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Abstract: Global warming and climate change, primarily driven by human activities, with agriculture
playing a significant role, have become central topics of scientific research. Livestock production,
especially enteric fermentation, is a major source of greenhouse gas emissions, making it a focal
point for both climate change adaptation and mitigation strategies. Both the European Union (EU)
and Least Developed Countries (LDCs) are highly dependent on agriculture, particularly livestock,
which plays a key role in their economic growth. In developing countries, livestock systems are
evolving rapidly due to various factors, while in the EU, the livestock sector remains economically
and socially significant, representing 36% of total agricultural activity. This study explores the
environmental impact of enteric fermentation in livestock production, alongside the economic value
it generates in both the EU and LDCs. The analysis utilizes a Bayesian Vector Autoregression
(BVAR) methodology, which provides a more robust performance compared to traditional models
like Vector Autoregression (VAR) and the Vector-error Correction Model (VECM). This research
identifies significant relationships between the variables studied, with structural breaks quantified
to reflect the impact of initiatives undertaken in both regions. Interestingly, the results challenge
the environmental Kuznets curve, which hypothesizes an inverted U-shaped relationship between
economic growth and environmental degradation, as proposed by Stern. This suggests that stronger
economic incentives may be necessary to enhance policy effectiveness and promote eco-efficiency. The
distinctive characteristics of livestock production in the EU and LDCs should be carefully considered
when shaping agricultural policies, with a strong emphasis on farmer education as a critical factor for
success. Additionally, corporate management practices must be tailored to address the unique needs,
strengths, and challenges of livestock businesses in these two diverse regions.

Keywords: enteric fermentation; Kuznets; livestock; the European Union (EU); least developed
countries (LDCs); Bayesian vector autoregression models (BVAR models)

1. Introduction

Climate change is driven by various sectors, with fossil fuels and agriculture being
among the most significant contributors. As of 2020, the energy sector accounted for
approximately 34.3 gigatons (Gt) of carbon dioxide equivalent (CO2e), accounting for
about 73.2% of total global greenhouse gas (GHG) emissions. In the same year, agriculture,
forestry, and other land uses (AFOLU) contributed around 11.2 Gt CO2e, or roughly 18.4% of
global emissions [1–9]. Industrial processes such as cement, chemical, and metal production
contributed an additional 3.3 Gt CO2e, accounting for 5.3% of global emissions [5].
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Globally, agricultural emissions—especially from livestock—are particularly signifi-
cant. Livestock emissions stood at 7.1 Gt CO2e in 2005, which was about 14.5% of human-
induced emissions. This figure has since risen to around 8.1 Gt CO2e (FAO), with a
substantial portion coming from enteric fermentation in ruminants. Livestock-related
emissions also stem from manure management and feed production. Enteric fermenta-
tion is a natural part of ruminants’ digestive processes, producing methane (CH4) as a
by-product [6–10]. Methane production from cattle, the primary emitters, varies with
factors like animal species, age, feeding practices, and environmental conditions. Studies
show that CH4 emissions increase as younger cattle mature and tend to decrease in adults
aged 4 to 10 years, with higher emissions associated with poor feed quality and high
temperatures [11–14].

In the European Union (EU), greenhouse gas (GHG) emissions from agriculture in 2022
accounted for approximately 11–12% of total emissions, a share that has remained fairly
consistent in recent years. Other sectors such as energy production, industry, and transport
contributed more significantly, with energy and manufacturing combined representing
the largest portions, particularly due to their reliance on fossil fuels. The energy sector
alone accounted for over 75% of total emissions in some estimates, largely driven by power
generation, while transport and industry also had significant shares (around 20–25% and
21%, respectively) [11–15]. In 2018, enteric fermentation alone represented around 45%
of agricultural GHG emissions within the EU, primarily from ruminants. When feed
production and processing are included, livestock emissions contribute 81–86% of the
sector’s total emissions [6,9]. By 2019, manure management within the EU had generated
approximately 234 kilotons of N2O, which, due to its high global warming potential,
accounts for around 70 million tons of CO2e. Additionally, indirect CO2 emissions from
energy used in manure handling and application add approximately 35 million tons
annually, alongside 3.8 million tons of NH3 released from manure practices [10–17].

For many Least Developed Countries (LDCs), agriculture, particularly livestock, re-
mains crucial to rural economies. These countries face unique challenges, such as low-
fertility soils and high rates of poverty, which can hinder the transition to sustainable
agricultural practices. Low agricultural productivity, coupled with land degradation,
erosion, and water scarcity, exacerbates food insecurity and hampers sustainable develop-
ment. Government support for farmers is limited, and agriculture’s contribution to both
employment and economic growth remains comparatively low in many African nations.
Understanding the environmental impact of agriculture in these regions requires quantify-
ing GHG emissions from enteric fermentation, the most significant agricultural contributor
to emissions in LDCs [12,17]. Though LDC policies typically focus on enhancing resilience,
improving productivity, and promoting low-cost, sustainable practices. More specifically,
agroecological practices such as rotational grazing, improved forage crops, and integrated
livestock–crop systems can enhance feed quality, reduce methane emissions, and improve
soil health [18], enhanced livestock health programs aiming to reduce methane emissions
by improving animal productivity and health. The particular programs involve selec-
tion of animals with higher feed efficiency and lower methane output, enabling smaller,
healthier herds that require fewer resources and emit less methane [19]. Another measure
involves funded training programs aiming to promote methane-reducing techniques such
as improved feed, better pasture management, and community-based livestock manage-
ment, which improve livestock productivity while minimizing environmental impacts,
and, finally, funding and collaboration programs that support methane reduction through
agroforestry, improved pasture management, and low-cost technologies suited to local
conditions [18–23].

Achieving climate neutrality by 2030 is a priority for the EU, with mitigation strate-
gies focused on the agricultural sector as part of the non-emissions trading system (non-
ETS) [18–22]. However, the importance of livestock to economic growth means emissions
reduction remains a secondary goal in LDCs compared to food security and poverty al-
leviation. Conversely, in the EU, where environmental sustainability is a primary focus,
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the agriculture sector is central to achieving climate goals. By applying the environmental
Kuznets curve (EKC) framework, which explores the link between economic growth and
environmental degradation, policymakers can balance the dual aims of economic and
environmental health. For instance, methane emissions could potentially be reduced by
50% within the next decade through targeted measures, which may slow warming by
around 30% [22–28].

To address livestock-related emissions, the EU has adopted practices guided by cir-
cular economy principles and precision farming. Optimizing water and fertilizer use
in feed production for livestock and improving air quality during animal feeding are
strategies that help to reduce emissions while lowering production costs, thus fostering
sustainable development [28–31]. The methane strategy adopted in 2020 involves reducing
emissions from enteric fermentation through improved livestock management practices,
dietary adjustments, and promoting innovative technologies such as feed additives that
can inhibit methane production in ruminants [31]. In addition, the CAP eco-schemes are
offering financial incentives for farmers who adopt climate-friendly practices, including
precision livestock feeding, rotational grazing, manure management, and, last but not
least, investments in research on feed additives, such as 3-NOP (3-nitrooxypropanol) and
seaweed-based solutions, used to mitigate methane emissions from enteric fermentation by
up to 30%.

However, successful implementation of such practices depends on farmers’ willing-
ness to adopt them. Farmers may be hesitant due to short-term income losses or perceived
risks, particularly if the changes require significant labor adjustments. Novel practices often
appear risky if they demand increased labor or costs, making cost-effectiveness crucial to
achieving wide adoption [27–31].

In addition to these specific agricultural strategies, broader economic considerations
affect the climate policies in place. The global economic crisis of 2007, followed by the
coronavirus pandemic, prompted governments to adopt Keynesian economic policies to
stabilize economies. In this context, green Keynesianism, which integrates both economic
and environmental policy goals, offers a model to simultaneously address economic recov-
ery and ecological sustainability. These policies serve as a corrective mechanism to not only
protect against economic downturns but also to mitigate ecological threats [28–32].

Keeping the above in mind, the present work makes an effort to detect and quantify the
economic–environmental performance association for the agricultural activity of livestock
for two regional entities with different objectives, namely EU and LDCs. More specifically,
the first group of EU countries involves self-sufficient agricultural entity in terms of pro-
duction with a policy characterized by a strong economic dimension but focusing mainly
on zero carbon agricultural sector. On the other hand, LDCs are primarily agricultural
with food insecurity and poverty being the main traits with policy measures focus mainly
on poverty alleviation and food security. As a proxy for environmental performance, we
employ a carbon dioxide emission equivalent generated by enteric fermentation, while
the value added generated by agriculture was employed as a proxy for economic perfor-
mance in agriculture. The estimation methodology employed is the Bayesian VAR, namely
the BVAR methodology, since it provides less robust results for the limited time period
studied [21–24].

The contribution and novelty of this work are multi-faceted. Firstly, it delves into the
relatively underexplored area of enteric fermentation emissions within agriculture, a sector
often overlooked in environmental Kuznets curve (EKC) analyses, despite the EKC frame-
work’s widespread application across other industries. Secondly, this study fills a critical
gap in the literature by providing fresh insights into how livestock management practices
impact environmental sustainability, particularly through methane emissions. Thirdly, it
offers a unique comparative analysis of EKC dynamics related to enteric fer-mentation
emissions in the European Union (EU) versus Least Developed Countries (LDCs). This com-
parative approach allows for a nuanced understanding of how varied economic and policy
contexts shape the relationship between livestock emissions and environmental degra-
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dation. Finally, by contextualizing enteric fermentation within the EKC framework, this
study equips stakeholders with data-driven insights to develop targeted, locally informed
interventions that support sustainable agricultural practices while balancing economic and
environmental goals [33–39].

This paper is organized as follows: Section 2 provides the data and the methodology
employed, Section 3 analyzes and discusses the results, and Section 4 concludes.

2. Materials and Methods

The statistical model to be estimated aims to capture the interlinkages of the
environmental–economic performance that can be described by the following function:

f(EMIti, VAAi, VAAi
2) (1)

where i denotes either the LDCs group or the EU group, the EMI denotes the carbon dioxide
emissions equivalent generated by enteric fermentation in carbon emissions equivalent
per 1000 hectares of land, VAAi, and VAAi

2 denotes the value added by agriculture per
capita of the rural population. The VAA is measured in US dollars. All the variables
are in logarithmic form. This particular model aims to unveil the agricultural income
environmental degradation generated by enteric fermentation interlinkages. The findings
may validate or reject the existence of association and provide the pattern of the relationship
among the variables studied for two different groups of countries, namely the EU and
the LDCs. The sector of agriculture in LDCs is the dominant sector, since 70% of the
total population is occupied in this sector. The greatest problem confronted in those areas
involves poverty and food insecurity, a significant feature of rural areas. Therefore, poverty
alleviation and food security are high-priority issues to be addressed in these areas [31].
In addition, agriculture is also an important sector of the European economy [23]. More
specifically, livestock products dominate agricultural production in both research areas.
Actually, livestock production, including meat, dairy, and eggs, represents nearly 40% of
the EU’s total agricultural value, while, for LCDs, livestock contributes significantly to
rural livelihoods, providing a source of income, nutrition, and employment in areas where
crop production may be limited due to low soil fertility or water scarcity [18,19].

The abundance of studies on environmental–economic performance interlinkages
involves many different research areas, different methodologies, and conflicting results.
Widely used methodologies employed in the study of the specific issue are linear and
nonlinear cointegration techniques for time series and panel data, fuzzy modeling, Vector
Autoregression (VAR), and Bayesian Vector Autoregression (BVAR) analysis [33–41].

Carbon emissions from specific agricultural activities, such as enteric fermentation,
present varied challenges across regions with contrasting environmental policies. In the
European Union (EU), the primary goal is to achieve zero-carbon agriculture, aligning with
stringent climate targets and policies that prioritize sustainability. In contrast, in Least
Developed Countries (LDCs), the focus remains on increasing agricultural productivity
and economic returns, with climate concerns often being secondary to food security and
income generation. However, a few obstacles hinder effective methane (CH4) reduction
strategies, even within the EU. Key challenges include the absence of binding reduction
targets for CH4 at the farm level, limited enforcement of mandatory CH4 mitigation actions,
and a lack of alignment between climate objectives and current air quality standards. As a
result, the European Commission’s CH4 Strategy risks being less impactful than anticipated,
falling short of its emission reduction goals. Addressing these gaps, such as implementing
farm-level targets and synchronizing CH4 strategies with broader climate goals, is crucial
for the EU to make substantial progress in agricultural emissions reduction. Meanwhile,
for LDCs, the primary barriers to CH4 reduction in agriculture include limited access to
resources, technology, and financial support. As these countries prioritize productivity
over emissions reduction, the incorporation of climate resilience practices that also enhance
productivity could offer a pragmatic path forward [42].
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The data used for the LDCs (Appendix A) and EU-27 (Appendix A) are annual, with
the reference periods of 1991–2019 and 1995–2019, respectively, and were derived by FAO-
STAT. The EU-27 involves all the members in the EU, except the United Kingdom, since
2020 was the year of BREXIT. On the other hand, the group of the LDCs are characterized
by extreme poverty and structural weaknesses often combined with geographical disadvan-
tages. Limitation in human and natural capital makes them vulnerable to health, economic
crises, or even natural disasters. Poverty, social inequality, and a poorly developed agri-
cultural sector characterize those groups of countries. In other words, the main objective
of the policy implemented should be to address the aforementioned diverse and complex
problems in the sector of agriculture and to ensure sustainable access to food. In addition
to these particular problems, new challenges related to food price volatility and climate
change worsen the policymakers’ work even more.

Regarding the model structure, two variables are employed, namely carbon emissions
generated by enteric fermentation per 1000 hectares of land and the value added per capita
for the rural population as a proxy for agricultural income and the square of agricultural
income. All the variables are in logarithmic form and measured in thousands of dollars in
order to be comparable. The evolution of the variables for the period studied is illustrated
in Figure 1, as follows.

Figure 1. The evolution of the model variables for the time period studied. EMIL denotes CO2e for
LDCS. EMIEU denotes CO2e for EU. VAL denoted value added by agriculture for LDCS. VADL2
denoted the square value added by agriculture for LDCS. VAEU denoted value added by agriculture.
VAEU2 denoted value added by agriculture.

Evidently, the emissions for the case of LDCs are characterized by a declining trend,
while, at the same time, an increasing trend is evident for the agricultural income, especially
after the year 2003. The figure is indicative of nonstationarity a result that can be validated
with the assistance of more econometric tests employed. The next paragraphs aim to
provide a concise and precise description of the experimental results, their interpretation,
as well as the conclusions that can be drawn. As far as the EU is concerned, in the previous
figure, the carbon dioxide emissions equivalent is characterized by a gradually declining
trend, while, for the case of value added per capita, the evolution is oscillating, with an
evident sharp decrease for the last two years of the period studied.

The graphical illustration provides an indication of the evolution of the variables,
while with the assistance of statistic tests, namely unit root tests, and, more specifically,
breakpoint unit root tests, we will test the stationarity of the model variables [42].

The next step in our analysis involves the implementation of the BVAR methodology.
The specific results allow us to use the Bayesian VAR since the 25 years used as a reference
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period suggest that the particular methodology outperforms the classical VAR model. The
mathematical form of those is the same, though the parameters’ estimation and inter-
pretation is totally different. More specifically, the BVAR models, by incorporating prior
information about model parameters, secure reliable results, since the particular process
stabilizes parameter estimation. The BVAR model estimation was based on the Minnesota
prior specification, while all the information is incorporated in the parameters’ estimations.
Based on the maximum likelihood function, we estimate the posteriors [43–45].

Based on BVAR estimation model, we generate a tractable posterior density function,
which is similar to the one of the prior [44]. The prior selected Litterman/Minnesota algo-
rithm for the target parameter is a priori normal, while the zero value of the hyperparameter
determines the value of the prior µ, the covariance prior is non-zero, and the matrix of error
terms, given that the variance–covariance matrix is diagonal, means that all coefficients are
equal to zero. The next step in our BVAR analysis involves the specification of the prior
covariance or the target parameter, having incorporated a set of hyperparameters [40]. The
value of the hyperparameter λ1 is small since the prior information is more efficient than
the sample information. As for the rest of the parameters, λ2 is the regulator of the lag
significance of the other variables, while parameter λ3 reflects the impact of the exogenous
variable on the endogenous variable. Last but not least, λ4 provides the data scale and
variability differences, with the lag decay either linear if λ4 = 1, harmonic, or geometric in
case λ4 > 0 [43–45].

The last step in our analysis involves the impulse response function estimation (IRF)
for each variable as well as the Forecast Error Variance Decomposition analysis (FEVD).
The impulse response analysis is a significant tool in econometric analysis, since it may well
describe the evolution of the estimated VAR model’s variables as a response to a shock in
one or more variables. In other words, this step allows the analyst to trace the transmission
of a single shock within the noisy system of equations and, therefore, we can make an
assessment of the economic policy impacts in the model variables’ evolution within a period
that may be 10 or 20 years in cases where the data employed are annual [43–45]. In a similar
vein, Variance Decomposition or, in other words, Forecast Error Variance Decomposition is
a specific tool that may interpret adequately and, in a narrow way, the relations between
variables described by the model estimated. This methodology will amplify the impulse
response analysis since it further quantifies the contribution rates of all variables to the
impact on the dependent variable [46–48].

The model evaluation was based on the forecast accuracy performance for the classic
VAR and BVAR specifications, respectively, with the assistance of the following indices,
namely the root mean square error (RMSE) and the Mean Absolute Error (MAE). Their
calculation was based on the following formula:

RMSE =

√
∑n

i=1(yi − y)2

n
(2)

MAE =
∑n

i=1|yi − y|
n

(3)

The forecast accuracy measures were selected on the basis of sensitivity extending to
the deviations from the true values.

The results of the methodology presented above are provided in the Results section.

3. Results
3.1. Descriptive Statistics

Prior to the time series analysis and the BVAR model estimation, we calculated the
main descriptive statistics of the model variables. Evidently, the smallest value for vari-
ability is met for the value added per capita in LDCs, while, according to the Jarque–Bera
values, the null hypothesis of residual normality is rejected for all variables employed. This
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result verifies the BVAR selection for the data employed in the present analysis. The results
are provided in Table 1.

Table 1. Descriptive statistics of the model variables.

Variables EMIL EMIEU VAL VALEU

Mean 0.486089 1.883134 0.022687 1.552735
Minimum 0.501209 1.876174 0.017425 1.573746
Maxiimum 0.906165 1.971992 0.048747 1.903699

Std. Dev 0.156382 1.811860 0.001819 1.106403
Skewness 0.217959 0.042733 0.019045 0.260658
Kurtosis 0.031668 0.272423 0.121958 −0.156242

Jarque–Bera 1.876353 2.331038 1.285271 1.861752
EMIL denotes CO2e for LDCS. EMIEU denotes CO2e for EU. VAL denoted value added by agriculture for LDCS.
VAEU denoted value added by agriculture.

3.2. Break Unit Root Tests

Having calculated the main features of the variables employed for the two models, the
next step in our analysis involves the breakpoint unit root test application (the Augmented
Dickey–Fuller test). Our findings for each variable estimation results are illustrated next in
Table 2.

Table 2. ADF break unit root results.

Variables ADF Break Unit Root Break Date

EMIL −2.31 (0.94) 1999
∆EMIL −15.0 *** (0.000) 1999

VAL −3.8 (0.4) 2004
∆VAL −5.58 *** (0.0) 2009

EMIEU −3.46 (0.4) 2008
∆EMIEU −5.61 *** (0.00) 2013

VAEU −4.15 (0.10) 2007
∆VAEU −6.35 *** (0.00) 2004

*** reject of unit root test for 1% level of significance with critical values −4.94, −4.44, −4.19 for 1, 5, 10% level of
significance EMIL denotes CO2e for LDCS, EMIEU denotes CO2e for EU, VAL denotes value added by agriculture
for LDCS, VAEU denotes value added by agriculture, ∆EMIL ∆VAL ∆EMIEU ∆VAEU denotes the first differences.

For the LDCs and carbon emissions, the equivalent variable is confirmed as I(1) and
the year 1999 is the structural break identified. The same result is confirmed for the case of
the agricultural income with a structural break traced in the year 2004. For the EU, all the
respective variables are found to be I(1) with the years 2005 and 2007, respectively, to be
identified as structural breaks. The food crisis (2007), the Kyoto Protocol (1996–1999 signing
period), as well as the different financial crises may well interpret the breakpoints identified.

3.3. Impulse Response Analysis

The results of IRF analysis for the B-VAR models for both research areas, the LDCs
and the EU, and for all the variables, are illustrated in Figure 2a and 2b, respectively. The
regions surrounded by the red dotted lines indicate the posterior confidence intervals
estimated for a 5% level of significance. The figures constructed were based on the Bayesian
methodology using Gibbs sampling, while 1000 iterations were implemented to acquire
the results [38–40].
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Figure 2. (a) Impulse response analysis of the model variables for a ten-period time horizon or the
LDCs. (b) Impulse response analysis of the model variables for a ten-period time horizon or the EU.

Based on the illustration of the previous figure, the responses of a variable to a shock
(of a standard deviation) from other variables for the B-VAR model for a ten-period time
horizon, within which this effect becomes less significant. This particular figure unveils
the interlinkages among the model variables or the LDCs. The major findings provided
by the aforementioned analysis are the following: An innovation in the emissions leads
to a decrease in the agricultural income that is not fading within the ten periods, a result
that confirms inefficiency in the efforts for climate change mitigation in terms of income
effects. More specifically, based on our findings, a decrease in emissions generated by
enteric fermentations is coupled by a decrease in agricultural income, a result that validates
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a failure in the objective of ecoefficiency. On the other hand, an innovation in value added
is accompanied by a slight decrease in emissions generated by enteric fermentation. What
is more the innovation in the square of value added leads to a slight increase in emissions
generated by enteric fermentation, confirming the non-validity of the U-pattern of the
environmental Kuznets curve. Conflicting results were derived for different developing
countries, which may be attributed either to the methodology or the regional entity used as
a research area [45,46].

The situation is significantly different for the case of the EU. The results are illustrated
in the next Figure 2b.

An innovation in emissions generated by enteric fermentation entails a decrease in
agricultural income for both the first and the square of the variable, while the emissions
generated by enteric fermentation is decreasing in innovation occurrences of both variables
employed, reflecting the variability in agricultural income. What is more the EKC hypothe-
sis can be rejected, a result that is in line with some works and not with others, but certainly
the climate change mitigation and adaptation strategy seem to be vital in the interlinkages
developed [47–49].

3.4. Variance Decomposition Analysis

An alternative methodology to detect the interlinkages among the model variables to
be estimated based on the BVAR methodology is the Forecast Error Variance Decomposi-
tion Analysis the results of which are illustrated in Tables 3 and 4 for LDCs and the EU,
respectively [50–52].

Table 3. Forecast Variance Decomposition (FVED) analysis for a ten-time period horizon and
the LDCs.

Variance Decomposition of VADL
VADL EMI VADL2

1 100.0000 0.000000 0.000000
2 99.39371 0.392220 0.214074
3 97.70229 1.400428 0.897285
4 95.26713 2.751638 1.981234
5 92.39760 4.221321 3.381077
6 89.32276 5.653920 5.023317
7 86.19809 6.951129 6.850781
8 83.12297 8.055826 8.821199
9 80.15687 8.938899 10.90423
10 77.33205 9.589652 13.07830

Variance Decomposition of EMI
VADL EMI VADL2

1 0.000000 100.0000 0.000000
2 0.053390 99.94364 0.002970
3 0.212939 99.78069 0.006376
4 0.474414 99.51838 0.007208
5 0.829778 99.16415 0.006068
6 1.270730 98.72226 0.007012
7 1.789329 98.19410 0.016575
8 2.377786 97.57928 0.042930
9 3.028251 96.87651 0.095241
10 3.732675 96.08412 0.183205
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Table 3. Cont.

Variance Decomposition of VADL2
VADL EMI VADL2

1 0.000000 0.000000 100.0000
2 0.163026 0.252150 99.58482
3 0.570995 1.042343 98.38666
4 1.218075 2.367871 96.41405
5 2.082154 4.191653 93.72619
6 3.128474 6.457918 90.41361
7 4.312343 9.097584 86.59007
8 5.582968 12.03307 82.38396
9 6.887412 15.18390 77.92869
10 8.174130 18.47231 73.35356

EMIL denotes CO2e for LDCS, EMIEU denotes CO2e for EU, VAL denotes value added by agriculture for LDCS,
VAEU denotes value added by agriculture, ∆EMIL ∆VAL ∆EMIEU ∆VAEU denotes the first differences.

Based on our findings, the interlinkages among the model variables are validated
also with the FEVD methodology. The agricultural income variability interpretation by
emissions generated by enteric fermentation is increasing, while in the tenth period, it
reaches 20%. On the other hand, the emissions generated by enteric fermentation are
interpreted by agricultural income, with an increasing rate reaching 35% in the tenth period.
As far as the square of agricultural income, it seems to interpret almost half of the emission
variability (only 18%).

Table 4. Forecast Error Variance Decomposition (FEVD) for a ten-time period horizon for EU countries.

Variance Decomposition of EMIEU
EMIEU VAL2EU VALEU

1 70.58440 16.83577 12.57983
2 56.20259 24.17349 19.62392
3 45.97577 28.76420 25.26003
4 44.10802 29.82690 26.06508
5 43.38882 30.48412 26.12706
6 43.71350 30.53114 25.75536
7 45.87152 29.62558 24.50290
8 47.58596 28.92753 23.48652
9 47.82270 28.90423 23.27307

10 48.02201 28.87470 23.10330

Variance Decomposition of VAL2EU
EMIEU VAL2EU VALEU

1 10.75408 45.08675 44.15918
2 6.513600 44.90754 48.57886
3 9.204746 43.22259 47.57267
4 11.61745 42.36195 46.02061
5 8.438216 43.37513 48.18665
6 7.483579 43.48588 49.03054
7 7.900617 43.33397 48.76541
8 7.836282 43.40417 48.75955
9 7.497365 43.45368 49.04895

10 7.536840 43.40093 49.06223
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Table 4. Cont.

Variance Decomposition of VALEU
EMIEU VAL2EU VALEU

1 8.260094 45.39321 46.34670
2 4.768531 44.95771 50.27375
3 6.229328 43.77199 49.99868
4 7.660582 43.32319 49.01622
5 5.564302 43.91868 50.51702
6 4.861758 43.91307 51.22517
7 5.050269 43.83203 51.11771
8 4.949976 43.89664 51.15338
9 4.666852 43.91331 51.41984

10 4.630180 43.88072 51.48910
EMIL denotes CO2e for LDCS, EMIEU denotes CO2e for EU, VAL denotes value added by agriculture for LDCS,
VAEU denotes value added by agriculture, ∆EMIL ∆VAL ∆EMIEU ∆VAEU denotes the first differences.

On the other hand, the FEVD estimation results for the EU countries are synopsized in
Table 4.

The findings for the EU are significantly different since the variability of emissions
generated by enteric fermentation, as well as the agricultural income association, is by far
more significant compares to the LDCs. The specific results do not validate the efficiency of
the agricultural policy in terms of ecoefficiency.

The last but certainly not least step in our analysis involves the model evaluation
performance for the two group of countries with different philosophies and perceptions
of climate change mitigation practices. The results are provided in Tables 5 and 6 for the
LDCs and EU, respectively.

Table 5. B-VAR forecast statistics of the different prior distributions for the model variables for LDCs.

Variable RMSE MAE

VADL 0.007165 0.006070
EMI 0.060794 0.045630

VADL2 0.000318 0.000222
Notes: The table shows one-year ahead and two-year ahead forecasts. RMSE: root mean square error; MAE: Mean
Average Error.

Table 6. B-VAR forecast statistics of the different prior distributions for the model variables for
EU countries.

Variable RMSE MAE

VALEU 0.570113 0.489277
EMIEU 0.186186 0.154723

VALEU2 0.017916 0.013457
Notes: The table shows one-year ahead and two-year ahead forecasts. RMSE: root mean square error; MAE: Mean
Average Error.

A good performance is validated for LDCs as well as or EU the results of which are
provided in the previous tables.

4. Discussion

The present paper aims to identify and quantify the interlinkages of environmental
degradation—economic performance in the agriculture of EU and LDCs.

Our findings in both cases validate the existence of an association, though the pattern
of relationship differs given the different practices and strategies adopted by the two



Agriculture 2024, 14, 2036 12 of 16

different groups of countries. The index used as a proxy for environmental degradation is
emissions generated by enteric fermentation in carbon dioxide emissions equivalent per
1000 hectare of pasture. In addition, as a proxy for agricultural income, we selected the
value added generated by agriculture, as well as the square of the same variable, in order
to define the pattern of their relationship. Starting from the breakpoint ADF unit root test,
all the variables employed in the model for both groups of countries are I(1), and thus
non-stationary in levels and stationary in first differences.

The major findings involve the structural break detection for the variables, that is, 1999
and 2004 for the environmental degradation and agricultural income for the LDCs and 2008
and 2007 of the respective variables for EU. The global food crisis caused by fossil fuels
and the use of fertilizers is reflected in the structural breaks identified for the EU countries,
while, for the LDCs, the year 2004 reflects the efforts initiated to modernize agriculture due
to low productivity, and 1999 is the preliminary period in which the LDCs initiated their
entrance into the United Nations Framework Convention on Climate Change. In addition,
in the year 2001, the LDCs Expert Group (LEG) was established in order to regulate the
adoption of national plans for climate change mitigation.

The small number of data amplified the authors’ decision to adopt the BVAR method-
ology that has validated the variables interlinkages, though the pattern of the relationship
estimated is different. The interlinkages are identified by the impulse response analysis for
the LDCs, which actually does confirm the non-validity of the environmental Kuznets curve
pattern since it increases with the agricultural income and decreases with the square of
agricultural income, a result that is not in line with previous studies [19,21,22]. A potential
interpretation is the countries included in the sample as well as the methodology, that is,
BVAR, which is more reliable, while, according to the authors’ view, the fact that enteric
fermentation is employed as a proxy for environmental degradation is another plausible
explanation. The fact that the relationship initially decreases and then increases demon-
strates the need for the adoption of practices that assist climate change mitigation, such
as the type of feed, the change in the rumen environment, along with breed substitution
and genetic manipulation. The emissions regulation is also related to cost and therefore is
an impediment for the LDCs. More specifically, the improved feed and feed supplements
are difficult to be used by low-income farmers in developing countries. What is more the
production of less emitted feed for livestock may well be restrained due to land and water
scarcity, coupled with inefficient irrigated systems [19,21,50–56].

On the other hand, for the EU-27 case, the previous literature is characterized by
conflicting results. In the present manuscript, an innovation in the value added (as well
as the square of the variable) leads to a decrease in carbon emissions generated by enteric
fermentation, a result that contradicts previous studies [16,17]. There is currently a lack of
focused studies on enteric fermentation specifically within EU countries, leaving limited
evidence to facilitate a well-documented comparison with our findings. Our results,
however, do not fully support the effectiveness of existing agro-environmental policies, as
they fall short of achieving the intended eco-efficiency objectives.

The GHG reduction target for achieving zero-carbon agriculture by 2050 is indeed
highly ambitious, with current reductions falling significantly short of what is necessary.
This underscores the need for policymakers to identify the most polluting agricultural
activities and establish targeted mitigation goals. Effective strategic planning will re-
quire not only the adoption of new initiatives, such as defining specific measures and
updating legal frameworks, but also focused actions in high-emission areas to ensure
substantial reductions.

The same results are confirmed by the Variance Decomposition Analysis, implying
that in LDCs compared to the EU, the climate change mitigation measures taken cannot
maintain the productivity in the case of livestock. This is an expected result given that the
major objective of policymakers for those countries is poverty alleviation and food security,
making it extremely difficult to tackle environmental problems effectively as well.
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5. Conclusions

This study explores the environmental impact of enteric fermentation in livestock
production, alongside the economic value it generates in both the EU and LDCs. The
analysis utilizes a Bayesian Vector Autoregression (BVAR) methodology, which provides
a more robust performance compared to traditional models like Vector Autoregression
(VAR) and the Vector Error-correction Model (VECM). The research identifies significant
relationships between the variables studied, with structural breaks quantified to reflect the
impact of initiatives undertaken in both regions.

Interestingly, the results challenge the environmental Kuznets curve, which hypoth-
esizes an inverted U-shaped relationship between economic growth and environmental
degradation, as proposed by Stern. This suggests that stronger economic incentives may
be necessary to enhance policy effectiveness and promote eco-efficiency. The distinctive
characteristics of livestock production in the EU and LDCs should be carefully considered
when shaping agricultural policies, with a strong emphasis on farmer education as a criti-
cal factor for success. Additionally, corporate management practices must be tailored to
address the unique needs, strengths, and challenges of livestock businesses in these two
diverse regions.

Above all, a significant issue that has to be highlighted here is that the EU’s approach
is more technology-driven, with policies promoting innovative feed additives, precision
farming, and financial incentives to encourage methane reduction. In contrast, LDCs
focus on capacity-building and low-cost practices due to resource constraints. The EU’s
policy measures are likely to yield faster reductions in methane emissions due to advanced
technologies and substantial funding. In LDCs, the impact of policies is slower but crucial
for addressing long-term food security and environmental resilience. Both approaches
highlight the importance of tailoring climate policies to local economic and environmen-
tal contexts, underscoring the diverse pathways required to address global agricultural
emissions effectively.

A key limitation of this study is the small sample size, which influenced the selection of
the BVAR methodology. Future research could address this constraint by employing panel
data analysis, allowing for a deeper exploration of the relationship between economic and
environmental performance. Such an approach would yield a more robust understanding
of the underlying dynamics and potentially offer more generalizable findings. Additionally,
future studies could broaden the scope to include other agricultural emission sources,
such as those from fertilizer use or land use changes, to provide a more comprehensive
assessment of agriculture’s environmental impact across different regions.
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Appendix A

The EU Countries Group
Austria, Belgium, Bulgaria, Croatia, the Republic of Cyprus, the Czech Republic,

Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia,
Lithuania, Luxembourg, Malta, the Netherlands, Poland, Portugal, Romania, Slovakia,
Slovenia, Spain, and Sweden.

https://www.fao.org/faostat/en/#data
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The LDCs Group
Comoros, the Democratic Republic of the Congo, Djibouti, Eritrea, Ethiopia, Ethiopia

PDR, Gambia, Guinea, Guinea-Bissau, Haiti, Kiribati, the Lao People’s Democratic Republic,
Lesotho, Liberia, Madagascar, Malawi, Mali, Mauritania, Mozambique, Myanmar, Nepal,
Niger, Rwanda, Sao Tome and Principe, Senegal, Sierra Leone, Solomon Islands, Somalia,
South Sudan, Sudan, Sudan (former), Timor-Leste, Togo, Tuvalu, Uganda, the United
Republic of Tanzania, Vanuatu, Yemen, and Zambia.
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