Geosci. Remote Sens. 2009, 47, 202–213.

35. Amaral, L.R.; Oldoni, H.; Baptista, G.M.; Ferreira, G.H.; Freitas, R.G.; Martins, C.L.; Santos, A.F. Remote Sensing Imagery to
Predict Soybean Yield: A Case Study of Vegetation Indices Contribution. Precis. Agric. 2024, 25, 2375–2393. [CrossRef]

36. Santos, E.P.; da Silva, D.D.; do Amaral, C.H. Vegetation cover monitoring in tropical regions using SAR-C dual-polarization index:
Seasonal and spatial influences. Int. J. Remote Sens. 2021, 42, 7581–7609. [CrossRef]

37. Mitchard, E.T.A.; Saatchi, S.S.; White, L.J.T.; Abernethy, K.A.; Jeffery, K.J.; Lewis, S.L.; Collins, M.; Lefsky, M.A.; Leal, M.E.;
Woodhouse, I.H.; et al. Mapping tropical forest biomass with radar and spaceborne LiDAR in Lopé National Park, Gabon:
Overcoming problems of high biomass and persistent cloud. Biogeosciences 2012, 9, 179–191. [CrossRef]

38. Hird, J.N.; DeLancey, E.R.; McDermid, G.J.; Kariyeva, J. Google Earth Engine, open-access satellite data, and machine learning in
support of large-area probabilistic wetland mapping. Remote Sens. 2017, 9, 1310. [CrossRef]

39. Trudel, M.; Charbonneau, F.; Leconte, R. Using RADARSAT-2 polarimetric and ENVISAT-ASAR dual-polarization data for
estimating soil moisture over agricultural fields. Can. J. Remote Sens. 2012, 38, 514–527.

40. Huete, A.; Justice, C.; Van Leeuwen, W. MODIS vegetation index (MOD13). Algorithm Theor. Basis Doc. 1999, 3, 295–309.
41. Mandal, K.G.; Hati, K.M.; Misra, A.K. Biomass yield and energy analysis of soybean production in relation to fertilizer-NPK and

organic manure. Biomass Bioenergy 2009, 33, 1670–1679. [CrossRef]
42. Martins, C.L.; Santos, A.C.; Canatta, J.V.; Ranzani, G. Classification of the occurrence of broadleaf weeds in narrow-leaf crops.

Eng. Agrícola 2024, 44, e20230148. [CrossRef]
43. Foucher, S.; López-Martínez, C. Analysis, evaluation, and comparison of polarimetric SAR speckle filtering techniques. IEEE

Trans. Image Process. 2014, 23, 1751–1764. [CrossRef]
44. Bipin, C.; Rao, C.V.; Sridevi, P.V. Speckle aware spatial search based segmentation algorithm for crop classification in SAR images

using a three component K-NN model. J. Appl. Remote Sens. 2023, 17, 048503. [CrossRef]
45. Shitole, S.; De, S.; Rao, Y.S.; Pandey, P.C. Selection of suitable window size for speckle reduction and deblurring using SOFM in

polarimetric SAR images. J. Indian Soc. Remote Sens. 2015, 43, 739–750. [CrossRef]
46. McNairn, H.; Kross, A.; Lapen, D.; Caves, R.; Shang, J. Early season monitoring of corn and soybeans with TerraSAR-X and

RADARSAT-2. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 252–259. [CrossRef]
47. Le Toan, T.; Ribbes, F.; Wang, L.F.; Floury, N.; Ding, K.H.; Kong, J.A.; Fujita, M.; Kurosu, T. Rice crop mapping and monitoring

using ERS-1 data based on experiment and modeling results. IEEE Trans. Geosci. Remote Sens. 1997, 35, 41–56. [CrossRef]
48. McNairn, H.; Brisco, B. The application of C-band polarimetric SAR for agriculture: A review. Can. J. Remote Sens. 2004, 30,

525–542. [CrossRef]
49. Haldar, D.; Dave, R.; Dave, V.A. Evaluation of full-polarimetric parameters for vegetation monitoring in rabi (winter) season.

Egypt. J. Remote Sens. Space Sci. 2018, 21, S67–S73. [CrossRef]
50. Kim, Y.; Van Zyl, J.J. A time-series approach to estimate soil moisture using polarimetric radar data. IEEE Trans. Geosci. Remote

Sens. 2009, 47, 2519–2527.
51. Maity, S.; Patnaik, C.; Parihar, J.S.; Panigrahy, S.; Reddy, K.A. Study of physical phenomena of vegetation using polarimetric

scattering indices and entropy. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 4, 432–438. [CrossRef]
52. Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E.; Tatham, R.L. Multivariate Data Analysis, 7th ed.; Pearson Education: Hoboken,

NJ, USA, 2009.
53. Jiao, X.; McNairn, H.; Shang, J.; Pattey, E.; Liu, J.; Champagne, C. The sensitivity of RADARSAT-2 polarimetric SAR data to corn

and soybean leaf area index. Can. J. Remote Sens. 2011, 37, 69–81. [CrossRef]

https://doi.org/10.3390/rs71013251
https://doi.org/10.3390/rs12142230
https://doi.org/10.3390/ECRS-3-06201
https://doi.org/10.1109/TSMC.1983.6313036
https://doi.org/10.1007/s11119-024-10174-5
https://doi.org/10.1080/01431161.2021.1959955
https://doi.org/10.5194/bg-9-179-2012
https://doi.org/10.3390/rs9121315
https://doi.org/10.1016/j.biombioe.2009.08.010
https://doi.org/10.1590/1809-4430-eng.agric.v44e20230148/2024
https://doi.org/10.1109/TIP.2014.2307437
https://doi.org/10.1117/1.JRS.17.048503
https://doi.org/10.1007/s12524-014-0403-7
https://doi.org/10.1016/j.jag.2013.12.015
https://doi.org/10.1109/36.551933
https://doi.org/10.5589/m03-069
https://doi.org/10.1016/j.ejrs.2018.05.002
https://doi.org/10.1109/JSTARS.2010.2076272
https://doi.org/10.5589/m11-023


Agriculture 2024, 14, 2032 21 of 21

54. Cable, J.W.; Kovacs, J.M.; Jiao, X.; Shang, J. Agricultural monitoring in northeastern Ontario, Canada, using multi-temporal
polarimetric RADARSAT-2 data. Remote Sens. 2014, 6, 2343–2371. [CrossRef]

55. Liu, C.; Shang, J.; Vachon, P. W.; McNairn, H. Multiyear crop monitoring using polarimetric RADARSAT-2 data. IEEE Trans.
Geosci. Remote Sens. 2012, 51, 2227–2240. [CrossRef]

56. Ulaby, F.T. Microwave Remote Sensing Fundamentals and Radiometry; Artech House: Reading, MA, USA, 1981.
57. Mermoz, S.; Réjou-Méchain, M.; Villard, L.; Le Toan, T.; Rossi, V.; Gourlet-Fleury, S. Decrease of L-band SAR backscatter with

biomass of dense forests. Remote Sens. Environ. 2015, 159, 307–317. [CrossRef]
58. Bhogapurapu, N.; Dey, S.; Bhattacharya, A.; Mandal, D.; Lopez-Sanchez, J.M.; McNairn, H.; López-Martínez, C.; Rao, Y.S.

Dual-polarimetric descriptors from Sentinel-1 GRD SAR data for crop growth assessment. ISPRS J. Photogramm. Remote Sens.
2021, 178, 20–35. [CrossRef]

59. Shang, J.; Jiao, X.; McNairn, H.; Kovacs, J.; Walters, D.; Ma, B.; Geng, X. Tracking crop phenological development of spring wheat
using synthetic aperture radar (SAR) in northern Ontario, Canada. In Proceedings of the 2013 Second International Conference
on Agro-Geoinformatics (Agro-Geoinformatics), Fairfax, VA, USA, 12–16 August 2013; pp. 517–521.

60. Nasirzadehdizaji, R.; Cakir, Z.; Sanli, F.B.; Abdikan, S.; Pepe, A.; Calo, F. Sentinel-1 interferometric coherence and backscattering
analysis for crop monitoring. Comput. Electron. Agric. 2021, 185, 106118. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/rs6032343
https://doi.org/10.1109/TGRS.2012.2208649
https://doi.org/10.1016/j.rse.2014.12.019
https://doi.org/10.1016/j.isprsjprs.2021.05.013
https://doi.org/10.1016/j.compag.2021.106118

	Introduction 
	Materials and Methods 
	Experimental Site and Yield Data 
	Remote Sensing Data 
	Development Stages of the Crop 
	Preprocessing of SAR Images 
	Variables 
	Correlation 
	Predictions 

	Results and Discussion 
	Correlation Between Remote Sensing Data and Yield 
	Speckle Filter Correlation with Soybean Yield 
	Correlation of SAR Variables with Soybean Yield 
	Predictions 
	Considering All Stages Together 
	Predictions by Separating Stages 
	The Best Growth Stage for Yield Prediction 


	Conclusions 
	References

