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Abstract: This study presents the design and implementation of a wire-driven, multi-joint robotic
arm equipped with a cutting and gripping mechanism for harvesting delicate strawberries, with the
goal of reducing labor and costs. The arm is mounted on a lifting mechanism and linked to a laterally
movable module, which is affixed to the tube cultivation shelf. The trained deep learning model can
instantly detect strawberries, identify optimal picking points, and estimate the contour area of fruit
while the mobile platform is in motion. A two-stage fuzzy logic control (2s-FLC) method is employed
to adjust the length of the arm and bending angle, enabling the end of the arm to approach the fruit
picking position. The experimental results indicate a 90% accuracy in fruit detection, an 82% success
rate in harvesting, and an average picking time of 6.5 s per strawberry, reduced to 5 s without arm
recovery time. The performance of the proposed system in harvesting strawberries of different sizes
under varying lighting conditions is also statistically analyzed and evaluated in this paper.

Keywords: fruit picking robot; deep learning; visual servoing; fuzzy logic control; hydroponic
greenhouse

1. Introduction

Farmers are increasingly adopting automated agricultural machinery to improve pro-
duction efficiency in response to challenges such as unstable crop yields caused by extreme
weather, labor shortages, and shrinking available farmland. In recent years, advancements
in high-speed computing have matured, and the application of artificial intelligence (AI) in
agriculture is now seen as a key future trend. AI has the potential to reduce crop production
costs, minimize labor requirements, and even replace manual labor. Notably, mobile auto-
mated handling machines and robotic arms integrated with computer vision systems are
widely used for highly repetitive tasks like grasping, moving, and placing objects [1]. Un-
like industrial robots that function with minimal external interference, agricultural robots
must adapt to dynamic outdoor environments to perform tasks such as leaf pruning [2,3],
sowing [4], pollination [5], fruit picking [6–10], and transplanting [11]. These rigid robots
can withstand higher loads, and their arms are typically designed with multiple axes to
enhance workspace flexibility [5]. Some even use dual-arm setups to perform more complex
tasks [12]. However, such robots require numerous sensors and actuators, often relying
on a ground vehicle for movement to execute tasks. Due to the complexity of positioning
control, operations such as pruning, pollination, picking, stem cutting, or fruit suction for
individual plants tend to be time-consuming. Although two-degree-of-freedom four-bar
robots have been proposed to quickly grasp and place seedling pots on conveyor belts,
completing each cycle in approximately 2.25 s on average [11], low-degree-of-freedom
mechanisms are more suited for simple transplanting operations. For more complex tasks,
like fruit picking, an appropriate control method is essential. Additionally, pneumatic cylin-
ders, suction cups, or soft materials are often used for handling or transporting seedlings.
However, for delicate seedlings or mature fruits, improper contact forces can easily cause
damage.
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A soft arm composed of bio-inspired materials uses fewer actuators to achieve a high
degree of freedom [13]. It provides a high degree of flexibility and can be controlled through
various methods, including hydro-pneumatic pressure, wire drives, temperature variations,
air pressure, and electrorheological or magnetorheological techniques [14–17]. These
control methods help reduce operation time and enhance positioning accuracy [10,18,19].

Hofer et al. [20] introduced a spherical soft robotic arm made of fabric, incorporating
a spherical pneumatic joint between two arms. The joint is actuated by three actuators,
providing two degrees of freedom, and the study analyzes how pressure adjustments in
the actuators affect positioning accuracy under different stiffness conditions. Sparrman
et al. [16] developed a pneumatic soft robotic arm using silicone, with molds created by 3D
printing. The arm comprises hollow silicone wave tubes, where the silicone composition
was adjusted to balance rigidity and flexibility, producing an optimal arm that is strong
enough to maintain shape, flexible enough to expand and contract, and durable enough
to withstand repeated inflation cycles. However, due to the arm’s complex structure and
highly nonlinear motion, precise positioning and control remain challenging.

On the other hand, for the robotic arm to operate effectively in environments with
heavier loads, its material structure must be strengthened. This can be achieved by con-
necting multiple rigid joints in series to increase its load capacity. When combined with the
wire-driven method, the system mimics the contraction of natural tendons. Adding springs
or other damping components to support the arm and isolating the drive mechanism from
the arm itself can effectively reduce both the size and weight, offering the advantages of
a quick response and low latency [21]. Li et al. [22] presented a wire-driven, bio-inspired,
multi-jointed robot modeled after the structure and movement of snake-like and contin-
uum robots. Multiple joints replicated the skeleton of a snake, while wire-driven systems
imitated the muscles of an octopus’s foot. Flexible hoses were inserted into the joints to dis-
tribute stress evenly during bending, resulting in smoother movements. This wire-driven
approach requires only two to three motors to enable bending in a snake-like robotic arm.
Compared to link-based arms, this structure offers significantly higher fault tolerance; even
with minor component failures, the system can maintain correct operation [23]. Integrating
cable-driven robotic arms of varying sizes can further expand the overall workspace [24].
However, due to the complex movement structure of the arm, accurately estimating and
controlling its spatial position remains a considerable challenge [20].

The design of end effectors used in fruit picking directly affects the control meth-
ods that follow [25,26]. Common types include gripper claw picking [27], scissor-type
cutting [28], and suction [10]. Fan et al. [19] developed a three-fingered rubber gripper,
investigating various apple picking methods and comparing the resulting surface damage
on the apples. Zhang et al. [10] proposed a vacuum-based apple picking system, where a
soft silicone structure conforms closely to the fruit surface to maximize suction efficiency.
However, excessive separation force can exert undue strain on the branches, increasing the
risk of detaching neighboring fruits. These methods are unsuitable for harvesting delicate
fruits like strawberries. Although de Preter et al. [18] improved gripper materials to fully
enclose strawberries and reduce surface damage, the picking mechanism still applies a
gentle pull and rotational force to separate the calyx, stem, and fruit. In practice, farmers
prefer to retain the calyx to minimize the risk of contamination during washing, which
remains challenging for current robotic harvesting solutions.

For more fragile fruits like strawberries, a scissor mechanism is designed to cut the fruit
stem, while a clamp holds the fruit until the arm reaches the target container, preventing
damage to the surface of the strawberry. However, accurately identifying the pedicel
cutting point and achieving precise visual positioning control for the robotic arm remains a
significant challenge [29].

Machine vision systems are frequently used to assess the state of objects, including
their appearance, location, presence of disease, or ripeness. Typically, one or more cameras
capture multiple images [30–32], which are then fed into recognition systems to detect
target objects and their positions within the image.
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Among the diverse object detection methods, image processing and learning-based
techniques are the most widely used. Hayashi et al. [33] proposed an image processing
method that converts the RGB color space to the hue–saturation–intensity (HSI) color space,
allowing the system to determine strawberry ripeness and locate the stem position in the
image, achieving a 60% success rate in detecting the target stem. Ge et al. [34] utilized
Mask R-CNN along with a refinement method to identify strawberries of varying ripeness,
achieving an F1-score of 0.94 for mature strawberries. Sun et al. [35] further integrated
a deep learning model with active sensing to detect and locate strawberries. However,
as the number of target categories increases, the recognition time also rises, requiring
substantial computational resources for real-time picking applications. Although Perez-
Borrero et al. [36] developed a strawberry instance segmentation method based on a fully
convolutional neural network to improve real-time performance, low accuracy remains a
limiting factor, reducing the overall effectiveness of robotic picking.

Utilizing the real-time capabilities and reduced reliance on large datasets of the YOLO
(You Only Look Once) architecture, several enhanced methods have proven effective in
detecting fruits and their 2D spatial positions [37,38] or in locating stem positions [39].
Furthermore, technologies such as LiDAR, stereo vision, and depth cameras are employed
to measure the depth distance of fruits from specific viewpoints [9,40,41], enabling a precise
determination of their 3D spatial coordinates. By incorporating additional information on
fruit size, scale, and orientation, the 3D position of the stem can be accurately estimated.
These data, combined with the robotic arm’s kinematic parameters, allow the system to
calculate the optimal approach angle and joint movements for effective fruit grasping [40].
Finally, the drive system directs the robotic arm to the target position, enabling it to perform
tasks such as spraying or fruit harvesting.

Manually annotating large amounts of data to train recognition models has proven
effective in handling complex orchard environments, including variable lighting and fruit
diversity (in terms of color, size, and shape). However, most of the existing literature focuses
on fruit object recognition in changing environments [42], with little discussion on the
performance of robotic arm positioning control. In the application of robotic gripping and
control, the arm often requires assistance from contact-based sensors, such as tactile sensors,
force sensors, and bending sensors, to perform the operations effectively [43,44]. Fuzzy logic
is commonly used to address control issues in uncertain and dynamic conditions within
complex scenarios. Originally proposed by Zadeh [45], fuzzy logic is widely applied for
precise motor control in agricultural functions such as plowing, sowing, watering, pesticide
spraying, and temperature monitoring [46,47]. In 2015, Dimeas et al. [27] developed a
fuzzy controller-based gripper with a pressure sensor to adjust grasping force and detect
uneven force distribution. This method is often combined with other intelligent control
approaches, such as neural networks [48,49]. Subsequently, joint parameters, sensor values,
and joint angle variations in the robotic arm are used to build a knowledge base or train
the network model. The end effector is driven to the target position through a vision-based
servo system and the aforementioned intelligent control methods. However, the picking
process still requires considerable time, leaving room for improvement in real-time fruit
picking efficiency.

This study presents a precise and stable strawberry picking system designed specifi-
cally for handling delicate fruits, overcoming the limitations of existing methods. Unlike the
robotic arm joint design in [50], the arm in this study employs multiple ball joints in series,
mimicking muscle contractions observed in snake-like movements. This configuration
offers enhanced operational flexibility in irregular or variable agricultural environments,
surpassing traditional designs that rely solely on rigid structures. Additionally, a two-
stage fuzzy logic control system (2s-FLC) is used to precisely control the length of arm
and bending angle, significantly improving picking accuracy and simplifying the control
complexity compared to conventional systems. Furthermore, unlike traditional gripping
or suction-based approaches, the end effector in this system is designed to cut and hold
the strawberry stem by clamping only at the stem and base, avoiding direct contact with
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the fruit surface. This design effectively minimizes the risk of damage to fragile fruits like
strawberries and is rarely seen in the current literature.

This paper is organized as follows: Section 2 outlines the methodology for establishing
the fruit picking platform and the process of picking fruits, covering the kinematics of the
robot arm, the design of the multi-joint arms and grippers, the fruit picking platform, and
the vision-based position control method for the robotic arm. Sections 3 and 4 present the
experimental results and discussion. The Section 5 provides the conclusion of the paper.

2. Methodology

This chapter discusses the kinematics of the multi-joint arm, the design and devel-
opment of the arm and clamps, an outline of the parts of the picking platform, and the
position control method for fruit picking. It also details the 2s-FLC method for regulating
the motion of robotic arm.

2.1. Motion Model

The robotic arm proposed in this study is composed of multiple joint elements con-
nected in series. The Y-axis swinging motion of the three-joint arm in the 2D plane is illus-
trated in Figure 1. Assuming the length of each joint is represented as ln (n = 1, 2, . . . , N),
N represents the number of joints, and the link length between each joint is equal, with
l1 = l2 = . . . = l cm, and the total length of the joint arm is lN. The initial posture of the
arm is vertical to the ground. When the arm bends, assuming the bending angle between
each joint is equal, θ1 = θ2 = . . . = θN = θ, the total bending angle is θTotal= Nθ. When
the displacement at each joint is equal, ∆1 = ∆2 = . . . = ∆N = ∆, the total displacement
is l= N∆. In the 2D plane, assuming the origin of the arm is at coordinate p0(y0, z0), the
coordinates of the n-th joint point pn(yn, zn) when the arm bends are as follows.

yn = y0 +
n

∑
k=1

l sin(k− 1)θ (1)

zn = z0 − l −
n

∑
k=1

l cos(k− 1)θ (2)
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Figure 1. Schematic of joint arm swing (the black dotted line indicates the trajectory of the arm
swing).

In this study, the robotic arm can be considered a multi-link structure utilizing spherical
joints. The total degrees of freedom of the arm can be calculated using the Chebychev–
Grübler–Kutzbach criterion as follows:

F = 6(N − 1− b)−
b

∑
j=1

f j (3)

where b represents the number of joints, and f j is the number of constrained degrees of
freedom for the j-th joint. For spherical joints, each joint constrains 3 degrees of freedom,
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allowing 3 rotational degrees of freedom. For example, in a three-link mechanism (with
N = 4 links, including the base) with b = 3 spherical joints, the total degrees of freedom is
9, where f j= 3 for each joint j = 1, 2, 3.

2.2. Mechanism and Harvesting Platform
2.2.1. Robot Arm

Several joint components are connected in series to form an arm (Figure 2), which
is made up of four tapered spherical components printed using a 3D printer. The sphere
of each joint is inserted into the spherical recess on the neighboring joint, allowing it to
rotate freely. The root joint of the arm is a level base (upper left in Figure 2), designed for
attachment to the motor bracket. Small holes are drilled at the four outer corners of each
tapered component, through which four thin wires are threaded. These wires are fastened
at the four corners of the terminal joint (bottom left in Figure 2). When the wires are pulled,
the arm swings.

Agriculture 2024, 14, x FOR PEER REVIEW 5 of 22 
 

 

In this study, the robotic arm can be considered a multi-link structure utilizing spher-
ical joints. The total degrees of freedom of the arm can be calculated using the Chebychev–
Grübler–Kutzbach criterion as follows: 

1
6

b

j
j

F = N b f( 1 )
=

− − −  (3)

where b  represents the number of joints, and jf  is the number of constrained degrees 
of freedom for the j-th joint. For spherical joints, each joint constrains 3 degrees of freedom, 
allowing 3 rotational degrees of freedom. For example, in a three-link mechanism (with 
N  = 4 links, including the base) with b 3=  spherical joints, the total degrees of freedom 
is 9, where = 3 jf  for each joint j = 1, 2, 3. 

2.2. Mechanism and Harvesting Platform 
2.2.1. Robot Arm 

Several joint components are connected in series to form an arm (Figure 2), which is 
made up of four tapered spherical components printed using a 3D printer. The sphere of 
each joint is inserted into the spherical recess on the neighboring joint, allowing it to rotate 
freely. The root joint of the arm is a level base (upper left in Figure 2), designed for attach-
ment to the motor bracket. Small holes are drilled at the four outer corners of each tapered 
component, through which four thin wires are threaded. These wires are fastened at the 
four corners of the terminal joint (bottom left in Figure 2). When the wires are pulled, the 
arm swings. 

Additionally, after the joint components are connected in series, a plastic hose is in-
serted inside the arm (right in Figure 2), ensuring smoother motion during swinging. A 
thin wire is threaded through the hose, with its end secured to the gripping mechanism 
at the end of the arm. The driving mechanism adjusts the tension on the wire to open or 
close the gripping mechanism. 

 
Figure 2. Structure of the multi-jointed robotic arm (center); base of the arm (top left) and end joint 
(bottom left); internal hoses and thin wires within the arm (right). 

2.2.2. Clamping and Cutting 
Two sets of clamping and cutting tools are designed and mounted on the upper and 

lower sides of the endpoint of arm. This design allows the arm to pick strawberries on the 
left and right cultivation tubes without needing to rotate, enabling rapid fruit picking. The 
design concept of the cutter is inspired by the structure of scissors and consists of two 
blades. Each blade consists of a three-layer structure—top, middle, and bottom (see Figure 
3a)—all made of acrylic material. The middle layer contains a trapezoidal groove to hold 
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(bottom left); internal hoses and thin wires within the arm (right).

Additionally, after the joint components are connected in series, a plastic hose is
inserted inside the arm (right in Figure 2), ensuring smoother motion during swinging. A
thin wire is threaded through the hose, with its end secured to the gripping mechanism at
the end of the arm. The driving mechanism adjusts the tension on the wire to open or close
the gripping mechanism.

2.2.2. Clamping and Cutting

Two sets of clamping and cutting tools are designed and mounted on the upper and
lower sides of the endpoint of arm. This design allows the arm to pick strawberries on
the left and right cultivation tubes without needing to rotate, enabling rapid fruit picking.
The design concept of the cutter is inspired by the structure of scissors and consists of
two blades. Each blade consists of a three-layer structure—top, middle, and bottom (see
Figure 3a)—all made of acrylic material. The middle layer contains a trapezoidal groove to
hold the blade for cutting strawberry stems, while the top and bottom layers are securely
fitted to enclose the blade within the central layer. The ends of the two blades are gear-
shaped and meshed together. One end of a thin wire is connected to a round hole at the
end of the middle layer of the blade on one side, while the other end is attached to the disk.
The center of the disk is coupled to the motor bearing. When the disk is idle, the springs
attached to both sides of the clamp keep it in an open position (as shown in Figure 3b). As
the disk rotates, the wire is pulled, generating sufficient force to overcome the tension of
the springs and bring the two blades together toward the center (as shown in Figure 3c).
Figure 3d,e show the physical appearance of the clamping tool and its integration with the
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joint arm. When the blades close, the stem is cut and securely gripped, ensuring that the
strawberry does not fall (Figure 3f). Additionally, a nozzle is fixed at the center of the joint
of arm (bottom left in Figure 3f), connected to a plastic tube, and is used for spraying.
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Figure 3. Design of clamp and cutting tool. (a) The structure of clamping and cutting tools; (b) clamp
in the open state; (c) clamp in the closed state; (d) prototype of the two sets of clamps; (e) mounting
of the clamp on the joint arm (with the upper clamp in the open state and the lower clamp in the
closed state); (f) the clamp in action for picking strawberries (the nozzle is installed inside the tube,
bottom left).

It is worth noting that in the experiment, the gripper is designed to simultaneously
clamp and cut the fruit stem. It securely holds the stem attached to the fruit while avoiding
the main plant stem above the blade, ensuring efficient harvesting (see Figure 4). Soft foam
lining provides a gentle yet firm grip on the fruit stem.
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2.2.3. Platform for Harvesting Strawberries

The robot arm module is mounted on a modified pulley system [51], which moves
back and forth along an aluminum extrusion track (Figure 5) on the cultivation support.
Two cameras (Model: Brio Ultra 4K HD, Logitech Inc., San Jose, CA, USA) are mounted
on either side of the module at a fixed height above the ground to capture images of
strawberries on water pipes positioned to the left and right. A microcontroller (Model:
Arduino UNO R3, Arduino, Turin, Italy) combined with a sensor expansion board (Model:
Sensor Shield V5.0) is used to drive the lifting mechanism within the module (Figure 6).
This mechanism includes four built-in servo motors (Model: LD-27MG, Hiwonder Inc.,
Shenzhen, China): the two lower, symmetrically placed motors are used to regulate the
bending angle of the arm, while the two upper motors control vertical arm movement and
gripper operation, each connected to a disk wound with thin wire. As the motors rotate,
the wire length is adjusted, thereby controlling the arm length, bending angle, and the
opening and closing of the clamp.
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2.3. Vision-Based Control for Harvesting

This chapter presents the development of the fruit recognition model, the visual posi-
tioning control for strawberries, and the lifting and bending mechanisms of the robotic arm.

2.3.1. Fruit Detection and Positioning

The strawberry recognition model is based on YOLOv4, with CSPDarknet53 as its
main framework. SPPNet and PANNet architectures are used for feature extraction, and
the extracted features are then passed to the Head layer for object detection, loss function
calculation, and intersection over union (IoU) evaluation [52].

The process of establishing the strawberry detection model is illustrated in Figure 7.
Replica strawberry models, commonly used for landscaping, were selected as picking
targets in three sizes: 3.5 cm, 4 cm, and 6 cm (Figure 8). Handheld cameras and experimental
cameras were used to capture strawberry objects at different viewing angles. Image
augmentation techniques, including scaling, color transformation, affine transformation,
and blur processing, were applied to increase the number of images. The dataset was
divided into test and validation sets in predetermined ratios, which were used for model
training, testing, and verification. Once the model is constructed, it is deployed on the
required devices, and its object recognition accuracy is evaluated under different IoU
conditions. Once the strawberry within the image is detected and bounded, the inrange()
function from the OpenCV library is used to specify a target color to identify the desired
object within the bounding box. The cv.contourArea() function is then applied to estimate
the total pixel count of the object, representing its contour area, denoted as a. Finally, the
circle() function is used to determine the center point of object, indicating the location of
the fruit.
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The spatial configuration of the joint arm and strawberry is illustrated in Figure 9. The
point p0 represents the arm’s origin in the X-Y-Z coordinate frame. Let o′(x′, y′, z′) be the
center point of fruit in the X-Y-Z frame, and let its pixel coordinates in the U-V frame, as
viewed by the camera, be õ′(u′, v′), where u′ and v′ indicates the position of fruit along the
U-axis and V-axis in pixels, respectively. A movable base, equipped with a vision-based
positioning system, adjusts the position of arm along the X-axis.
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Next, assuming the total length of the joint arm is L and the distance D between the
center of fruit and the arm is unknown, the arm must first adjust its length to

∣∣L− L′
∣∣ for

fruit picking operations. L′ represents the adjusted length of the arm. The end of the arm
should be moved as close as possible to the strawberry while ensuring the initial position
of the upper and lower cutting tools at the end of arm remains open to prevent the arm
from making contact with the strawberry while bending.

Based on the above conditions and the known strawberry outline area A in the image,
a 2s-FLC system is employed to adjust the position p′o(x

′
o, y′o, z′o) of the endpoint of arm,

guiding it to position p′′o , effectively controlling the joint displacement of arm along the Y-
axis and Z-axis. When the arm bends to position p′′o , the lower shearing tool closes, cutting
the strawberry stem at point q′′o . The variable δ represents the pixel distance between
the cutting point q̃′′o in the image and the endpoint of arm p̃′′o , which is negligible as its
value approaches 0. Therefore, the projected distance between point p′′o and the stem can
be approximated as d =p′′o p̃′′o . The depth error can be defined as η =

∣∣∣d− d̂
∣∣∣, where d̂

represents the estimated depth distance.

2.3.2. Lateral (X-Axis) Position Control

The vision-based drive control system moves the platform along the X-axis. Initially,
when the platform is stationary (t = 0), it is assumed that a line parallel to the image
coordinate system and the V-axis in the image captured by the camera is denoted as
m(t) = u, where the u is a fixed constant corresponding to the position of arm in space.
When the center point of frame aligns with this line, the platform will stop, positioning
the arm directly with the center of fruit. Let the U-axis value of the center point of object
õ′ in the image be represented as u′(t). The speed control condition for the platform is
as follows:

v(t+∆t) =

{
0 u = u′(t)
vmax u 6= u′(t)

(4)

v(t) and vmax stand for the speed and maximum speed of the moving system at time t.
∆t is the sampling time, which includes the time for image processing and updating the
speed control commands, and po

(
t + ∆t) = po(t) + v(t)∆t is the position of the end point

of arm. The speed control goal is to reduce the side displacement error ε→ min|u− u′| .

2.3.3. Y- and Z-Axis Position Control

The bending angle of the joints is controlled by four thin wires that pass through
holes at opposite corners on both sides of each joint and are secured at the four corners
of the end joint. Two of the wires are fixed at the base joint, ensuring the arm swings in a
specific direction only. The other two wires are attached to two symmetrical points on a
disk driven by a servo motor. As the servo motor rotates, the disk turns, indirectly enabling
the winding or unwinding of these two wires, which causes the arm to bend. Assuming
the radius of the disk is r, θs represents the rotation angle of the servo motor.

θs/180 = πr/l (5)

The picking position of the arm is affected by the fruit’s height and size. For strawber-
ries of varying dimensions, even when their center points are at the same height, the arm
must adjust both its extension and bending angle to suit each fruit’s size. To ensure the end
effector reaches close to the target for effective gripping, a 2s-FLC system is implemented
to independently control the arm’s length and bending angle. The architecture of proposed
system is presented in Figure 10.
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First, the position õ′(u′, v′) of the center point of strawberry in the image, its v′ value,
and the area of strawberry a (in pixels) serve as the input variables for FLC 1, while the pulse
width modulation signal PWMZ is the output variable of FLC 1. This signal drives the servo
motor, which rotates the disk and indirectly adjusts the length of the arm, enabling vertical
movement along the Z-axis. The PWMZ value and a are the input variables for FLC 2, with
the output variable of FLC 2 being the pulse width modulation signal PWMY. This signal
drives one servo motor to rotate the disk by an angle θs, indirectly adjusting the bending
angle of arm θTotal. Since the arm only swings in the Y-axis direction, the other servo motor
remains stationary. The internal structure of both controllers includes fuzzification (FU),
rules (Rules), decision-making (DM), defuzzification (dFU), and a knowledge base (DB).
The design parameters of the 2s-FLC system are listed in Table 1.

Table 1. Illustration of the parameters for 2s-FLC.

Parameters
Description/Value

FLC 1 FLC 2

Input variables

• v′ The length between
center point õ′ and upper
bound of captured image

• a: The area of strawberry

• PWMZ: Pulse width
modulation signal
(Z-axis)

• a: The area of strawberry

Output variables
• PWMZ: Pulse width

modulation signal
(Z-axis)

• PWMY: Pulse width
modulation signal
(Y-axis)

Membership functions Triangular and trapezoidal

Number of rules 15 15

Inference method Mamdani

Defuzzification method Centroid method

Performance metrics • ε: Displacement error
• η: Depth error

A. Fuzzification and knowledge database

Fuzzification is defined as the process of converting the precise numerical values of
input or output variables in the controlled system into corresponding fuzzy sets. The input
or output variables are defined as the observed values or the control actions applied to the
system. During the fuzzification of input variables, fuzzy terms must first be defined, such
as ‘Big’ (B), ‘Normal’ (N), ‘Small’ (S), ‘Low’ (L), ‘Medium’ (M), ‘High’ (H), ‘Medium Low’
(ML), ‘Medium Medium’ (MM), ‘Medium High’ (MH), ‘High High’ (HH), ‘High Medium’
(HM), ‘High Low’ (HL), ‘Low High’ (LH), ‘Low Medium’ (LM), and ‘Low Low’ (LL). Each
term represents a fuzzy set. Four variables, including v′, a, PWMZ, and PWMY, have
corresponding fuzzy sets, which may consist of multiple membership functions. Figure 11
shows the triangular and trapezoidal membership functions, the number of functions, and
their distribution used for fuzzifying the input and output variables in FLC 1 and FLC
2. The membership function distributions for input variables v′ and a of the FLC 1 are
shown in Figure 11a and Figure 11b, respectively. Input variable a also serves as the input
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for FLC 2. The distributions of membership functions of output variable PWMZ of FLC
1 is also shown in Figure 11c. Figure 11d,e illustrate the distribution of the five and nine
membership functions for input variable PWMZ of FLC 2 and output variable PWMY of
FLC 2, respectively. During the fuzzification process, the variable corresponds to multiple
fuzzy sets and the degree of membership to each set. For example, if the input variable v′

in FLC 1 is 800 pixels, its membership degrees for ‘H’, ‘MH’, ‘M’, ‘ML’, and ‘L’ are 0, 0, 0.28,
0.72, and 0, respectively (Figure 11a). On the other hand, if the fruit area is 1 × 105 pixels,
its membership degrees for ‘S’, ‘N’, and ‘B’ are 0, 0.43, and 0.58, respectively (Figure 11b).
Another example, if PWMZ = 2000, the membership degrees for ‘LH’, ‘LM’, ‘LL’, ‘ML’,
‘MM’, ‘MH’, ‘HH’, ‘HM’, and ‘HL’ are 0, 0, 0, 0, 0, 0.2, 0.8, 0, and 0, respectively (Figure 11c).
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B. Rules, decision-making, and defuzzification

Rules are formulated based on expert knowledge and are used for inference and
decision-making. In FLC 1, a total of 15 rules are established, with each rule expressed in
the ‘IF-THEN’ format.

(1) IF (v′ is H) AND (a is B) THEN (PWMZ is HH)
(2) IF (v′ is H) AND (a is N) THEN (PWMZ is HH)
(3) IF (v′ is H) AND (a is S) THEN (PWMZ is HM)
(4) IF (v′ is MH) AND (a is B) THEN (PWMZ is HL)
(5) IF (v′ is MH) AND (a is N) THEN (PWMZ is HL)
(6) IF (v′ s MH) AND (a is S) THEN (PWMZ is HL)
(7) IF (v′ is M) AND (a is B) THEN (PWMZ is MH)
(8) IF (v′ is M) AND (a is N) THEN (PWMZ is MM)
(9) IF (v′ is M) AND (a is S) THEN (PWMZ is MM)
(10) IF (v′ is ML) AND (a is B) THEN (PWMZ is ML)
(11) IF (v′ is ML) AND (a is N) THEN (PWMZ is LH)
(12) IF (v′ is ML) AND (a is S) THEN (PWMZ is LH)
(13) IF (v′ is L) AND (a is B) THEN (PWMZ is LM)
(14) IF (v′ is L) AND (a is N) THEN (PWMZ is LM)
(15) IF (v′ is L) AND (a is S) THEN (PWMZ is LL)
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Similarly, in FLC 2, a total of 15 rules are established, as detailed below.

(1) IF (PWMZ is H) AND (a is B) THEN (PWMY is H)
(2) IF (PWMZ is H) AND (a is N) THEN (PWMY is H)
(3) IF (PWMZ is H) AND (a is S) THEN (PWMY is H)
(4) IF (PWMZ is MH) AND (a is B) THEN (PWMY is MH)
(5) IF (PWMZ is MH) AND (a is N) THEN (PWMY is MH)
(6) IF (PWMZ is MH) AND (a is S) THEN (PWMY is MH)
(7) IF (PWMZ is M) AND (a is B) THEN (PWMY is M)
(8) IF (PWMZ is M) AND (a is N) THEN (PWMY is M)
(9) IF (PWMZ is M) AND (a is S) THEN (PWMY is M)
(10) IF (PWMZ is ML) AND (a is B) THEN (PWMY is ML)
(11) IF (PWMZ is ML) AND (a is N) THEN (PWMY is ML)
(12) IF (PWMZ is ML) AND (a is S) THEN (PWMY is ML)
(13) IF (PWMZ is L) AND (a is B) THEN (PWMY is L)
(14) IF (PWMZ is L) AND (a is N) THEN (PWMY is L)
(15) IF (PWMZ is L) AND (a is S) THEN (PWMY is L)

The Mamdani method is used for fuzzy inference. It involves converting two sets
of input values into corresponding fuzzy sets. Each rule is then applied to the inputs,
and the membership degree of each fuzzy set is obtained. These sets are then intersected,
and the result corresponds to an output fuzzy set (as shown in the blue area on the right
side of Figure 12). The output fuzzy sets of all rules are then aggregated using a union
operation, forming a single geometric shape (as shown in the blue area at the bottom right).
Finally, the centroid method is used to convert the fuzzy output set into a specific value
(represented by the thick red line). Additionally, by observing the pattern of the fuzzy
inference surface, the suitability of the inference rules can be evaluated, and the rules can
be adjusted if necessary to modify the initial inference surface (Figure 13).
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3. Performance Analysis and Results

This section presents the performance results of the system used to control the joint
arm for fruit grasping, focusing on lateral movement control and the positioning accuracy
achieved through a 2s-FLC system. Finally, the fruit-grasping experiments were conducted
in a greenhouse, where the picking performance of the robotic arm was evaluated under
different weather conditions.

3.1. Object Detection

The image dataset consists of 2000 images, with 1400 used for training, 400 for val-
idation, and 100 for testing. The required image sizes for the model during training are
416 × 416 pixels. The training parameters are as follows: batch size set to 16, 200 epochs,
and the model is optimized using SGD with a learning rate of 0.0001. The number of
iterations is set to 6000, and the loss function, comprising classification loss, localization
loss, confidence loss, and object classification loss, is evaluated after each iteration [52].
Next, tissues were twisted into thin strips, dyed green to resemble stems, and tied to the
tops of fruit models of different sizes (to the left of Figure 14). These fruit replicas were
then randomly suspended along the side of the hydroponic pipe. The identification results
are shown in Figure 14 (right), where, with an F1-score of 0.94, a precision of over 88% was
achieved.
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Figure 14. Strawberry identification results.

3.2. Positioning Accuracy
3.2.1. Range of Motion

The Simulink R2022a software tool was used to develop a bending model of the
joint arm and simulate its bending behavior [53], resulting in a smooth bending curve
(Figure 15a). However, in the actual arm bending test, if the plastic tube is not placed in the
intra-arm channel, the bending is irregular (Figure 15b). When the tube is inserted, the joint
arm’s bending closely matches the simulation results (Figure 15c). The swing trajectory of
the arm reveals a clear difference between the cases where the tube is absent and when it is
inserted into the joint channel (Figure 16a). The red line represents the arm’s movement
without the tube, while the blue line shows the trajectory with the tube. Swing trajectories
for arms of different lengths are shown in Figure 16b, indicating that the maximum swing
range reaches approximately 20 cm.
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3.2.2. Lateral and Depth Error

In the fruit picking experiment, metrics such as displacement deviations ε, η, FPR,
and FDR were used to evaluate the object grasping performance of the fruit picking
platform. The Scikit-fuzzy toolkit was used to implement control of the Z-axis and Y-axis
displacement and the bending angle of the robotic arm. The operation process was divided
into three stages: platform stopping, arm bending, and gripper picking. First, we observed
whether the platform could align the robotic arm with the strawberry replica in the grasping
direction. Each size of the strawberry replica was tested five times. The results showed
that the average displacement deviations for Size 1, Size 2, and Size 3 objects were 2 mm,
1.4 mm, and 0.8 mm, respectively.

A tissue was rolled into thin strips, dyed green to resemble stems, and then attached
to the tops of fruit models of various sizes. Next, using three different fruit sizes, each
fruit model was suspended at five random positions. Under the assumed conditions, we
observed the distance d between the end position p′′o of the robotic arm after bending
the fruit stem. Additionally, the expected values for this distance were set based on the
volumes of Size 1, Size 2, and Size 3, assumed to be 10 mm, 15 mm, and 30 mm, respectively.
Ideally, the value of d matches the expected value. Manual measurement is used to obtain d.
Table 2 presents a comparison of the average error values obtained using linear control and
2s-FLC. The results also show that using the 2s-FLC method achieves lower error values. In
addition, the process of successfully picking a single fruit was observed, and the time taken
for each step was recorded, including arm lifting, bending and adjustment, clamping and
cutting, lowering the arm, opening the clamp, and returning to the arm origin. Bending
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and adjusting the arm took the longest, averaging about 1.9 s (Figure 17), followed by arm
lifting, which averaged 1.5 s. The clamping and cutting, along with opening the clamp,
required the shortest time, averaging about 0.5 s. The overall average time to pick a single
fruit was 6.5 s. Excluding the arm’s reset time, the average picking time per fruit is reduced
to 5 s.

Table 2. Depth error η between the gripper and the target using a linear control method and a 2s-FLC
method, respectively.

Fruit Test 1 Test 2 Test 3 Test 4 Test 5 Average Error (mm)

Size 1 28.0/24.0 z 25.0/20.0 31.0/30.0 29.0/27.0 28.0/29.0 28.2/26.0
Size 2 19.0/19.0 20.0/14.0 19.0/16.0 17.0/13.0 15.0/11.0 18.0/14.6
Size 3 9.0/9.0 6.0/4.0 11.0/13.0 12.0/6.0 10.0/7.0 9.6/7.8

z: Linear control/2s-FLC.
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Figure 17. Average time per fruit for single fruit picking operation.

Using three different fruit sizes randomly placed at five locations, the performance
of the gripper in grasping the fruit pedicel was tested. The results were categorized as
‘successful picking’, ‘dropped after picking’, or ‘failed picking’. Table 3 illustrates the
findings. Importantly, in Test 4 of the treatments, successful picking results were achieved
for all three fruit sizes, with the observed positions of the fruits consistently located toward
the lower central area of the image frame.

Table 3. Test results of fruit picking by grippers.

Size of Fruit
Treatments

Test 1 Test 2 Test 3 Test 4 Test 5

Size 1 4 • × • ×
Size 2 4 • • • •
Size 3 • × • • 4

•: successful picking. 4: dropped after picking. ×: failed picking.

3.3. Environmental Condition and Results

The trained model was then deployed to the embedded development board (Model:
Jetson NANO, NVIDIA Co., Santa Clara, CA, USA) located on the side of the lifting module.
Five fruits of Size 1, Size 2, and Size 3 were randomly suspended on one side of the
hydroponic pipe. The platform moved at a speed of 10 cm/s, as shown in Figure 18, with
the hydroponic pipe measuring 3.5 m in length. The experiment lasted for three days
under mostly cloudy weather. The test period ran from 10:00 AM to 4:00 PM, with the
mobile module moving from one end of the pipe to the other once every hour. During the
movement, a single camera continuously captured images at 10 frames per second (fps)
while the identification system detected strawberries in the images. A total of 2450 images
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were collected per day. Three evaluation metrics, including Precision, Recall, and Average
Precision (AP), were used to assess the identification performance of deep learning model.
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Figure 18. Snapshot of the experimental site (strawberry models of different sizes hung on one side).

The average identification performance of the detection model during each time
period over three days is shown in Figure 19. The average precision, recall, AP@0.5,
and AP@0.5:0.05:0.95 were 0.891, 0.880, 0.891, and 0.718, respectively. AP@0.5:0.05:0.95
represents the average AP value calculated at IoU thresholds ranging from 0.5, 0.55, . . ., up
to 0.95.
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Figure 19. Performance comparison of the detection model at various times.

The fruit picking experiment for this platform was conducted in an outdoor green-
house at various time intervals and under different weather conditions (longitude:
120◦60′61.30′′ E; latitude: 22◦64′65.96′′ N) during the summer of 2023. First, on sunny
days, three periods were selected for testing: early morning (5:00−7:00), mid-morning
(9:00−11:00), and late afternoon (16:00−18:00). Strawberry replicas were positioned along
the sides of the hydroponic pipes (Figure 20). During the early morning and mid-morning
sessions, picking was carried out on one side only, while both sides were tested in the late
afternoon. For the single-sided experiment, 10 strawberry replicas were hung on one side of
the pipe, and for the double-sided experiment, 9 replicas were hung on each side, totaling
18. The stems of the strawberry replicas were tied with thin plastic strings that break easily.
The results of fruit picking and positioning are shown in Table 4. The camera images were
evenly divided into upper, middle, and lower sections, representing the regions where the
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fruit was successfully picked. Figure 21 shows a side view of the operator continuously
picking two fruits using the system.
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rate (FPR) and the fruit drop rate (FDR) after grasping were measured. The standard for 
successful picking is that the arm bends and the gripper securely grasps the fruit until the 
arm returns to its original position. In contrast, the fruit drop rates show that during the 
process, the arm either fails to grasp the fruit or the fruit drops mid-operation. As shown 
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Figure 20. Strawberry picking experiment site (with strawberry models of different sizes hanging on
both sides).

Table 4. Test results of fruit picking (single day).

Time Slots Fruit Location Number of
Fruits

Number of
Picked Fruits

Size of Fruits Location of Fruit

Size 1 Size 2 Size 3 Upper Medium Lower

05–07 One side 10 6 1 3 2 1 2 3
09–11 One side 10 7 0 4 3 0 4 3
16–18 Double side 18 6 1 2 3 1 4 1
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Figure 21. Snapshots of the joint arm grasping a strawberry. (a) The joint arm is lowered and aligned
with the target; (b) the joint arm rises; (c) the joint arm bends; (d) the gripper cuts the stem; (e) the
gripper clamps the stem; (f) the arm is lowered; (g) the gripper releases the stem; (h) the mobile
platform moves to the next target. Images (i–l) respectively illustrate the lifting and bending of arm
toward the strawberry stem (i,j), the gripping action (k), and finally the arm in a lowered position (l).

Finally, the experiment was repeated three times, and both the fruit picking success
rate (FPR) and the fruit drop rate (FDR) after grasping were measured. The standard for
successful picking is that the arm bends and the gripper securely grasps the fruit until the
arm returns to its original position. In contrast, the fruit drop rates show that during the
process, the arm either fails to grasp the fruit or the fruit drops mid-operation. As shown in
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Table 5, the FPR reached up to 82%. The lowest success rate, only 32%, occurred between
5 and 7 AM under cloudy conditions. Interestingly, under cloudy conditions and near
evening, there was no fruit drop at all.

Table 5. Fruit picking success rate.

Weather

Time Early Morning Morning Late Afternoon
(05:00−07:00) (09:00−11:00) (16:00−18:00)

FPR (%) FDR (%) FPR (%) FDR (%) FPR (%) FDR (%)
Sunny 82 18 64 27 55 9

Partly cloudy 55 36 73 18 55 27
Cloudy 37 9 46 18 37 0

4. Discussion

The success rate of fruit picking depends on the accurate identification of the center of
the fruit. We observed that the highest success rate occurs during bright early mornings
(5−7 AM). In contrast, during overcast mornings or in the late afternoon (4−6 PM) under
cloudy skies, the success rate significantly decreases. The light intensity during these
periods is relatively low, leading us to infer that weak lighting prevents precise object
detection. This result is consistent with earlier research findings [54].

In the experiment, the object detection system operated at 10 fps to perform strawberry
identification and estimate the fruit area. However, signal transmission delays between the
microcontroller and peripheral devices, at times, led to excessive lateral positioning errors in
the mobile platform. This misalignment caused the strawberry stem to deviate significantly
from the intended picking position, preventing the cutting tool from effectively cutting the
stem. Higher-performance graphic processing units (GPUs) and controllers can execute
complex deep learning and image processing algorithms more efficiently, which would
improve the performance of the object detection system [55]. The most time-consuming
operation of the proposed system is the adjustment of the bending angle of the arm and
the picking position, which takes approximately 1.9 s. Using a more advanced processor
would help reduce picking time, enhance the system’s tolerance for positional errors, and
reduce the chance of significant lateral misalignment.

On the other hand, once the harvesting system detects the center point of the target, the
platform halts, adjusting the length of the arm and bending angle. However, slight shaking
or instability during operation can easily cause the fruit to drop. Furthermore, variations
in the placement and height of the water pipe shelf relative to the ground may prevent
the robotic arm from precisely aligning with the fruit stem. The flexibility of the wire also
influences harvesting accuracy. During experiments, continuous wire tensioning altered its
length, causing the end of the arm to miss the intended position. Furthermore, as the arm
bends, the wire lengths on the inner and outer sides of the joints vary. This slack can cause
the wire to slip out of the rotating shaft groove, leading to it coming off the shaft. Finally,
when the gripper at the end of the arm tries to grab the fruit, it sometimes fails to cut the
stem. This happens when the stem is near the edge of the gripper, where the cutting force
is too weak. The experimental results demonstrate that the wire-driven joint arm offers
excellent flexibility in precise position control. However, maintaining consistent tension
on the wires can lead to issues such as the wire snapping or slipping off the rotating shaft.
Additionally, while the 3D-printed components are cost-effective, they tend to become
fragile when exposed to temperature fluctuations and sunlight in outdoor greenhouse
environments. This issue could be addressed with more careful material selection.

According to our observations, the successfully picked fruits were all located in the
lower central area of the image frame. In this region, the 2s-FLC appeared particularly
effective, with the picking mechanism displaying minimal sway. Adjusting the distribution
surface of the fuzzy rules within the 2s-FLC system might yield different results, which
warrants further investigation. This harvesting system is optimized for movement along
a mounted rail, and the current gripper is specifically designed for handling herbaceous
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plants. Most harvesting robot prototypes achieve a picking success rate of around 66%,
with an average picking cycle of 33 s per fruit [56]. In contrast, our experimental results
show an average picking time of 6.5 s per fruit, with a maximum success rate of 82%,
demonstrating the high efficiency of this design. Excluding the arm reset time, the picking
time can be further reduced to 5 s, comparable to the single fruit picking time for kiwifruit
achieved by Mu et al. [57]. However, due to constantly changing crop backgrounds and
lighting conditions, the position of the end effector during picking can vary, affecting
the picking success rate [8,42,58]. This variability impacts the overall performance of the
picking mechanism. In addition, to improving harvest rates, the non-contact gripping
method used in this study minimizes fruit surface damage, enhancing the commercial
value of the harvester and the quality of the fruit.

5. Conclusions

The fruit picking mechanism and precision control strategy proposed in this study
were initially applied to strawberry harvesting in a hydroponic greenhouse. The cutting
gripper, designed to grasp the fruit stem, minimizes surface damage to the strawberries.
Three models of ripe strawberries of different sizes were used to validate the effectiveness
of the proposed system. The harvesting system achieved a detection accuracy of 90% and a
harvesting success rate of 82%, with an average picking time of 6.5 s per strawberry, reduced
to 5 s when arm recovery was omitted, enabling the system to potentially pick around
553 strawberries per hour. However, performance is affected by lighting conditions: success
rates drop to 32% in early cloudy mornings, while higher success rates are recorded in
bright early mornings. Light intensity notably influences picking accuracy, with increased
errors in low-light conditions. Future work will include assessing the system with real
fruit under natural conditions, broadening image recognition types (e.g., fruit quality
inspection), and integrating a spraying system to enhance flexibility.
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