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Abstract: Cadmium (Cd) is a highly toxic metal that is difficult to completely eliminate from soil,
despite advancements in modern agricultural and environmental technologies that have successfully
reduced Cd levels. However, rice remains a key source of Cd exposure for humans. Even small
amounts of Cd absorbed by rice can pose a potential health risk to the human body. Laser-induced
breakdown spectroscopy (LIBS) has the advantages of simple sample preparation and fast analysis,
which, combined with the transfer learning method, is expected to realize the real-time and rapid
detection of low-level heavy metals in rice. In this work, 21 groups of naturally matured rice samples
from potentially Cd-contaminated environments were collected. These samples were processed into
rice husk, brown rice, and polished rice groups, and the reference Cd content was measured by
ICP-MS. The XGBoost algorithm, known for its excellent performance in handling high-dimensional
data and nonlinear relationships, was applied to construct both the XGBoost base model and the
XGBoost-based transfer learning model to predict Cd content in brown rice and polished rice. By
pre-training on rice husk source data, the XGBoost-based transfer learning model can learn from
the abundant information available in rice husk to improve Cd quantification in rice grain. For
brown rice, the XGBoost base model achieved RC

2 of 0.9852 and RP
2 of 0.8778, which were improved

to 0.9885 and 0.9743, respectively, with the XGBoost-based transfer learning model. In the case of
polished rice, the base model achieved RC

2 of 0.9838 and RP
2 of 0.8683, while the transfer learning

model enhanced these to 0.9883 and 0.9699, respectively. The results indicate that the transfer learning
method not only improves the detection capability for low Cd content in rice but also provides new
insights for food safety detection.

Keywords: Laser-Induced Breakdown Spectroscopy (LIBS); transfer learning; rice husk; Cd
quantitative analysis; XGBoost

1. Introduction

Rice, the staple food for more than half of the world’s population, is widely cultivated
and consumed over the world [1]. However, rice is also the major cereal crop that absorbs
the most heavy metals [2], making the heavy metal safety of rice of concern among many
researchers. Recent advancements in food safety research and modern agricultural and
environmental monitoring technologies have reduced the incidence of rice exceeding
permitted heavy metal limits. Despite these improvements, heavy metal pollution in soil is
difficult to completely eradicate [3], which means that rice may still be subject to different
levels of contamination. Heavy metals are characterized by slow metabolism in the human
body. Taking the heavy metal Cd as an example, its biological half-life is typically 16
to 30 years, and it tends to accumulate in the liver, kidneys, and bones [4]. Long-term
consumption of rice with heavy metals, even at minimal exposure level, can still pose
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potential health risks [5]. Therefore, detection of such rice with low levels of heavy metals
becomes critical.

Among the various methods of heavy metals detection in rice, traditional techniques
are often time-consuming, require chemical reagents, and have certain environmental
impacts [6]. Spectroscopic techniques are widely employed in detection and analysis due
to their non-polluting characteristics. There are numerous spectroscopic detection methods,
including Raman spectroscopy, near-infrared spectroscopy (NIRS), and hyperspectral
imaging (HSI), among others. However, each of these methods has its limitations when it
comes to the detection of heavy metals. In the case of Raman, fluorescence background
interference during detection interferes with the accurate detection of heavy metals [7].
NIR primarily relies on analyzing vibrational information to infer the composition of
the sample, which is not particularly effective for the direct detection of heavy metal
elements [8]. Similarly, the spectral characteristics of HSI do not distinctly highlight the
content of heavy metal elements [9]. In contrast, laser-induced breakdown spectroscopy
(LIBS) generates plasma by striking the surface of a sample with a high-energy laser pulse.
The spectral characteristics are then analyzed to determine the elemental composition of
the sample. It is applied in industrial [10], food [11], and biological fields [12] due to its
rapid, environmentally friendly, and multi-element simultaneous detection capabilities [13],
which are sensitive to heavy metals.

However, owing to the complex matrix of rice, and the relatively low content of
heavy metals compared to other mineral elements, LIBS often suffers from poor accuracy
when detecting heavy metals in rice. To solve this problem, Yang et al. [14] employed
an ultrasonic-assisted extraction method for pretreatment of rice, which enhanced the
rapid detection capability of LIBS for heavy metals in rice. Fu et al. [15], based on the
interaction between mineral elements and heavy metals in rice, used the spectral data of
mineral elements and heavy metals as model inputs, thereby improving the quantitative
analysis capability for heavy metals in rice. Although these methods have improved
the accuracy of LIBS for detecting heavy metals in rice, the sample pretreatment process
increases experimental complexity. Moreover, while using the interaction between mineral
elements and heavy metals, manually selecting relevant mineral elements is laborious and
time-consuming.

In the field of machine learning, transfer learning is a method that enhances model per-
formance in the target domain by leveraging knowledge learned from the source domain. It
is characterized by its ability to solve data scarcity issues, improve model performance, and
reduce training time and costs [16]. In spectral detection, transfer learning is effective for
analyzing complex agricultural products. For instance, in tobacco analysis, Shen et al. [17]
utilized transfer learning to analyze tobacco leaf spectral data collected from different
NIRS machines, mitigating the need for re-detecting samples due to environmental and
instrumental variations. Moreover, transfer learning is advantageous for handling variable
agricultural products and limited data. Suarin et al. [18] applied transfer learning to honey
produced in April, June, and August, finding the June-to-August model to be the most
robust. Post transfer learning, the RMSEP decreased from 5.128% to 3.401%, significantly
improving NIRS performance in honey quality analysis. Transfer learning also excels in
enhancing analytical performance. Lin et al. [19] combined LIBS and transfer learning to
identify the origins of rice, millet, and oats from five Chinese regions. The average classi-
fication accuracy was 88%, with the millet-to-oats model achieving the highest accuracy
at 93.81%. The effectiveness of transfer learning in spectral analysis, as demonstrated in
studies across various agricultural products and complex analytical tasks, highlights its
potential for improving model performance in diverse applications.

In the context of rice analysis, this potential is promising. The data from the source
and target domains in transfer learning should exhibit similar feature distributions, and
the training tasks should be related. Rice husk, brown rice, and polished rice share similar
biochemical properties and heavy metal accumulation patterns [20]. This similarity helps
reduce data bias and improve model generalization, providing a foundation for transfer
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learning. Moreover, the unique characteristics of rice husk further support its suitability
as a source domain for transfer learning. Unlike brown rice and polished rice, which
undergo additional milling processes, rice husks are obtained directly through hulling and
retain their complete structure. Additionally, rice husk, being the largest by-product of rice
processing, is readily available, inexpensive, and abundant [21]. These advantages make
rice husk an ideal source domain for transfer learning in rice analysis.

Building on these advantages, integrating eXtreme Gradient Boosting (XGBoost) with
transfer learning offers a powerful enhancement to this process, compared to traditional
machine learning algorithms such as Support Vector Machines (SVM), Logistic Regression
(LR), and Random Forests (RF). XGBoost is an ensemble learning algorithm based on
gradient boosting decision trees which offers rapid training and efficient computational
performance, excelling in regression tasks [22]. It is widely applied in industry [23],
medical diagnostics [24], and environmental assays [25], and has also shown progress in
spectroscopy. For instance, to accurately predict arsenic (As) levels in soil by hyperspectral
technology, Ye et al. [8] integrated Geographically Weighted Regression (GWR) with the
XGBoost algorithm. The model achieved a prediction accuracy of 90%, establishing a
great correlation between spectra and concentration. Similarly, Zeng et al. [26] integrated
Raman spectroscopy with XGBoost and GBDT models to detect and analyze the novel
coronavirus (SARS-CoV-2), where XGBoost demonstrated superior robustness. When
combined with the SVM-REF algorithm, the model achieved an analysis accuracy of 93.55%.
Furthermore, XGBoost has also been applied in transfer learning: Gao et al. [22] used
Raman spectroscopy to detect lignin in cedar wood, comparing the quantitative analysis
of XGBoost, LightGBM, and CatBoost models with and without transfer learning. The
results showed improved performance for all models post transfer learning, where XGBoost
showed more stability and accuracy. These studies demonstrate that XGBoost is robust in
spectral analysis and advantageous in transfer learning applications. XGBoost’s efficient
computational capabilities and ability to manage large and complex datasets might enhance
the performance of LIBS in identifying trace heavy metals in rice.

In this work, based on the rich data from rice husks, we constructed an XGBoost-based
transfer learning model, then compared the performance of the XGBoost base model with
the XGBoost-based transfer learning model. The coefficients of determination (R2) and root
mean square error (RMSE) were used for quantitative analysis of Cd in brown rice and
polished rice as the evaluation indexes. Thus, we explored the potential of transfer learning
in LIBS analysis of low-content heavy metals in rice.

2. Materials and Methods
2.1. Experimental Setup

The LIBS experimental setup is shown in Figure 1. A Q-switched Nd:YAG laser
(Beamtech, Vlite 200, Beijing, China) with an emission wavelength of 1064 nm, frequency
of 2 Hz, and pulse duration of 8 ns serves as the laser source. The laser energy, measured
by a laser energy meter (National Institute of Metrology E-1000, Beijing, China), is 170 mJ.
The laser first passes through a 45◦ mirror and is then focused on the sample surface
using a focusing lens. The plasma signal generated by the laser is collected by an optical
fiber and transmitted to a spectrometer (Avantes, AvaSpec-2048FT-8R, Apeldoorn, The
Netherlands) with a wavelength range of 200–1050 nm. The spectrometer converts the
signal and transmits it to a computer. To prevent plasma instability caused by repeated laser
ablation at the same sample location, the sample is placed on a two-dimensional rotating
platform (Zolix, SC300-1A, Beijing, China). The timing between the spectrometer and the
laser is controlled by a DG645 delay generator (Stanford Research Systems, Sunnyvale,
CA, USA).
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Figure 1. Schematic diagram of LIBS experimental setup.

2.2. Sample Preparation and Data Preprocessing

In order to take sufficient account of the geographic variability of Cd contamination,
samples for this work were collected from 21 planting areas. The collected rice was dried,
hulled, milled, and polished to produce samples of rice husk, brown rice, and polished
rice. To minimize the impact of heterogeneous elemental distribution on detection results,
physical preparation methods were applied to rice samples [27]. The prepared samples
were crushed, passed through a 100-mesh sieve, and pressed into pellets with a diameter
of 25 mm and a weight of 3 g. Three replicates were prepared for each sample, and
45 spectra were collected for each pellet. Following the Chinese national standard “GB/T
35876-2018” [28], ICP-MS was used to measure the concentration of heavy metal Cd in rice
husks, brown rice, and polished rice from 21 planting areas. The reference contents are
shown in Table 1. The results indicated that most brown rice and polished rice samples had
low heavy metal content, although #21 rice sample and #19, #20 and #21 rice husk samples
exceeded the maximum limit of 0.2 mg/kg stipulated in the Chinese national standard
“GB 2762-2017” [29]. Based on the Target Hazard Quotient (THQ) standard, Cd has a THQ
value of 0.1 mg/kg [30]. THQ is an indicator used to assess the health risks associated
with long-term exposure to specific pollutants. When the THQ value exceeds 1, it indicates
more health risks. For Cd, a THQ value of 0.1 mg/kg implies that long-term intake of
cadmium at this concentration does not pose significant health risks. Therefore, defining
rice samples with Cd content below 0.1 mg/kg as low Cd rice samples is based on this
health risk assessment standard.

Table 1. Reference Cd content of rice by the ICP-MS method (mg/kg).

Sample Rice Husk Brown Rice Polished Rice

#1 0.0118 0.0132 0.0127
#2 0.0122 0.0093 0.0096
#3 0.0206 0.0338 0.0298
#4 0.0238 0.0248 0.0249
#5 0.0268 0.0260 0.0288
#6 0.0287 0.0298 0.0293
#7 0.0326 0.0378 0.0383
#8 0.0496 0.0678 0.0630
#9 0.0614 0.0395 0.0412

#10 0.0670 0.0729 0.0730
#11 0.0776 0.0848 0.0823
#12 0.0804 0.0888 0.0890
#13 0.0822 0.0790 0.0788
#14 0.0910 0.0976 0.0938
#15 0.1180 0.1230 0.1240
#16 0.1230 0.0822 0.0692
#17 0.1240 0.1520 0.1430
#18 0.1890 0.1630 0.1560
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Table 1. Cont.

Sample Rice Husk Brown Rice Polished Rice

#19 0.2400 0.1660 0.1470
#20 0.2480 0.1860 0.1900
#21 0.2900 0.2000 0.2000

To enhance the quality of LIBS spectral data, the spectra are usually preprocessed.
This work combines the Standard Normal Variate (SNV) and Moving Average (MA) pre-
processing methods to mitigate drift and noise in the spectral data [31]. The source domain
dataset was randomly divided into training, validation, and prediction sets in a 3:1:1 ratio,
ensuring that most data is used for model training while retaining some for validation and
testing to maintain the model’s generalization. Meanwhile, the target domain dataset is
divided into training, validation, and prediction sets in a 1:2:2 ratio, allocating more data
for validation and testing. The XGBoost base model’s dataset was randomly divided into
training, validation, and prediction sets in a 3:1:1 ratio.

2.3. Transfer Learning Based on XGBoost

In the field of transfer learning, both deep learning algorithms and machine learning
algorithms have been effectively utilized. Deep learning algorithms typically excel with
large-scale datasets, but this study involves a relatively small dataset. Consequently, ma-
chine learning algorithms were chosen to build the transfer learning model. This helps
to conserve computational resources and time. XGBoost, an ensemble learning algorithm
based on gradient-boosting decision trees, is ideal for LIBS data analysis due to its efficiency
and accuracy in handling high-dimensional data [32]. The construction process of XGBoost
is shown in Figure 2. XGBoost evaluates the importance of spectral features by calcu-
lating the Gain, automatically selecting the most relevant spectral features that are most
helpful for Cd quantitative analysis to construct the learning tree [33]. Unlike traditional
decision tree algorithms that construct the entire tree at once, XGBoost builds each tree
incrementally by correcting the errors of the previous tree. This step-by-step tree-building
process allows the model to continuously adjust and optimize, enhancing its adaptation to
data characteristics.
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Figure 2. Schematic of the XGBoost structure used for modeling.

Although XGBoost is efficient and accurate, in practical applications, it often requires
a large amount of data and computational resources and time to build models directly with
XGBoost [34]. Transfer learning can improve the performance of new tasks by utilizing
existing knowledge, and reducing the need for extensive data. Therefore, the XGBoost-
based transfer learning method can be an ideal choice. This method realizes knowledge
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transfer by sharing parameters or prior distributions between the source and target do-
mains, to improve the prediction ability of target domains. The schematic diagram of
XGBoost transfer learning is shown in Figure 3. Rice husk was selected as the source
domain for the transfer learning model due to its rich spectral information, low cost, wide
availability, and the shared growing environment with brown and polished rice. The
pre-training phase involved learning the elemental features related to Cd contamination
in rice husk and constructing a pre-training model. This model was then transferred to
brown or polished rice, where it conducted further training based on the spectral data from
rice grains. During this phase, parameter fine-tuning was performed to adapt to the spe-
cific characteristics of the samples in the target domain. The final model constructed is an
XGBoost-based transfer learning model. Furthermore, the step-by-step optimization feature
of XGBoost is better suited for transfer learning, allowing the model to fit the data distri-
bution of brown rice and polished rice during fine-tuning, thereby enhancing the model’s
generalization ability.
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Additionally, the grid search method is used to automatically return the optimal
parameter set after evaluating all parameter combinations. The hyperparameter settings
for the XGBoost-based transfer learning model are detailed in Table 2. The hyperparameter
n_estimators represents the number of trees to be trained; an appropriate number of
trees ensures the model has enough complexity to capture data features. The max_depth
stands for the maximum depth of each tree; in the case of more noise, a shallower depth
can prevent the model from overfitting. The gamma controls the flexibility of splitting
nodes, and lower gamma value allows the model to capture more feature details. The
learning_rate balances the learning speed and stability of the model. Hyperparameter
values are determined via grid search, eliminating biases from subjective selection and
ensuring optimal model performance.

Table 2. Hyperparameters of XGBoost-based transfer learning models.

Hyperparameterization Experimental Value Range

n_estimators 200 100–300
max_depth 3 3–5

gamma 0.001 0–0.01
learning_rate 0.1 0–0.2

3. Conclusions and Analysis
3.1. LIBS Spectral Analysis of Rice Husk, Brown Rice and Polished Rice

Taking the spectrogram of #19 sample as an example, the LIBS spectra of rice husk,
brown rice, and polished rice from the same rice sample are compared in Figure 4. The
analysis reveals that the main excited mineral elements are Mn I 279.827, Mn I 280.108,
Mg I 517.268, Mg I 518.360, Na I 588.995, Na I 589.592, Si I 615.51, Ca II 393.366, Ca II
396.847, K I 766.490, and K I 769.90. The spectral intensities of elements vary significantly
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among rice husk, brown rice, and polished rice. Mn is predominantly found in the bran
layer and endosperm [35], while rice husk is mainly composed of cellulose and contains
a large amount of Si [36]. The spectral intensity of Mn in brown rice and polished rice is
significantly higher than in rice husk, while the Si spectral line intensity is highest in rice
husk. The spectral trends correlate with the elemental composition of the rice.
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Due to the relatively low content of Cd in rice compared to other mineral elements, the
intensity of the Cd spectral line in the spectrum is also weak. Referring to the analysis by Su
et al. and Fu et al. [30,37], Cd I 643.847 was selected as the target for analysis. The complex
matrix effect of agricultural products often results in poor accuracy for LIBS quantitative
analysis of low Cd content in rice. XGBoost leverages its powerful learning capabilities and
flexible feature processing to effectively uncover the complex relationships between Cd
content and other variables.

This work utilizes Gain for automatic feature extraction learning by XGBoost, and to
build the XGBoost base model and XGBoost-based transfer learning model. Visualizing
the XGBoost decision tree showed that the first tree constructed by XGBoost uses the Si
and Na spectral feature as one of the splitting points for learning. What is more, research
by Fu et al. [30] has demonstrated that Si, Na and other mineral elements respond to Cd
stress. It can be observed that the features extracted by XGBoost have a certain intrinsic
connection with Cd. The transfer learning model also compensates for the lack of spectral
information in rice grains by learning the spectral characteristics of elements such as Si
and Na in rice husk. While Figure 4 shows that the spectral intensities of most spectral
lines were higher in rice husk than in brown and polished rice, the spectral intensities of
Mn and Ca were lower compared to those in brown and polished rice. Despite this, these
elements interact with Cd and were successfully feature-extracted and learned by the pre-
training model. During the transfer learning process, an important parameter fine-tuning
phase allows for further in-depth learning of Mn and Ca, ensuring that the final prediction
model can adapt to the specific characteristics of brown and polished rice samples. This
process of knowledge transfer and parameter fine-tuning significantly enhances the model’s
generalization ability.

3.2. XGBoost Base Model and XGBoost-Based Transfer Learning Model for Quantitative Analysis
of Cd in Rice

The rice husk, brown rice, and polished rice share the same environmental conditions
during growth, establishing an intrinsic connection among them. The rice husk, serving
as the outer protective layer of the grain, contains various mineral elements and organic
compounds. For example, Si is one of the components of rice husk, whereas the Si content
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gradually decreases in brown rice and polished rice. This intrinsic connection between the
rice husk and the inner grain provides a foundation for transfer learning.

Figure 5a shows the fitting curve of the XGBoost base model predicting Cd content
in brown rice, while Figure 5b presents the prediction of the XGBoost-based transfer
learning model. For the XGBoost base model of brown rice, the RP

2 is 0.8778, which
improves to 0.9743 after transfer learning, and the RMSEP decreases from 0.0129 mg/kg to
0.0039 mg/kg, demonstrating that the transfer learning method significantly enhances the
model’s prediction performance. This improvement is attributed to the rice husk providing
rich elemental characteristic information for the XGBoost-based transfer learning model.
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Figure 5. Analytical curve of Cd content in brown rice. (a) XGBoost base model; (b) XGBoost-based
transfer learning model.

Due to the Cd content in brown rice being relatively low, the XGBoost base model
exhibits a large error in predicting Cd levels. In Figure 5a, the prediction set data points
are scattered, whereas in Figure 5b, the data points are more concentrated, particularly
for samples with lower Cd content. Additionally, the XGBoost-based transfer learning
model exhibits higher consistency and better generalization between the prediction and
training sets. This demonstrates that pre-training on rice husk domain data can reduce
overfitting risks on target domain data while enhancing prediction accuracy. Furthermore,
rice husk is a major by-product of rice processing, which is abundant and inexpensive. Its
wide availability and low cost make rice husk a feasible option for practical applications
in transfer learning. Utilizing rice husk for spectral data analysis can significantly reduce
experimental costs and make efficient use of agricultural waste.

To assess the performance of the XGBoost-based transfer learning model on differ-
ent but related datasets, the rice husk model was transferred to polished rice to verify
the effectiveness of transfer learning in various rice applications. Figure 6a shows the
prediction results of the XGBoost base model using the spectrum data of polished rice.
The direct application of XGBoost led to a scattered data distribution and poor prediction
accuracy. Similar to the XGBoost base model constructed with brown rice data, lower
Cd content led to more scattered prediction points. After applying transfer learning
with rice husk data, the model’s fit improved significantly: as shown in Figure 6b, the
RP

2 increased from 0.8683 to 0.9699, and the RMSEP decreased from 0.0154 mg/kg to
0.0041 mg/kg. This demonstrates that the XGBoost-based transfer learning model per-
forms well on both brown rice and polished rice datasets. By calculating the RMSEP for
samples with lower Cd content (below 0.1 mg/kg), the RMSEP of polished rice was reduced
from 0.0019 mg/kg to 0.0005 mg/kg after transfer learning, while that of brown rice was
reduced from 0.0021 mg/kg to 0.0005 mg/kg. Transfer learning significantly improved the
predictive accuracy of the model, especially for low Cd content in rice.
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Figure 6. Analytical curve of Cd content in polished rice. (a) XGBoost base model; (b) XGBoost-based
transfer learning model.

Compared to the XGBoost base model, the XGBoost-based transfer learning model
pre-trained on rice husk data effectively learns more characteristic information of Cd and
related elements. This approach enhances the model’s overall performance, even when the
spectral intensity of Cd is weaker than that of other mineral elements. Table 3 presents a
comparison between the prediction results of the XGBoost base model and the XGBoost-
based transfer learning model. The transfer learning model shows 10.99% improvement
in RP

2 for brown rice and 11.70% for polished rice, along with a significant reduction in
RMSEP. Thus, the transfer learning method improved the prediction of Cd content in
brown rice and polished rice.

Table 3. Comparison of XGBoost predictions without and with migration learning.

Target Domains RP
2 RMSEP (mg/kg)

Brown rice
XGBoost base model 0.8778 0.0129

XGBoost-based transfer learning model 0.9743 0.0039
Variations 10.99% −69.77%

Polished rice
XGBoost base model 0.8683 0.0154

XGBoost-based transfer learning model 0.9699 0.0041
Variations 11.7% −73.37%

4. Conclusions

This work compared an XGBoost base model with an XGBoost-based transfer learning
model using LIBS spectral data from rice husk, brown rice, and polished rice. The results
indicate that the XGBoost-based transfer learning model significantly enhanced the pre-
diction ability of Cd content in rice, particularly for low Cd content in rice, compared to
the XGBoost base model directly using spectrum data from brown rice and polished rice.
The inherent correlation between rice husk and rice grain allows the model to leverage
the rich elemental information in the rice husk, improving performance in the rice grain
target domain. The XGBoost-based transfer learning model achieved RP

2 of 0.9743 for
brown rice, a 10.99% improvement over the XGBoost base model, and RP

2 of 0.9699 for
polished rice, an 11.70% increase. This approach enhanced predictive accuracy and reduced
overfitting risk.

Furthermore, the XGBoost-based transfer learning model offers a novel method for
predicting heavy metal content in rice and provides new insights for rice quality and
safety assessment.
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