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Abstract: Color is a key indicator for evaluating the quality of tea during processing; various
processing procedures can significantly affect the content of fat-soluble pigments of tea, which in
turn affects the color and quality of finished tea. Therefore, there is an urgent demand for the fast,
non-destructive detection of pigments of stacked tea during processing. This paper presents the use
of hyperspectral imaging technology (HSI), combined with machine learning algorithms, to detect
chlorophyll a, chlorophyll b, and carotenoids in stacked matcha tea during processing. Firstly, a
quantitative relationship between HSI data of tea and their pigment contents was developed based
on regression analysis, and the results showed that exceptional prediction performance was achieved
by the partial least squares regression (PLSR) algorithm combined with the feature band algorithm of
competitive adaptive reweighting (CARS), and the Rp

2 values of detection models of chlorophyll a,
chlorophyll b and carotenoids were 0.90465, 0.92068 and 0.62666, respectively. Then, these quantitative
detection models were extended to each pixel in hyperspectral images, achieving point-by-point
prediction of pigment components, so the distribution of pigments of stacked tea leaves during
processing procedures was successfully visualized on the processing line in situ. By integrating a
hyperspectral imaging system into the real-world environment, operators can monitor pigment levels
in real time and thus dynamically adjust processing parameters based on real-time data. This study
enhances pigment detection efficiency in tea processing, supports process optimization, and aids in
quality control.

Keywords: hyperspectral imaging technology; processing procedures; in situ detection; non-
destructive determination

1. Introduction

China is the world’s largest producer and consumer of tea, which first originated in
southwestern China more than 3000 years ago, making it the world’s earliest producer of
tea. In ancient times, tea was considered a plant with medicinal value, and it was popular
and exported to foreign countries due to its unique flavor and refreshing aroma [1]. In
recent years, more and more studies have found that green tea is beneficial to human
health, such as reducing the occurrence of cardiovascular diseases and the prevention and
treatment of many kinds of tumors and cancers [2,3].

Color is one of the most important attributes in the evaluation index of tea, and
chlorophyll and carotenoids contained in green tea are some of the important factors
affecting the color [4,5], whereas among them, chlorophyll a and chlorophyll b determine
the green hue of the tea leaves, and the carotenoids determine the yellow hue, both of which
are fat-soluble pigments, occupying 0.3% to 0.8% and 14.4% to 29.2% of the tea weight,
respectively [6,7]. During the processing of green tea, the processing process has a greater
impact on the fat-soluble pigments contained in green tea [8], in which the greening process
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influences the enzyme activity therein to form more demagnetized chlorophylls, which
deepen the color of tea leaves, and carotenoids, which are more significant for processing,
especially after greening and drying, with decreases of up to 50% and 60%, respectively [9].
Therefore, in situ detection of pigment content during tea processing can help processors
adjust processing parameters to retain or derivatize more fat-soluble pigments to ensure
the “three greens” of tea color [10].

Spectroscopy is a technique that gathers information by measuring the interaction
between matter and electromagnetic radiation. It operates on the principle that different
wavelengths of light interact with matter in unique ways, producing distinct effects that pro-
vide valuable insights into the substance. When materials are exposed to electromagnetic
radiation, they absorb light at specific wavelengths; this absorption occurs because each
compound possesses a unique absorption spectrum. Consequently, spectroscopy facilitates
both qualitative and quantitative analysis, allowing for the identification of substances and
their concentrations. Given these distinctive properties, spectroscopy finds applications
across a wide range of fields. In this context, several studies have been devoted to exploring
the application of spectroscopic techniques in tea quality analysis. Yuzhen Wei et al. [11]
explored the generalization performance of a tea moisture detection model under different
leaf surface orientations and tea varieties. By performing fractional order differencing on
the VNIR spectral data, it was found that the fractional orders of 0.4 and 0.6 significantly
improved the generalization ability of the model under different varieties and leaf surface
orientations. Guangxin Ren et al. [12] used a multivariate selection strategy to identify key
feature wavelengths related to the quality classification of Dian Hong tea. Combining the
methods of Improved Genetic Algorithm (IGA) and Particle Swarm Optimization (PSO),
the Support Vector Machine (SVM) model achieved a 95.28% correct discrimination rate in
tea quality prediction. Qin Ouyang et al. [13] investigated the use of VIS-NIR spectroscopy
for estimating the sensory quality of color in black tea samples and found that the spectral
data-based GA-BPANN model performed the best, with a correlation coefficient of 0.8935
in the prediction set, which was superior to the model based on color parameters. Ying Liu
et al. [14] used VIS-NIR spectroscopy combined with an SVM model for black tea quality
classification, and the correct recognition rate in the validation set using the CARS-linear
kernel SVM model was 91.85%. The results showed that VIS-NIR spectroscopy is a fast,
low-cost, and efficient method for tea quality prediction.

Currently, a commonly used method for tea pigment analysis is high-performance
liquid chromatography (HPLC) [15]. However, HPLC requires expensive equipment,
the preparation of various mobile phases, and complex post-detection data processing,
making it time-consuming and labor-intensive. Additionally, it is not suitable for rapid,
large-scale pigment analysis [16,17]. Moreover, existing pigmentation analysis methods
cannot perform the non-destructive testing of tea [18,19]. In response to the limitations
of conventional chemical testing methods, researchers have proposed the use of HSI
technology to non-destructively determine pigment content [20,21]. For instance, Zijuan
Zhang [22] used hyperspectral data for dimensionality reduction to identify characteristic
bands, establishing a spectral index highly sensitive to anthocyanin content and developing
an estimation model. Similarly, Lisong Jin [23] analyzed and compared the inversion
accuracies of chlorophylls a and b using two hyperspectral methods—spectral index and
pseudo-absorption coefficients—to identify optimal detection bands and developed a
portable device for detecting chlorophyll a and b using a photosensitive sensor to capture
leaf reflectance.

Although spectral and hyperspectral imaging techniques (HSI) have been employed
to detect pigment content in tea, existing studies have yet to achieve real-time, online
detection of pigments and their distribution in stacked tea leaves along the production line,
remaining limited to the mere detection of spectral curves. While this approach can capture
the spectral characteristics of tea samples, it falls short of providing a detailed analysis of
the spatial distribution of pigments within the leaves. To address this issue, this paper
integrates HSI technology with partial least squares regression (PLSR) and least squares
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Support Vector Machine (LS-SVM). Additionally, the competitive adaptive reweighting
algorithm (CARS) and Successive Projections Algorithm (SPA) are employed to select key
feature bands from the hyperspectral data, reducing redundancy. By applying regression
analysis, a quantitative relationship is established between the HSI data and the pigment
content in tea. These quantitative detection models are then applied to each pixel in the
hyperspectral images, enabling point-by-point prediction of pigment components and
visualizing the spatial distribution of stacked teas at various stages of processing.

2. Materials and Methods
2.1. Samples Collection

The tea used in the experiment was collected from Hangzhou Jingle Tea Industry
Co., Ltd. (Hangzhou, China), between April and May 2023. The variety selected for this
study was matcha. A total of 180 tea samples, including 60 fresh leave samples (FR),
60 fixation leave samples (FI), and 60 dried leave samples (DR), were collected from the tea
factory. In detail, the fresh leave sample (FR) represents the leaves just plucked from the tea
plant, and the fixation process is to put the tea leaves into the drum, set the rotational speed
of 400 r/min, and the high temperature of 200 ◦C to kill the tea for 10 min to utilize the
high temperature to destroy the enzyme activity and to maintain the color of the green tea.
The dried process is performed at a temperature of 170 ◦C for a period of 10–15 min, with
a goal of evaporating the residual water in the tea leaves in order to maintain the quality
of tea and increase the aroma. The specific collection information of samples is shown in
Table 1.

Table 1. Sampling information of matcha.

Plucking Date FR FI DR

4.28 5 6 5
4.30 8 5 4
5.2 6 7 7
5.4 6 5 4
5.6 7 7 7
5.8 7 7 9

5.10 4 4 4
5.12 6 6 4
5.14 4 4 5
5.16 4 4 4
5.18 3 5 7
Total 60 60 60

2.2. Hyperspectral Image Acquisition and Correction

The hyperspectral imaging unit was constructed as shown in Figure 1. It consists
of a Finnish Specim FX10 hyperspectral camera (push scan) (Specim, Oulu, Finland), an
LG-150 halogen lamp cold light source (Shanghai Meimei Metering Electricity Technology
Co., Ltd., Shanghai, China), an electrically controlled conveyor belt, a conveyor belt speed
adjustment controller, a polytetrafluoroethylene (PTFE) whiteboard (Guangzhou Jingyi
Photoelectric Technology Co., Ltd., Guangzhou, China), a background blackboard, and
a computer.

The hyperspectral camera was powered on and allowed to warm up for 15 min prior
to data acquisition, a necessary step to prevent baseline drift in the spectral images, which
could otherwise compromise the accuracy of the target spectrum. Calibration of the tea
data was performed before the hyperspectral collection to ensure precise acquisition and
eliminate potential interference. Under the same conditions as the tea samples, the light
source was used to capture a dark environment image for reference. Following this, tea
leaves were evenly spread on a conveyor belt for hyperspectral image acquisition. Each row
scan contained 1024 pixels, with a spectral range spanning from 400 nm to 1000 nm, and a
sampling interval of 0.6 nm, resulting in hyperspectral data collected at 951 wavelengths.
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A whiteboard was used during the process to obtain the corrected hyperspectral image of
the tea. The correction principle is as follows:

R =
Rraw − Rdark
Rbb − Rdark

(1)

In the formula: R: corrected spectrum,

Rraw: collect the resulting raw spectra,
Rbb: standard spectra of the white plate,
Rdark: the dark environment spectrum collected.
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Figure 1. Hyperspectral imaging device. The upper-right figure demonstrates that the acquired
images contain spatial information with spectral dimensions, and the lower-right figure shows the
original images of the samples for the three processing techniques. (1) Electronic controlled conveyor
belt; (2) Specim FX10 hyperspectral camera; (3) bracket; (4) computer; (5) LG-150 halogen lamp cold
light source; (6) conveyor belt speed adjustment controller; (7) optical fiber; (8) blackboard; (9) sample;
(10) polytetrafluoroethylene (PTFE) white board.

2.3. Pigment Measured by Traditional Standard Method Destructive

Before pigment extraction, the tea samples were placed in a drying oven (STIK BAO-
50A, Beijing World Trade Far East Scientific Instrument Co., Ltd., Beijing, China) for
moisture removal, set at 70 ◦C for 72 h. After drying, the samples were transferred to an
automatic rapid sample grinder (JXFSTPRP-48, Shanghai Jingxin Industrial Development
Co., Ltd., Shanghai, China). The total grinding time was set to 12 min, with each interval
lasting 45 s and each grinding duration set to 45 s. The grinding frequency was maintained
at 65 Hz, ensuring the aperture was less than 0.3 mm, and the resulting powder passed
through a 60-mesh sieve.

Approximately 0.2 g to 0.3 g of the tea powder was weighed and was weighed into a
15 mL reagent tube, to which 10 mL of an 80% acetone solution was added. The mixture
was shaken thoroughly and left to stand until the powder turned gray. The reagent tube was
then placed into a low-speed centrifuge (TDL-40B, Shanghai Anting Scientific Instrument
Factory, Shanghai, China) and centrifuged at 1000 rpm for 10 min.

A liquid chromatograph was used to measure the pigment content. Before testing,
the wavelength was set, and 3 mL of 80% acetone was added to a cleaned glass dish for
calibration. The solution was then discarded into a waste tank, and the dish was rinsed
with water. Next, 1 mL of the sample extract and 2 mL of acetone were added, and the
absorbance was measured, with the sample number recorded.
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The absorbance of the sample extraction solution was measured at 445.5 nm, 645 nm,
and 663 nm, noted as I1, I2, and I3, respectively. Based on these values and the sample
weight (m), the concentrations of chlorophyll a, chlorophyll b, and carotenoids were
calculated as follows:

CA = b1 · I3 − b2 · I2

CB = CA ·b3
m

CTC = b4 · I2 − b5 · I3

(2)

Formula (3) is utilized to convert the concentration into the actual pigment content in
dry tea as follows:

Chla = CTC ·b3
m

Chlb = b6 · I1 − (CA + CTC) · b7

ChlT = CChlb ·b3
m

(3)

In Equation (3), Chla, Chlb, and ChlT represent the concentrations of chlorophyll a,
chlorophyll b, and carotenoids in dry tea, expressed in mg/g. The constants b1, b2, b3, b4,
b5, b6, and b7 are all fixed.

2.4. Characteristic Wavelength Selection
2.4.1. Competitive Adaptive Reweighted Sampling (CARS)

Competitive Adaptive Reweighted Sampling (CARS) [24] is a spectral data analysis
method for selecting characteristic wavelengths. Through adaptive reweighted sampling,
CARS selects wavelengths based on the absolute regression coefficient values in the partial
least squares (PLS) model, excludes wavelengths with small weights, and determines a
subset of wavelengths with the lowest cross-validated root mean square error (RMSECV)
through iterative validation to optimize the variable combinations. This method effectively
reduces the dimensionality and computational complexity of hyperspectral data while
improving model predictive performance.

2.4.2. Successive Projections Algorithm (SPA)

The Successive Projections Algorithm (SPA), proposed by Gomes et al. in 2013 [25], is
a method for selecting characteristic wavelengths in spectral data analysis. By analyzing
peaks and troughs in the spectral data, SPA identifies prominent spectral features, facili-
tating sample identification and analysis. The basic principle of SPA involves iteratively
selecting one wavelength at a time and adding the wavelength that shows the maximum
change in each iteration. This process extracts key feature information while reducing
redundant data in the original spectral matrix.

In this paper, we propose two methods for eigenband selection: Competitive Adaptive
Reweighted Sampling (CARS) and the Successive Projections Algorithm (SPA), each applied
to independently select the optimal eigenbands.

2.5. Regression Model and Evaluation Index

Partial least squares regression (PLSR) [26] is a widely used statistical method for
modeling and identifying the relationship between two matrices, X and Y. It works by
finding the multidimensional direction in the X-space that best explains the variance in the
Y-space. A least squares Support Vector Machine (LS-SVM) [27] is an enhanced version of
the traditional Support Vector Machine (SVM) algorithm, unlike traditional SVM, LS-SVM
transforms the optimization problem into a system of linear equations by minimizing a
squared loss function. This approach simplifies and streamlines the solution process, and
is well suited for pattern recognition and regression analysis. Specifically, the objective
function of LS-SVM can be expressed as follows:

min J(w, b) =
1
2
∥w∥2 +

1
2

γ
N

∑
i=1

(yi − f (xi))
2 (4)
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Among them, ω is the weight vector, b is the bias term, and γ is the regularization
parameter. To enhance model performance, for the complex hyperspectral data in this
paper, a polynomial kernel (Poly kernel) is used to process these data.

In this paper, we propose using a joint feature band selection algorithm that com-
bines partial least squares regression (PLSR) and a least squares Support Vector Machine
(LS-SVM). The model’s predictive performance is evaluated using the coefficient of deter-
mination (R2) and the root mean square error (RMSE) as key indicators. A higher R2 value,
closer to 1, indicates a better model fit, while a lower RMSE, closer to zero, signifies smaller
prediction errors and improved model performance.

3. Results and Analysis
3.1. Changes in Pigment Content During Matcha Processing

The range and trend of pigment content in matcha across different processing stages
are shown in Figure 2. Throughout the processing, the contents of chlorophyll a (Chla),
chlorophyll b (Chlb), and total chlorophyll (ChlT) exhibited a gradual decrease. In Figure 2a,
Chla had the highest content in fresh leaves (FL), with a median of 3.45 mg/g, but gradually
decreased as processing continued. After fixation (FI) treatment, Chla content dropped
to 2.41 mg/g, representing a loss of approximately 30.14%. Following drying (DR), the
content further declined to 2.14 mg/g, with an overall reduction of 37.97%. The loss of
Chla is mainly due to the demagnesium reaction that occurs during processing, where high
temperatures denature proteins and chlorophyll is released from chloroplasts, while, at the
same time, various types of organic acids in the cells overflow and increase in acidity, where
H+ replaces the Mg2+ of the chlorophyll molecule, forming a dark green or greenish-brown
demagnesium chlorophyll [7,8].
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Figure 2. Variation in pigment content in different processing processes of matcha. (a) Chla, (b) Chlb,
(c) ChlT.

As shown in Figure 2b, Chlb also decreased significantly during processing. It had a
median of 1.66 mg/g in FL, which dropped to 0.62 mg/g after FI, a loss of about 62.65%,
and further decreased to 0.56 mg/g after DR, with an overall reduction of 66.27%, which
was more pronounced than the loss of Chla. This greater reduction is attributed to the
presence of an additional carbonyl group in the molecular structure of Chlb, making it more
prone to forming demagnesium chlorophyll than Chla.

From Figure 2c, the loss of ChlT was relatively smaller. Fresh leaves had the highest
ChlT content, with a median of 0.34 mg/g, which decreased to 0.30 mg/g after FI treatment,
a loss of 11.76%, and further decreased to 0.29 mg/g after DR, resulting in an overall loss of
14.71%. The reduction in ChlT is primarily due to their conversion into aroma compounds
and other volatiles through enzymatic reactions during processing, with high temperatures
accelerating these reactions [28,29].

Overall, Chla, Chlb, and ChlT contents showed a decreasing trend throughout pro-
cessing, particularly during the drying stage. As water evaporated, increased exposure
of pigments to air intensified oxidation reactions, accelerating pigment degradation. Ad-
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ditionally, demagnesium reactions, along with enzymatic and non-enzymatic processes,
continued during drying, further contributing to the decline in pigment content.

3.2. Spectral Response Characterization and Preprocessing

The spectral information for each sample is presented in Figure 3, showing significant
differences in the spectral curves of fresh leaves (FR), fixation (FT), and drying (DR). In
the 500–700 nm range, notable differences in high and low reflectance are observed across
the three stages, while the spectral curve of fresh leaves diverges markedly from the other
two in the 750–1000 nm range, particularly between 750 and 950 nm, where FT and DR
exhibit significant variation. Chlorophyll a and b absorb light primarily in the 400–500 nm
and 600–700 nm wavelengths, with weak reflectance in the 500–600 nm band due to the π

electron system, conjugated double bonds, and molecular structures such as benzene and
pyrrole rings. These properties allow chlorophyll to absorb light at specific wavelengths,
resulting in its green color [9]. Carotenoids, with a similar conjugated double bond and
isoprene structure, absorb light mainly between 400 and 550 nm, corresponding to blue
and green light, while weak reflectance in the 550–700 nm range gives them a yellow to
orange appearance [30,31]. In summary, the 400–1000 band covers the main spectral range
of chlorophylls and carotenoids, and by analyzing the reflectance of the three processes,
pigment content can be inversely predicted [32].
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Figure 3. Average spectra of different processes. The figure shows the variability of the three processes
in terms of average spectra.

In this study, hyperspectral data underwent multiple preprocessing steps to address
several challenges inherent in the acquisition process.

First, the Standard Normal Variate (SNV) transformation was applied to correct for
variations caused by the uneven surfaces of tea leaves and the scattering of light due to the
irregular dispersion of tea across different regions. These factors can introduce significant
scattered light, resulting in spectral distortions that would compromise the accuracy of
the analysis.

Additionally, during HSI, the internal sensors of the instrument can generate thermal
and electronic noise, further degrading the quality of the captured data [33]. To mitigate this,
the Savitzky-Golay (SG) filter was employed, effectively reducing the high-frequency noise
present in the spectra, thereby smoothing the data without distorting key spectral features.

Despite these preprocessing efforts, in the 400–1000 nm wavelength range, certain
spikes were identified as equipment noise. Since preprocessing alone was insufficient to
fully remove these artifacts, the affected spectral bands were excluded from the analysis to
prevent potential biases or inaccuracies. Consequently, the final spectral curves, as shown
in Figure 4d, are the product of several stages of refinement, each aimed at enhancing
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data quality by addressing both physical scattering effects and sensor-based noise. This
comprehensive preprocessing ensures the data are better suited for more efficient analysis
and modeling.
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Figure 4. Average spectra of matcha in each processing procedure after pretreatment.

3.3. Spectral Qualitative Classification Model

In order to qualitatively differentiate the spectral data during tea processing, PCA was
used to visualize the individual processes. The results are shown in Figure 5, the spectral
data of different processes were analyzed by PCA and the variance contributions were
88.62%, 8.46%, and 2.23%, respectively. The PCA shows distinct separation and clustering
of the FL, FI, and FR groups in 3D space, indicating that the spectral data can effectively
distinguish between different processing stages, which is critical for validating the spectral
data and understanding the differences among the processes. In conclusion, the spectral
reflectance of tea leaves shows significant variation across the three processing procedures,
emphasizing the potential for using spectral reflectance to qualitatively distinguish tea
samples at each stage.

3.4. Establishment and Analysis of Regression Models

Outliers in the data need to be removed before being fed into the model for training,
and, in this paper, a one-class SVM is used to remove the values that are outliers in the
distribution of the pigmented data. In order to visualize the changes in the data before
and after screening, a detailed comparison table is provided in this paper, as shown in
Table 2. This comparison table clearly demonstrates that the too-high and too-low outliers
in the dataset are effectively removed after screening by the one-class SVM approach. The
remaining data were divided into test and training sets at a ratio of 4:1 to prevent overfitting
of the model. As shown in Table 3, the modeling results of the three pigments based on
PLSR and LS-SVM without feature selection versus by feature selection with CARS and
SPA are listed. Where Rc

2, RMSEC denotes the R2 and RMSE of the training set, and where
RP

2, RMSEP denotes the R2 and RMSE of the test set. Among the evaluation metrics listed
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in Table 3, the PLSR model was found to be effective in handling the task of predicting
the pigmentation content of tea leaves, and, especially when combined with the feature
selection of CARS, its ability to capture the linear relationship between spectra and pigment
content was optimized, with Rp

2 and RMSEP values of 0.90465 and 0.52810 for Chla, 0.92068
and 0.29431 for Chlb, and 0.62666 and 0.06855 for ChlT, the scatterplot is shown in Figure 6.
This excellent performance is attributed to the fact that the spectral reflectance is closely
related to the pigment content, especially in the visible and near-infrared regions, where
specific regions in the spectral bands can directly reflect the changes in pigment content,
and the PLSR model can maximize the explanatory power of these spectral features by
linear combination, which makes it possible to efficiently capture the linear relationship
between the pigment content and the spectra.
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Figure 5. Distribution of tea leaves under different processing steps in three principal component spaces.
The figure shows the spectra of these three processes form distinct separations and clusters in 3D space.

Table 2. Comparison of sample data before and after screening.

Classification Processing Mean * SD * Min * Max * IQR *

Chla

Pre-screening
FR 2.9062 0.9384 1.7565 4.4672 1.8214
FI 2.5349 0.5813 1.6132 3.9383 1.0337

DR 2.2386 0.5901 1.3734 3.9866 0.8043

Post-screening
FR 2.9077 0.8816 1.8251 4.2764 1.6626
FI 2.5182 0.5079 1.7833 3.3932 0.9466

DR 2.2248 0.4984 1.5481 3.4418 0.7348

Chlb

Pre-screening
FR 1.3907 0.7238 0.6057 2.7749 1.1980
FI 0.6984 0.3077 0.3698 1.5933 0.4260

DR 0.6235 0.2735 0.2447 1.5493 0.2916

Post-screening
FR 1.3964 0.6835 0.6513 2.6394 1.1297
FI 0.6853 0.2671 0.3982 1.4073 0.4096

DR 0.6039 0.1982 0.3442 1.0889 0.2379

ChlT

Pre-screening
FR 0.3165 0.0650 0.2079 0.4611 0.0799
FI 0.2723 0.0757 0.1581 0.4530 0.0898

DR 0.2526 0.1305 0.0043 0.3995 0.2183

Post-screening
FR 0.3138 0.0556 0.2420 0.4390 0.0749
FI 0.2700 0.0687 0.1905 0.4202 0.0857

DR 0.2583 0.1199 0.0190 0.3782 0.2092

* Mean—average value; SD—standard deviation; Min—minimum value; Max—maximum value;
IQR—interquartile range.
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Table 3. Comparison of modeling performance for determination of pigments in matcha samples.

Pigment Model Method
Modeling Result

Rc
2 RMSEC Rp

2 RMSEP

Chla

PLSR
None 0.88694 0.27472 0.82198 0.26616
CARS 0.96808 0.47603 0.90465 0.52810

SPA 0.92860 0.42160 0.75344 0.42503

LS-SVM
None 0.60559 0.51310 0.32543 0.51812
CARS 0.76404 0.12558 0.63297 0.06814
SPA 0.80212 0.03615 0.64845 0.05663

Chlb

PLSR
None 0.94344 0.14880 0.83158 0.18834
CARS 0.98216 0.26985 0.92068 0.29431

SPA 0.91620 0.26688 0.76371 0.30058

LS-SVM
None 0.69362 0.34634 0.50909 0.32156
CARS 0.56628 0.18093 0.42218 0.15377
SPA 0.60972 0.05045 0.46779 0.03892

ChlT

PLSR
None 0.62954 0.05695 0.50115 0.05450
CARS 0.86013 0.08010 0.62666 0.06855

SPA 0.34428 0.08858 −0.00623 0.08988

LS-SVM
None 0.26481 0.08023 0.15198 0.07105
CARS 0.01485 0.09287 −0.05593 0.07929
SPA 0.00526 0.09332 −0.04930 0.07904
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From a macroscopic perspective, the implementation of feature selection algorithms
plays a crucial role in enhancing the predictive capabilities of models, with the choice of
modeling technique being a key factor in determining outcomes. Specifically, in pigment
modeling, the predictive performance metrics of partial least squares regression (PLSR)
models consistently surpass those of least squares Support Vector Machine (LS-SVM).
This superiority stems from PLSR’s ability to capture the essence of the input and output
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variables, effectively reducing data complexity and addressing multicollinearity issues.
Beyond prediction, PLSR offers a more comprehensive understanding of the relationships
between variables, making it preferable to LS-SVM for explanatory analysis.

In contrast, the predictive performance of models using the Successive Projections
Algorithm (SPA) is comparatively suboptimal. A comparative analysis of the spectral bands
selected by the CARS and SPA models reveals that SPA tends to identify a more limited
set of bands. Moreover, some of the bands selected by SPA lack the robust distributional
characteristics seen in those chosen by CARS. This divergence in band selection may explain
the lower predictive accuracy observed when SPA is combined with PLSR and LS-SVM
modeling frameworks.

As shown in Figure 7, the key spectral bands of Chla, Chlb, and ChlT exhibit distinct
patterns. Notably, the SPA selects a more limited set of characteristic wavelengths compared
to the CARS algorithm. Specifically, the wavelengths identified by CARS are evenly
distributed across the spectral range, providing a comprehensive representation of the
pigments’ spectral characteristics. In contrast, the SPA’s selection is marked by an uneven
distribution and a smaller number of bands, which may undermine the model’s predictive
accuracy. This uneven selection of bands likely contributes to the reduced predictive
effectiveness observed when using the SPA to build models.
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Figure 7. Distribution map of important wavelength for determination of three pigments. The figure
shows the overlap of the feature-selected bands with the pigment spectral characteristic intervals.

3.5. Visualization of Tea Pigment

In this study, hyperspectral images from different batches (plucking dates) across
three distinct processing procedures were selected to visualize and analyze the distribution
of the three major pigments: Chla, Chlb, and ChlT. An optimal prediction model was em-
ployed for precise quantitative predictions at each pixel point in the original hyperspectral
images. The input parameters for the model were key spectral bands filtered using the
CARS feature selection technique. By leveraging these feature bands, the model generated
prediction values for each pixel, enabling a comprehensive analysis and the processing of
the entire image.

Figure 8 shows the visualization results of the tea samples: different colors indicate
different concentrations of pigments, with bluish areas indicating lower concentrations
of pigments and yellow areas indicating higher concentrations of pigments. From this,
it can be observed that the contents of Chla, Chlb, and ChlT show a gradual increase as
processing procedures. By combining HSI with mathematical modeling, the method allows
accurate prediction of pigment content during tea processing and real-time monitoring of
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the dynamics of pigment distribution through visualization. When integrated into real-
world environments, the system allows operators to continuously monitor pigment levels
and make dynamic adjustments to processing parameters, thereby enhancing detection
efficiency, optimizing the production process, and improving overall quality control in
tea production.
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4. Discussion

In this study, we integrated VIS-NIR hyperspectral imaging with machine learning to
create a rapid and non-destructive method for detecting Chla, Chlb, and ChlT content in tea.
The introduction of CARS and SPA models for feature selection significantly enhanced the
accuracy and stability of the prediction models for pigments. Moreover, the optimized pre-
diction model enables precise analysis at each pixel in the hyperspectral image, facilitating
real-time dynamic monitoring of pigment content during tea processing. This approach
effectively addresses the limitations of traditional spectroscopic techniques, which struggle
with pixel-by-pixel analysis and often fail to capture processing variations across different
sample regions.

Despite the important results of this study, there are still some limitations and room
for improvement.

First, although the model performed well for the prediction of Chla and Chlb, the
prediction accuracy for ChlT was relatively low, which indicates that further improvement
is still needed in the detection sensitivity of ChlT content. The reasons may be as follows:

The sample preprocessing and detection steps were unable to detect the true value of
the sample, resulting in the spectral model not being able to match.

In the range of 400–1000 nm, the spectra of ChlT may overlap with the absorption spec-
tra of other phytochromes (e.g., chlorophylls and flavonoids), leading to confusing data.

Relatively low Rp
2 values may imply that the model is not complex enough to effec-

tively capture potentially complex features in the ChlT data.
To address these three issues, we propose the following:

1. In the future, more accurate testing instruments will be used for measurement to
reduce measurement errors and ensure the accuracy of the true value of the samples;
optimize the sample preprocessing and testing process, and plan to make multiple
measurements and take the average value of each sample in order to reduce the
impact of random errors in a single measurement.

2. In future studies, advanced spectral correction techniques will be used to reduce the
effect of spectral overlap, and specific spectral features of ChlT will be extracted by
feature selection methods (e.g., SPA) and spectral decomposition techniques (e.g.,
ICA). This will help to separate the overlapping spectral signals and extract the most
representative spectral regions, thus improving the modeling results.

3. Future studies will consider more sophisticated predictive models such as deep
learning frameworks (e.g., CNN or KNN), which have advantages in dealing with
complex relationships, and can further improve the performance of ChlT content
detection.

Second, the extended processing time for visualizing and generating images and
reports is another challenge that needs to be addressed. Currently, it takes approximately
seven seconds to generate a visualization chart on an average computer. However, in large-
scale production lines, particularly in high-speed assembly environments, such delays can
reduce productivity. To meet the efficiency demands of production lines, both the algo-
rithms and hardware configurations need to be further optimized to enable data processing
and visualization generation to occur within milliseconds, ensuring the practicality and
efficiency of this technology in real-world production settings.

In the future, research that integrates HSI with AI technologies is expected to find
widespread applications across various fields, particularly in areas requiring high-precision
analysis and non-destructive testing, such as tea processing, food quality control, and
production monitoring. Future efforts will prioritize reducing computational resource
demands and accelerating data processing and visualization. In addition, the development
of more cost-effective hardware solutions, such as simplified versions of hyperspectral
inspection equipment, will also be a focus of research, and by simplifying operational
processes and increasing automation, the reliance on specialized personnel can be reduced
and the technology can be made more suitable for mass production environments.
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5. Conclusions

In this study, we successfully integrated VIS-NIR hyperspectral imaging with machine
learning algorithms to develop a rapid, non-destructive method for detecting Chla, Chlb,
and ChlT contents in stacked tea leaves during processing. This approach also enabled
spatial visualization of pigment distribution. To reduce data redundancy, feature bands
were selected using the CARS and SPA models, and detection models were constructed
based on PLSR and LS-SVM. The results demonstrated that PLSR, combined with CARS
feature band selection, achieved the highest prediction accuracy, with Rp

2 values of 0.90465,
0.92068, and 0.62666 for Chla, Chlb, and ChlT, respectively, and RMSEP values of 0.52810,
0.29431, and 0.06855, respectively, highlighting the models’ accuracy and stability.

A key innovation of this study is the extension of these quantitative detection models
to each pixel of the hyperspectral image, enabling point-by-point prediction of pigment
composition. This method successfully visualized the pigment distribution in stacked tea
leaves during in situ processing on a production line. It offers a valuable reference for
processors, allowing them to adjust processing parameters in real time based on pigment
variation, thereby optimizing the color and quality of the tea. The visualization of pig-
ment distribution not only enhances monitoring efficiency during tea processing but also
provides a new technical approach to standardized quality control.

In conclusion, this study improves the efficiency of pigment content detection during
tea processing, optimizes the production process, and provides strong technical support
for processing decisions and standardized tea production. It lays the groundwork for the
real-time adjustment of processing parameters, optimization of tea product quality, and
the realization of intelligent tea processing based on the in situ physical and chemical
properties of raw materials.
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