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Abstract: The quantitative inversion of the leaf area index (LAI) of green plum trees is crucial for
orchard field management and yield prediction. The data on the relative content of chlorophyll
(SPAD) in leaves and environmental data from orchards show a significant correlation with LAI.
Effectively integrating these two data types for LAI inversion is important to explore. This study
proposes a multi−source decision fusion LAI inversion model for green plums based on their adjusted
determination coefficient (MDF−ADRS). First, three statistical methods—Pearson, Spearman rank,
and Kendall rank correlation analyses—were used to measure the linear relationships between
variables, and the six environmental factors most highly correlated with LAI were selected from the
orchard’s environmental data. Then, using multivariate statistical analysis methods, LAI inversion
models based on environmental feature factors (EFs−PM) and SPAD (SPAD−PM) were established.
Finally, a weight optimization allocation strategy was employed to achieve a multi−source decision
fusion LAI inversion model for green plums. This strategy adaptively allocates weights based on the
predictive performance of each data source. Unlike traditional models that rely on fixed weights or
a single data source, this approach allows the model to increase the influence of a key data source
when its predictive strength is high and reduce noise interference when it is weaker. This dynamic
adjustment not only enhances the model’s robustness under varying environmental conditions
but also effectively mitigates potential biases when a particular data source becomes temporarily
unreliable. Our experimental results show that the MDF−ADRS model achieves an R2 of 0.88 and an
RMSE of 0.39 in the validation set, outperforming other fusion methods. Compared to the EFs−PM
and SPAD−PM models, the R2 increased by 0.19 and 0.26, respectively, and the RMSE decreased by
0.16 and 0.22. This model effectively integrates multiple sources of data from green plum orchards,
enabling rapid inversion and improving the accuracy of green plum LAI estimation, providing a
technical reference for monitoring the growth and managing the production of green plums.

Keywords: green plum; LAI; SPAD; environmental feature factors; MDF−ADRS

1. Introduction

Green plums, often called sour plums, are a popular stone fruit of the Rosaceae family
and have been cultivated in China for over 3000 years [1,2]. Packed with a myriad of
vitamins, minerals, and amino acids, green plums enhance digestive health, boost appetite,
mitigate fatigue, guard the liver, and delay aging processes [3,4]. Luhe County in Shanwei,
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Guangdong Province, known as China’s “Green Plum Capital”, is a major producer of
these economically vital plums [5]. In this region, green plums are primarily used in the
creation of plum juice, dried plums, plum wines, and various preserves, alongside their
medicinal applications. Furthermore, they are crafted into seasoned sauces that enrich
the flavor profiles of numerous dishes. Due to their rich nutritional value and distinct
flavor profile, green plums play an integral role in nutrition and health practices. As of
2023, the annual yield of green plums in Luhe County was consistently around 25,000 tons,
with peaks of up to 35,000 tons in abundant harvest years. The favorable climatic and
soil conditions in Guangdong Province create a strategic advantage for escalating green
plum production, prompting local farmers and investors to enhance resource efficiency
and expand cultivation areas extensively.

Research has shown that the leaf area index (LAI) is fundamentally connected to a
crop’s capacity to capture photosynthetically active radiation, thus playing a critical role
in photosynthesis, respiration, and transpiration processes. It is also an excellent gauge
of growth phases and various abiotic and biotic stresses [6–8]. Son [9] and his team have
formulated a method for predicting rice yields using MODIS EVI and LAI data, where they
ascertain that incorporating these indices into a quadratic model substantially improves
yield simulations within their study’s regional focus. Zhuo [10] has shown that integrating
LAI into the World Food Studies (WOFOST) model significantly boosts the model’s ability
to predict regional wheat yields accurately. Additionally, Yamanura [11] has proven that an
LAI model derived from NDVI is highly effective for crop vegetation monitoring, stress
assessments, pest and disease scouting, and predicting the area and yield of crops, all
with notable accuracy. Through the consistent monitoring of the LAI, farmers can tailor
their fertilization, irrigation, and pest control approaches to maintain a suitable canopy
density in green plum trees, which in turn enhances the health and yield of their fruit [12].
However, the accuracy of LAI measurements can be compromised by weather fluctuations
and operator variability. These measurements are dependent on instruments that are
sensitive to environmental conditions, where inconsistent sunlight can cause LAI values
to vary and strong winds can impact the stability of measurements [13,14]. Variations in
operational methods can also lead to deviations in LAI readings, which is particularly
problematic in extended studies. Furthermore, LAI measurements are typically conducted
point−by−point, meaning they require substantial time and operator experience [12,15,16].
Accurate leaf area index (LAI) data are crucial in agriculture as they help farmers optimize
decisions regarding irrigation, fertilization, and pest control. Without these data, farmers
may risk overusing resources or missing critical intervention opportunities, which could
impact crop yields. In the current cultivation management of plum orchards, inaccurate
LAI measurements may lead to misjudgments about the health of the trees, causing farmers
to either over−apply or under−apply water and nutrients, directly affecting the yield and
quality of their plums. Additionally, delays or improper responses to pest outbreaks could
exacerbate damage, further reducing productivity. Given the high economic value of plums
in Guangdong, fluctuations in their yield or quality could significantly impact local market
prices and profitability. Therefore, there is an urgent need for more reliable and effective
methods of measuring the LAI.

Chlorophyll assessments are notably more stable and efficient than measurements
of the LAI, as they exhibit minimal variability under different environmental conditions,
ensuring consistent results irrespective of weather variations. This technique requires
less expertise from operators and is minimally affected by human factors, rendering it
suitable for fast and widespread monitoring applications [17–19]. According to research by
Dordas [20], photosynthesis plays a vital role in plant growth, including the enhancement
of the LAI, and is directly influenced by the chlorophyll concentration in leaves. This
relationship underscores that leaf chlorophyll not only depicts vegetative growth but also
correlates with the LAI. Presently, IoT technology enables the instantaneous gathering of
environmental and crop habitat data in agricultural settings [21–23]. Kinane [24] identified
that maximum monthly temperatures and surplus moisture markedly influence the LAI of
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managed torch pine forests. Adjustments incorporating environmental factors and local
carrying capacities led to a decrease in the root mean square error of 0.0625. Additionally,
Karimi [25] observed that remote sensing data for LAI estimation are restricted to clear-sky
conditions. Estimating the LAI in forests using traditional multispectral remote sensing
also poses significant challenges. Due to these limitations in remote sensing for LAI
estimations, Karimi [25] used Gene Expression Programming (GEP) to derive the LAI from
weather data.

Accurate LAI monitoring is crucial in plum cultivation management, as it not only
supports management decisions throughout the stages of crop growth but also directly
impacts yield predictions and resource optimization. However, due to the complex canopy
structure of plum trees and their susceptibility to external environmental disturbances, pre-
cise LAI measurement remains a significant challenge. The evolution of remote sensing and
machine learning technologies has opened new pathways for the monitoring of plant crop
growth and yield forecasting [19,26]. Zhang [27] analyzed the relationship between visible
and hyperspectral imaging features with winter wheat’s LAI, utilizing these correlations for
feature selection. They developed multiple linear regression, support vector regression, and
random forest regression models using various imaging feature combinations to estimate
the LAI and compared the efficacy of single−source versus multi−source data models.
Deng [28] employed threshold segmentation to identify the top five vegetation indices
correlating with SPAD, LAI, and the canopy chlorophyll content, creating inversion models
using PLSR that enhanced the accuracy of physicochemical parameter inversion in winter
wheat by mitigating background spectral interference. Chen [29] demonstrated that “Spe-
cific spectral transformations”, when combined with optimal narrow-band spectral indices
and random forest regression, could accurately evaluate small−area LAIs, achieving an R2

of 0.77 and an RMSE of 0.27. Concurrently, Shao [30] improved the precision of LAI esti-
mation by using deep learning to segment corn ears, significantly enhancing this method’s
accuracy by removing corn ear images, with results showing an R2 of 0.816 and an RMSE
of 0.399. The aforementioned research primarily focuses on using spectral data for the
LAI inversion of crops, emphasizing the internal characteristics of crops while overlooking
a comprehensive consideration of their external growth environment. Methodologically,
many studies primarily rely on single−source spectral data to construct LAI inversion
models, leveraging their high−resolution advantages, with conclusions often focused on
the effectiveness of spectral data. However, such methods frequently overlook the impact
of environmental factors on the LAI, leading to insufficient model stability when they are
confronted with dynamic environmental conditions. Furthermore, the unique growth traits
and ecological context of green plums demand specialized monitoring techniques, as their
intricate canopy structure and background noise readily lead to remote sensing misinter-
pretations, with environmental variations in light, soil, and moisture further impacting the
reliability of remote sensing signals [13,14,31]. In conclusion, many studies that rely on
spectral data assert that spectral characteristics are the primary factors influencing LAI,
with limited attention given to how dynamic environmental changes impact the model’s
long-term effectiveness. Reliance on a single data source in complex and variable conditions
may lead to instability in estimation results.

Given the complexities of green plum cultivation and the findings of Dordas and
Kinane, which emphasize the crucial impact of environmental factors and relative content
of chlorophyll (SPAD) values on the LAI of crops, additional research by Son, Zhuo, and Ya-
manura highlights the important role of the LAI in pest and disease management and yield
prediction for crops. This study employs a multi−source data fusion strategy to combine
the internal characteristics of plum trees with external environmental features, introducing
a weight optimization method to adjust the importance of each data source. This approach
effectively enhances the model’s robustness and generalization under variable environ-
mental conditions. Environmental data collected from IoT devices in orchards, including
temperature, humidity, and soil temperature and moisture, were used as input variables
to develop an LAI inversion model based on environmental features (EFs−PM) using
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multivariate statistical techniques. Simultaneously, an LAI inversion model (SPAD−PM)
was developed based on collected relative content of chlorophyll (SPAD) data. We then
constructed the MDF−ADRS fusion model, which integrates the relative content of chloro-
phyll (SPAD) and environmental data and dynamically adjusts the importance of each
data source through a weight optimization strategy. By optimizing weights to adapt to
environmental changes, the MDF−ADRS model improves the robustness and accuracy of
LAI inversion, addressing gaps in multi−source data integration and providing a technical
reference for monitoring environmentally dependent crops such as plum trees.

Considering the complex environmental conditions influencing green plum cultivation
and the crucial role these factors play in crop development, this study uses the relative
content of chlorophyll (SPAD) and environmental characteristics as input parameters. By
applying multivariate statistical analyses, LAI inversion models based on these environ-
mental inputs and SPAD were developed, and their results were integrated to address
the limitations of relying on single−source data in agricultural monitoring. Consequently,
this approach introduces a novel, efficient method for green plum LAI estimation that
significantly improves field management practices and yield prediction accuracy. The key
contributions of this research are as follows:

(1) This paper aims to identify the key environmental factors affecting the leaf area index
(LAI) of green plums, considering various complex conditions. We used statistical
methods to evaluate the linear relationships between twelve environmental factors and
selected the six with the highest correlation to the green plum LAI for further study.

(2) Additionally, using these six factors and SPAD values, we constructed two LAI
inversion models: one based on environmental factors (EFs−PM) and the other on
SPAD (SPAD−PM).

(3) This study introduces a multi−source decision fusion model based on the adjusted R2,
utilizing an optimized weight allocation strategy to integrate multi−source data from
green plum orchards. Compared to Chen [29], who used spectral transformations
with a random forest regression to assess LAIs in small areas, our model improved
the R2 by 0.11. Compared to Shao [30], who quantified LAI estimations using deep
learning segmentation methods, our model improved the R2 by 0.064 and reduced
the RMSE by 0.009. The MDF−ADRS fusion model surpasses classic models in both
robustness and accuracy, enabling faster and more precise green plum LAI estimation.

2. Materials and Methods
2.1. Study Area and Study Design

This study was conducted in green plum orchards located in Dongkeng Town, Luhe
County, Shanwei City, Guangdong Province, China, geographically positioned at 114.03° E
and 22.75° N. The field site, situated approximately 240 m above sea level and shown in
Figure 1, benefits from a subtropical monsoon climate. The region has an average annual
temperature of approximately 21.7 °C and an average annual precipitation of around
1500 mm. The soil in the test area is predominantly loam, which provides good water
retention and supplies nutrients to the green plum trees. The terrain consists mainly of
gently rolling hills, allowing for good drainage. These conditions create an ideal environ-
ment for cultivating subtropical fruits like green plum. The region is primarily focused
on agriculture, with a strong emphasis on fruit tree cultivation. Plums, in particular, are
highly valued for their historical significance and economic importance. The main variety
grown in this area is the Luhe plum, a high−yielding variety prized for its dense canopy
and vigorous growth.

We used weather stations and soil temperature and humidity sensors as IoT devices
to monitor the environmental characteristics of the green plum orchard. These devices
continuously collected real−time environmental data. By integrating these IoT devices
into our system, we were able to ensure reliable and continuous data collection, reducing
manual errors and inconsistencies. The automation of the monitoring process significantly
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enhanced the robustness of the collected data, providing a solid foundation for developing
a high−precision LAI inversion model.

Our sensor placement was based on the locations of the selected fruit trees and irriga-
tion variations. If two sample trees share a common area with consistent soil conditions,
one sensor is sufficient, as depicted in Figure 2. Sensors are buried as instructed to ensure
proper contact and data accuracy. All IoT devices were precalibrated according to the man-
ufacturer’s specifications before the experiment, and regular maintenance and recalibration
were performed during the experiment in accordance with ISO 17123−8 [32] standards for
agricultural monitoring and environmental data collection.
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Figure 1. (a) shows the geographical location of the experimental site, and (b) displays the plum
trees studied.

Figure 2. Diagram of the layout of soil temperature and humidity sensors. Sensors should be placed
based on differences in soil conditions. If multiple trees share consistent soil conditions, 1 to 2 sensors
are sufficient. If conditions vary, sensors should be installed separately.

Fourteen green plum trees were selected for LAI, SPAD, and environmental data mea-
surements, with their positions shown in Figure 3. The circles numbered 1 to 14 represent
the sample trees, rectangles mark the weather station, and black dots mark the sensors.
These 14 trees are located within the same orchard, where soil and climate conditions are
similar. Additionally, the trees are comparable in terms of age and canopy size. Throughout
the study, both the control and experimental trees received the same fertilization and pest
control treatments. Trees 1 to 12 form the experimental group used to provide representative
data, while trees 13 and 14 serve as controls for baseline comparisons.

The methodological framework of this study is illustrated in Figure 4. First, SPAD
values were obtained by using the SPAD−502 chlorophyll meter to measure the relative
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content of chlorophyll in green plum leaves. Simultaneously, data on environmental
characteristics were collected through the orchard’s integrated weather station and sensor
systems. The collected SPAD and environmental data were then used to develop two
distinct models: the SPAD−PM and the EFs−PM. The outputs of these models were
subsequently integrated into the decision fusion model (MDF−ADRS) developed in this
study, enabling the accurate inversion of the leaf area index (LAI) for green plums.

Figure 3. A drone aerial image of the experimental area, displaying the locations of the sample green
plum trees, meteorological stations, and soil temperature and humidity sensors. Circles numbered 1
to 14 represent the sample green plum trees, the rectangles mark the meteorological stations, and the
black dots indicate the placement of the soil temperature and humidity sensors.
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Figure 4. This figure presents the experimental flowchart of the study, which consists of three
steps: data acquisition, decision fusion, and Inversion. Data acquisition: the SPAD−502 chlorophyll
analyzer is used to collect SPAD data, while environmental characteristic factor data on green plums
are gathered through meteorological facilities in the orchard. Decision fusion: This section introduces
the MDF−ADRS decision fusion model developed in this study. First, the SPAD−PM and EFs−PM
inversion models are constructed using SPAD data and environmental feature factor data, respectively
(with the environmental feature factors needing to be screened). The results from the SPAD−PM
and EFs−PM models are then combined using a weight reassignment strategy for decision fusion.
Inversion: the fused results are used to inverse the LAI of the green plums.

2.2. Data Collection and Dataset Construction
2.2.1. Data Collection

In this study, we conducted comprehensive data collections during two critical growth
stages of green plum—the flowering stage (2 February to early March) and the fruit ripening
stage (early March to 3 April)—resulting in a total of 13 data collection sessions. LAI values
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were obtained using a leaf area index measuring instrument (Figure 5), which features a
fish−eye lens with a wide-angle view of 210°, a focal length of 1.05 mm, an illumination
level of 0.1 lux, and a pixel size of 5.7 mm × 4.28 mm. The output formats include YUV2,
YUYV, and MJPEG. SPAD values were measured using a handheld SPAD−502 chlorophyll
meter (Figure 6). Environmental characteristic factors were recorded using the weather
stations (Figure 7) and soil temperature and moisture sensors installed throughout the
orchard. These enabled the continuous monitoring of ambient temperature, humidity, soil
temperature, soil moisture, soil pH, dew point temperature, light intensity, photosyntheti-
cally active radiation, air pressure, wind speed, PM2.5 concentration, and CO2 levels. These
data provided essential support for analyzing the environmental conditions affecting the
growth of the green plum trees in the experimental area.

Figure 5. The leaf area index (LAI) measuring instrument, with its fish−eye lens facing upwards, is
placed horizontally above the crown of the tree during measurement.

Figure 6. Leaves and the SPAD−502 chlorophyll analyzer: the SPAD−502 instrument is used to
clamp the leaves and obtain chlorophyll values.

Figure 7. The orchard meteorological station collects environmental data within the orchard and
promptly uploads the data to a cloud platform for storage.

The LAI measurements were taken by orchard professionals. During the process, the
operators needed to flexibly adjust their strategies based on weather conditions to ensure
data accuracy and consistency. On sunny days, strong sunlight may cause excessive glare,
so midday should be avoided; measurements should preferably be taken in the morning
or evening when the light is more even. To reduce the interference from strong light, the
shading device provided with the instrument should be used, and the fish−eye lens of the
instrument must be kept perpendicular to the ground and aligned with the central axis of
the canopy. The instrument’s height should be adjusted according to the actual structure of
the canopy, ensuring that the main part of the canopy is covered while avoiding obstruction
from lower leaves. On cloudy days, when the light is more even, operators need to pay
closer attention to the placement height and angle of the instrument, ensuring that the light
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sensor is able to accurately measure the canopy’s structure under weaker light conditions.
In low-light situations, operators should use supplementary lighting and may need to
increase the number of measurement points or extend the measurement time to gather
more detailed and comprehensive canopy data. Before each measurement, the instrument
must be calibrated, and three measurement points should be set in the east, south, west,
and north directions, with one data recording from each point. The final results, processed
as an average, can effectively reflect the true LAI value of the canopy, ensuring the data’s
reliability and repeatability.

During the SPAD measurements, impurities such as dust or stains on the leaves
may affect the accuracy of the readings, and leaves damaged by pests or diseases may
interfere with SPAD values due to their abnormal color and structure. Therefore, leaves
should be carefully inspected before data collection, and any dust or impurities should
be gently wiped off with a clean cloth to ensure the measurement area is clean and free
of contamination. Leaves affected by pests or diseases should be avoided. Samples are
selected from the upper, middle, and lower layers of the crop, with three leaves chosen
from each of the east, south, west, and north directions, making a total of 12 leaves. Each
leaf is marked, as shown in Figure 8. During the measurement, the SPAD meter must be
in complete contact with the leaf surface, avoiding any bending or twisting of the leaf.
Each leaf is measured in its upper, middle, and lower parts, avoiding the veins, and the
average value of these readings is taken as the chlorophyll content for that leaf. The average
chlorophyll content of the 12 leaves is used as the relative content of chlorophyll (SPAD)
for that sample. If any of the marked leaves are affected by pests or diseases during the
experiment, this must be carefully recorded and explained. Specifically, the severity of
the pest or disease impact on the leaf should be noted, and photos should be taken for
subsequent analysis. If the diseased area is large or severely affects the color or structure of
the leaf, the SPAD data for that leaf will no longer be used in the analysis, and a healthy
leaf from the same location will be marked and measured as a replacement.

Figure 8. We selected 12 leaves from the upper, middle, and lower levels of the sample, as well as
from the east, south, west, and north directions, to measure SPAD values, and used label plates to
mark these leaves.

Figure 9 displays the projections of the leaf area index (LAI) values of a sample tree
in various directions, with the LAI data are presented in Table 1 and the SPAD data in
Table 2. To minimize the uncertainties caused by individual measurements, environmental
characteristic data were collected multiple times under different weather conditions and at
various time periods to capture the crop’s performance under varying environmental states.
This approach helps prevent the influence of extreme weather during specific periods from
affecting the inversion results. Some of the environmental characteristic data are shown in
Table 3. For data from multiple measurements, we applied the moving average smoothing
technique. The core idea of this method is to replace individual data points with the average
of several data points over a specific period. The window size for the moving average
was chosen based on the frequency of data collection to balance noise reduction and data
responsiveness. This approach smooths out large short-term fluctuations, highlighting
long-term trends and reducing the noise caused by transient weather conditions such
as sudden rainfall or gusts of wind, thereby minimizing the impact of environmental
variability.This results in more stable and accurate inversion outcomes. All measurement
data were meticulously recorded in an Excel file for subsequent analyses.
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(a) (b) (c) (d)

1

Figure 9. When using leaf area index instruments to measure the LAI from different directions, the
projections in the instrument—labeled (a–d)—represent the east, west, south, and north directions,
respectively.

Table 1. Table of single−sample leaf area index collection record (1, 2, and 3 represent measurement
point 1, measurement point 2, and measurement point 3, respectively).

Sample
East South West North

Ave1 2 3 1 2 3 1 2 3 1 2 3

1 2.41 1.73 1.76 2.4 3.6 2.72 3 2.54 3.16 3.41 2.08 2.3 2.59
2 3.11 3.11 2.2 2.04 2.26 1.9 2.16 2.68 2.41 1.88 2.61 3.31 2.47
3 1.48 1.5 2.61 1.84 1.98 2.18 2.01 2.07 1.6 1.92 2.22 2.07 1.96
4 2.67 2.31 1.89 1.3 1.8 1.8 1.48 2.83 2.02 1.58 1.81 1.33 1.9
5 2.77 2.13 2.16 1.91 1.78 2.55 2.38 3.45 2.59 2.49 1.65 1.65 2.29
6 2.78 2.72 2.85 2.41 2.21 2.72 1.81 1.74 2.72 2.34 2.34 2.77 2.45
7 1.98 2.93 2.55 3.02 2.3 1.95 2.09 2.61 2.88 3.19 2.3 2.75 2.55
8 3.37 1.74 3.02 2.67 2.07 1.96 1.96 2.71 2.68 1.64 1.7 2.34 2.54
9 1.9 2.27 2.3 2.23 2.67 2.89 2.88 2.72 3 3.33 2.62 3.12 2.66
10 2.12 2.78 3.32 2.54 2.89 2.22 1.95 1.79 2.43 2.67 2.24 2.26 2.52
11 3.01 3.1 2.62 2.42 2.3 2 2.18 2.7 2.51 1.92 2.58 3.02 2.53
12 2.82 2.4 2.31 1.95 1.89 2.72 2.4 3.32 2.6 2.5 1.88 1.87 2.39
13 2.48 2.05 2.29 2.64 2.34 2.79 2.42 2.42 2.42 2.41 2.38 2.71 2.45
14 2.49 2.51 2.91 2.37 3.08 2.98 2.54 2.74 2.67 2.44 2.04 2.43 2.6

Table 2. Table of partial collection records of single−sample SPAD (“Up” represents the upper part
of the blade, “Mid” represents the middle part of the blade, and “Down” represents the lower part of
the blade).

Sample
East South West North

Up Mid Down Up Mid Down Up Mid Down Up Mid Down

1 28.2 33.3 23.6 29.6 29.9 29.6 32.8 37.8 28.1 31.3 30 33.5
2 29.1 30.6 19.5 28.2 33.8 37 32.6 28.8 33 28.7 28.1 29
3 28.6 32.7 26.3 33.7 30.1 20.9 36.1 23.9 31.3 37.8 31.9 25.3
4 25.2 35.3 32.8 26.8 31.2 30.8 26.3 34.1 27.4 24.6 29.1 31.8
5 30.4 28.8 29.6 36.4 31 36.6 32.4 25.1 23.7 24.1 29.1 23.7
6 39 29.7 31.6 36.3 33.8 35.2 33.7 29.7 29.5 24.5 33 23.7
7 39 37.8 31.7 38.5 32.6 36 36.5 40.2 36.5 35 40 33
8 26.5 30.9 24.3 31.9 32.8 29.5 20.5 19.9 25.1 29.5 28.2 31.9
9 26.7 31.2 29.6 32.3 33.8 28.9 21.2 23.2 25.8 29.7 27.3 32.8
10 27.5 30.4 31.6 32.5 34.4 30.6 25.4 26.7 32.1 28.8 27.4 31.4
11 28.4 29.5 32.7 31.3 34.8 30.2 27.7 30.4 29.8 35.2 34.8 38.3
12 38.3 35.4 34.2 36.5 32.7 35.1 33.3 30.2 29.1 33.4 35.4 35.6
13 27.2 31.3 30.2 32.7 33.9 30.5 21.6 23.9 31.7 29.5 27.6 31.1
14 29.3 33.6 37.5 26.9 43.9 34.5 36.9 36.1 32.6 37 39.2 26
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Table 3. Partial environmental data collection (ET represents environmental temperature, EH repre-
sents environmental humidity, Soil−T represents soil temperature, Soil−M represents soil moisture,
CO2 represents carbon dioxide concentration, and LI represents light intensity).

ET EH Soil−T Soil−M CO2 LI Collection Time

18.6 64.9 16.8 36.18 552.9 13,086 20 March 2024-9:00:02
20.3 54.2 16.7 36.08 558.0 9009 20 March 2024-9:30:02
21.9 49.2 16.7 36.06 550.9 11,919 20 March 2024-10:00:00
22.4 48.9 16.6 36.14 544.8 15,644 20 March 2024-10:30:01
24.0 46.5 16.6 36.03 538.8 16,503 20 March 2024-11:00:02
24.0 44.1 16.4 35.94 533.6 13,563 20 March 2024-11:30:02
25.4 44.1 16.3 35.95 524.4 15,171 20 March 2024-12:00:01
25.4 43.7 16.8 35.87 552.9 15,522 20 March 2024-12:30:01
25.2 43.7 16.8 35.77 515.9 16,948 20 March 2024-13:00:01
25.2 43.7 17.0 35.70 512.3 10,526 20 March 2024-13:30:01

2.2.2. Dataset Construction

In this study, we first preprocessed the initial data collected on the LAI, leaf chlorophyll
content, and environmental characteristic factors of green plums. Using statistical methods,
we thoroughly examined the raw dataset, identifying and removing outliers that deviated
significantly from the overall distribution. After this filtering process, we retained a total of
182 data samples, including 156 samples from the experimental group, which served as
the foundational dataset for the machine learning algorithm’s modeling. The remaining
26 samples from the control group were used for model validation and comparative
analyses. Additionally, to reduce the impact of dimensional differences and seasonal
fluctuations across different data sources, we applied standardization and normalization to
the dataset. This ensured consistent numerical scales for all features, thereby enhancing the
model’s robustness and generalization ability. Table 4 presents the variability and central
tendencies of the parameters within the dataset.

Table 4. Environmental data statistics (the maximum, minimum, mean, median, and standard
deviation of 12 environmental characteristic factors were statistically analyzed).

Sample Numbers Max Min Mean Med Std

LAI 182 5.175 0.961 2.941 3.151 1.03
SPAD 182 35.14 17.725 25.709 25.383 4.621
ET 182 29.92 11.3 18.364 17.55 4.03
EH 182 93.5 62.82 80.285 80.425 5.242
Soil−T 182 24.25 12.4 18.24 18.26 2.927
Soil−M 182 72 20.37 40.11 40.2 12.867
LI 182 17,902 447 5127 4840 3477
CO2 182 557 492 524.6 524 19.496
pH 182 8.26 7.7 8 7.895 0.177
DPT 182 23 8.53 15.207 14.11 4.389
PAR 182 11.73 2.5 5.367 4.68 2.386
AP 182 1016 967 999.1 1001 9.816
WS 182 0.65 0.002 0.164 0.145 0.138
PM2.5 182 4.83 0.01 0.338 0.01 0.964

2.3. LAI Inversion Model Based on Environmental Characteristic Factors (EFs−PM)
2.3.1. Environmental Characteristic Factor Analysis

In this study, we obtained data on 12 environmental characteristic factors of green
plums using weather stations and soil temperature and moisture sensors. We evaluated
the relationship between these factors and the LAI using statistical methods to assess the
linear relationships between variables [33–35]. The Pearson [33] correlation coefficient was
employed to measure the linear relationship between two continuous variables. Its value
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ranges from −1 to +1, where +1 indicates a perfect positive linear relationship, −1 indicates
a perfect negative linear relationship, and 0 indicates no linear relationship. The calculation
formula is provided in Equation (1).

r =
n(Σxy)− (Σx)(Σy)√

[nΣx2 − (Σx)2][nΣy2 − (Σy)2]
(1)

In this formula, n represents the sample size, Σxy is the sum of the products of the
corresponding values of the two variables, and Σx and Σy represent the sums of the values
of each variable, respectively. Σx2 and Σy2 represent the sums of the squares of the values
of each variable.

The Spearman rank [34] correlation coefficient, a non-parametric measure, evaluates
the correlation between the rankings of two variables. It shares the same range of values as
the Pearson coefficient, from −1 to +1. Its calculation formula is provided in Equation (2).

ρ = 1 −
6Σd2

i
n(n2 − 1)

(2)

In this context, d is the rank difference between two variables and n represents the
sample size.

The Kendall rank [35] correlation coefficient provides a non-parametric measure of
correlation by assessing the agreement and disagreement between pairs of data points. Its
formula is provided in Equation (3).

τ =
2(number o f concordant pairs)− 2(number o f discordant pairs)

n(n − 1)
(3)

where number o f concordant pairs is the consistent ranking of the two variables, number of
discordant pairs is inconsistent ranking of the two variables, and n represents the sample size.

To ensure that environmental characteristic factors (EFs) have a strong explanatory
power for the LAI, we first calculated their correlation coefficients using the Pearson,
Spearman, and Kendall methods. We then ranked the results from each method and selected
the features with the highest correlation coefficients in each analysis. If a feature consistently
showed high correlation across multiple methods, it indicated a strong relationship with
the LAI. Finally, we integrated the results from all three methods, identifying the top six
environmental factors that consistently exhibited high correlation across the analyses. This
comprehensive approach enables us to identify the most relevant environmental factors
influencing the LAI, enhancing our understanding of how these factors drive changes in
plum tree LAI.

2.3.2. EFs−PM Model Construction Method

In this study, we used experimental-group data (from Trees 1 to 12) to develop LAI
inversion models by treating environmental feature factors as independent variables and
the LAI as the dependent variable. We applied multivariate data analysis algorithms [36],
including PLSR [37], SVMR [38], RF [39], MLR [40], and GPR [41]. Subsequently, these
models were validated using control−group data (from Trees 13 and 14). By comparing
the evaluation metrics of each model, we identified the most effective environmental
feature-based LAI inversion model (EFs−PM).

PLSR is a technique that combines principal component analysis and regression analy-
sis which is suitable for handling situations with high multicollinearity among independent
variables. It works by projecting both the independent and dependent variables into new
subspaces to extract the latent components that best explain their relationship, while si-
multaneously reducing dimensionality and constructing a regression model to maximize
variable correlation. SVMR, based on Support Vector Machines, is a regression method that
predicts outcomes by finding a regression hyperplane that maximizes the margin of the
support vectors. RF, as an ensemble learning method, builds multiple decision trees for
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regression, with the final prediction given by averaging the results of all the trees. MLR
assumes a linear relationship between independent and dependent variables, using the
least squares method to find the optimal linear mapping between them. GPR is a Bayesian
non-parametric regression method that models the functional distribution of independent
and dependent variables based on Gaussian processes, providing confidence intervals for
these predictions.

Each algorithm has different characteristics and strengths when dealing with complex
and high−dimensional data. PLSR efficiently addresses multicollinearity through dimen-
sionality reduction, making it suitable for high−dimensional datasets. SVMR captures
the nonlinear relationships between the LAI and environmental variables using kernel
functions. RF processes complex nonlinear data by integrating multiple decision trees and
has strong noise resistance. MLR serves as a baseline model for evaluating the linear rela-
tionship between the LAI and environmental factors. GPR enhances prediction robustness
by handling uncertainty.Together, these algorithms provide a comprehensive modeling
and analysis framework for LAI inversion.

The coefficient of determination R2 [42] (Equation (4)) and the root mean square error
(RMSE) [43] (Equation (5)) were chosen as the evaluation metrics used to assess the model’s
inversion accuracy. The R2 indicates the percentage of variance explained by the model,
with larger R2 values reflecting stronger explanatory power. RMSE, on the other hand,
measures the average error between the values predicted by the model and the actual
observed values, with smaller RMSE values indicating higher inversion accuracy.

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 (4)

RMSE =

√
∑n

i=1(yi − ŷi)2

n
(5)

Let n denote the sample size, y the manually measured values, ŷ the predicted values,
and ȳ the mean value.

To investigate the effect of the correlation analysis on the accuracy of LAI inversion,
two models were developed. The first model incorporates the six environmental factors
that show the highest correlation with the LAI, whereas the second model uses all the
initially collected environmental factors. A comparison of these models’ performances was
conducted to evaluate the impact of the correlation analysis.

2.4. SPAD−Based LAI Inversion Model for Plum Trees (SPAD−PM)

This study combined measured chlorophyll content (SPAD) data with concurrently
measured LAI data and applied multivariate data analysis algorithms, including PLSR,
SVMR, RF, MLR, and GPR, to build LAI inversion models. The best-performing model
among these five algorithms was used as the SPAD−based LAI inversion model
(SPAD−PM) and validated using control−group data.

PLSR improves prediction accuracy by addressing multicollinearity in SPAD data
through dimensionality reduction. SVMR captures complex nonlinear relationships be-
tween SPAD and the LAI, while RF handles multidimensional nonlinear features with
strong noise resistance. MLR assesses the linear relationship between SPAD and the LAI as a
baseline comparison model, and GPR enhances model robustness by providing confidence
intervals and handling noisy, uncertain data. These algorithms offer diverse modeling
approaches to LAI inversions using SPAD data.

2.5. Multi−Source Decision Fusion Model Based on Adjusted Coefficient of Determination
(MDF−ADRS)

The two methods described earlier, while capable of performing an LAI inversion to
some extent, rely on single−source information and have several limitations. First, the
complexity of a plum tree’s growing environment cannot be fully captured by a single
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information source, leading to reduced inversion accuracy. Second, reliance on a single
data source may introduce biases, causing overfitting to specific datasets and impairing per-
formance on new data. Lastly, depending on a single data source complicates data updates
and model expansion [44]. Zhao [45] proposed an approach for accurately monitoring LAI
and SPAD values in summer maize using multi−source data fusion, demonstrating that
multi−source data models are more effective than single−source models. Their random
forest model, which incorporated multi−source data fusion, achieved the highest accu-
racy. Integrating multi−source data allows the LAI inversion model to better adapt to the
complex and variable growth conditions of plum trees, thereby providing more precise
inversion results.

This study introduces a multi−source decision fusion model based on the adjusted
coefficient of determination (adjusted R2) [46]. The model has three components: model
output, adjusted R2 computation, and decision fusion, as shown in Figure 10. The model
output section includes two single−source models (SPAD and environmental feature
factors) and calculates their respective R2 values. In the adjusted R2 computation, the R2

value is modified to account for the number of independent variables used and sample
size. These adjusted R2 values are then used in the decision fusion process, where each
model is weighted based on its adjusted R2 value. The final inversion result is obtained
through weighted averaging, leveraging the complementarity of multiple data sources to
enhance accuracy and robustness. The weighted averaging formula used is provided in
Equation (6).

ŷ =
M

∑
m=1

Wm · ŷm (6)
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Figure 10. This figure illustrates the process of integrating the output results of two different inversion
models (SPAD−PM and EFs−PM) to improve the final inversion accuracy. Both the SPAD−PM and
EFs−PM models provide evaluation metrics (R2) and inversion results (ŷ). In the fusion process, their
adjusted R2 value is first calculated, taking into account the number of virtual samples (n) and the
variables (p) that affect model evaluation. Next, the score (xm) for each model is computed, and their
weight coefficients (Wm) are standardized. Using a weighted average formula, a weighted sum is
applied to obtain the fused inversion result. The weights are adjusted using an exponential function
based on model scores to ensure a reasonable weight distribution. Finally, the weighted average
method is used to combine multiple inversion results (y1, y2, . . . , yn), outputting the fused inversion
results (R1, R2, . . . , Rn) and thereby improving the overall performance of the model’s inversion.
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Here, wm signifies the weight of the m model, y is the ultimate inversion output, and
ym is the inversion output from the m model. The formula for determining the m model’s
weight wm is detailed in Equation (7):

Wm =
exm

∑N
j=1 exj

(7)

In this context, xm denotes the score assigned to the model, while N indicates the total
number of m models. The computation of the adjusted R2 is detailed in Equation (8):

Adjusted-R2 = 1 − (1 − R2)(n − 1)
n − p − 1

(8)

In this formula, R2 represents the coefficient of determination, n denotes the total
number of samples, and p indicates the number of predictors within the model.

3. Results

This study successfully achieves precise LAI inversion using environmental feature
factors and SPAD data. Our findings reveal that our multi−source decision fusion model
based on the adjusted coefficient of determination (MDF−ADRS) significantly outperforms
the SPAD−PM and EFs−PM single−source models, as well as other traditional model fu-
sion methods, in terms of both inversion precision and accuracy. The detailed experimental
results and analyses are provided below.

3.1. Analysis of EFs Results

This study analyzes the relationship between environmental characteristic factors and
the LAI using statistical methods used for assessing linear relationships. The correlation
coefficients between these 12 environmental factors and the LAI are shown in Figure 11.
As depicted in Figure 11a, the Pearson correlation analysis indicates that environmental
temperature (ET), soil temperature (Soil−T), soil moisture (Soil−M), and light intensity (LI)
exhibit the strongest positive correlations, with coefficients of 0.770, 0.606, 0.731, and 0.637,
respectively. In contrast, CO2 concentration (CO2) and environmental humidity (EH) show
the strongest negative correlations, with coefficients of −0.727 and −0.637, respectively.
Figure 11b shows that, under Spearman’s rank correlation analysis, the six environmental
factors of ET, Soil−T, LI, CO2, EH, and Soil−M have the highest absolute correlation values
with the LAI. ET, Soil−T, Soil−M, and LI exhibit positive correlations, with coefficients
of 0.718, 0.661, 0.654, and 0.596, respectively, while CO2 concentration and environmental
humidity show negative correlations, with coefficients of −0.640 and −0.617. Figure 11c
reveals that under Kendall’s correlation analysis, these same six environmental factors (ET,
Soil−T, LI, CO2, EH, and Soil−M) show the highest absolute correlation values with the
LAI. The absolute values of the remaining factors are all below 0.5.

Therefore, by synthesizing the results from the three methods it can be concluded that,
among the twelve environmental characteristic factors assessed, environmental temperature
(ET), soil temperature (Soil−T), light intensity (LI), CO2 concentration (CO2), environmental
humidity (EH), and soil moisture (Soil−M) exhibit the strongest correlations with the
leaf area index (LAI). These factors are more effective in the regression analysis of LAI
inversion and are considered optimal environmental feature factors (OEFs). We assessed
the relative importance of the environmental factors in the MDF−ADRS model based
on their correlation strength with the LAI, ranking them by the absolute value of their
correlation coefficients. The ranking is in the following order: environmental temperature
(ET), soil moisture (Soil−M), carbon dioxide concentration (CO2), soil temperature (Soil−T),
environmental humidity (EH), and light intensity (LI). For future research, we plan to use
more interpretable methods like Partial Dependence Plots (PDPs) and SHAP values. PDPs
will show how individual features impact LAI predictions, while SHAP will quantify
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each feature’s contribution, providing a clearer understanding of feature importance and
improving model interpretability.

(a) Pearson (b) Spearman (c) Kendall

1

Figure 11. The correlation analysis between the LAI and environmental characteristic factors indicates
that a coefficient with a larger absolute value signifies a stronger correlation.

3.2. Analysis of EFs−PM Model Results

We used the experimental-group data as the modeling set and applied multivariate
data analysis techniques to construct an LAI inversion model, using the optimal environ-
mental feature factors (OEFs) as predictors and the LAI as the response variable. The
constructed model was validated using a validation set composed of control−group data.
These data were selected because Trees 13 and 14, which served as control trees, are located
in the same orchard as the experimental trees and share similar conditions in terms of their
climate, soil, canopy structure, and tree age. This ensures that the validation data are con-
sistent with the experimental data in terms of fundamental conditions. The experimental
results are presented in Table 5; the Partial Least Squares Regression (PLSR) [37] model, un-
der optimized conditions, demonstrated a superior inversion accuracy, achieving R2 values
of 0.88 and 0.69 for the modeling and validation sets, respectively, and RMSE values of 0.37
and 0.55, outperforming alternative models. Comparative testing was also performed using
all environmental characteristic factors (AEFs) as predictors, with the results presented in
Table 6. The analysis of Tables 5 and 6 confirms that the PLSR model maintains a higher
inversion accuracy across both optimized and comprehensive environmental conditions.
Moreover, the models utilizing optimized features consistently showed an enhanced R2

and reduced RMSE, affirming the beneficial role of optimal feature selection in increasing
model accuracy.

Table 5. Evaluation of green plum LAI estimation results based on OEFs.

Algorithm
Modeling Validation

R2 RMSE R2 RMSE

MLR [40] 0.76 0.51 0.56 0.69
SVMR [38] 0.79 0.47 0.60 0.62
RF [39] 0.70 0.54 0.53 0.75
GPR [41] 0.83 0.39 0.67 0.59
PLSR [37] 0.88 0.37 0.69 0.55

Table 6. Evaluation of green plum LAI estimation results based on AEFs.

Algorithm
Modeling Validation

R2 RMSE R2 RMSE

MLR [40] 0.68 0.67 0.54 0.74
SVMR [38] 0.71 0.51 0.56 0.71
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Table 6. Cont.

Algorithm
Modeling Validation

R2 RMSE R2 RMSE

RF [39] 0.67 0.59 0.48 0.82
GPR [41] 0.73 0.50 0.59 0.67
PLSR [37] 0.82 0.42 0.62 0.64

3.3. Analysis of SPAD−PM Model Results

This research utilized SPAD as the independent variable and measured the LAI as the
dependent variable to establish an LAI inversion model based on multivariate data analysis
techniques. The performance of this model is summarized in Table 7, which highlights
that the Partial Least Squares Regression (PLSR) model displayed the greatest inversion
accuracy. The PLSR model achieved an R2 of 0.73 for the model building set and 0.62 for
the validation set, with RMSEs of 0.59 and 0.61, respectively; markedly better than those of
competing models. As a result, PLSR was used to construct the SPAD−PM model.

Table 7. Evaluation of green plum LAI estimation results based on SPAD.

Algorithm
Modeling Validation

R2 RMSE R2 RMSE

MLR [40] 0.64 0.75 0.50 0.83
SVMR [38] 0.66 0.73 0.52 0.81
RF [39] 0.60 0.82 0.48 0.87
GPR [41] 0.62 0.77 0.49 0.82
PLSR [37] 0.73 0.59 0.62 0.61

3.4. MDF−ADRS Model Evaluation

This investigation utilized the EFs−PM and SPAD−PM models’ outputs as inputs,
applying a weighted average fusion method determined through an adjusted coefficient of
determination. The MDF−ADRS model, in its validation phase, achieved an R2 of 0.88 and
an RMSE of 0.39, indicating its robust LAI inversion capabilities. To validate the model’s
enhanced performance, it was compared against classical fusion techniques such as simple
averaging, voting, and linear weighing based on Log R2. Figure 12 presents a detailed
comparison across six models, demonstrating that the MDF−ADRS model, relative to
simple averaging, voting, and linear weighting based on Log R2, improved the R2 by 0.17,
0.14, and 0.10 and reduced the RMSE by 0.13, 0.10, and 0.06, respectively. In comparison to
the pre-fusion single−source models, the MDF−ADRS model enhanced the R2 by 0.26 and
0.19 relative to the SPAD−PM and EFs−PM models, respectively, and lowered the RMSE
by 0.22 and 0.16.

The comparison between the inversion and measured values in the validation set, as
shown in Figure 13, clearly demonstrates that the MDF−ADRS model exhibits a superior
fitting performance compared to other models.

The experimental results clearly demonstrate that the MDF−ADRS model has a
significant advantage in terms of its LAI inversion accuracy and precision. In terms of
data characteristics, the EFs−PM model primarily relies on environmental data, while the
SPAD−PM model is based on SPAD data. A single data source alone is insufficient to
fully capture the complexity of the LAI. Environmental data reflect macro−level climate
conditions, while SPAD data are closely related to the physiological state of vegetation. The
MDF−ADRS model enhances LAI inversion accuracy by integrating these two data sources
and leveraging their complementary strengths to capture both macro−environmental and
micro-vegetation changes. In terms of model structure, the multi−source decision fusion
framework of the MDF−ADRS model allows for the simultaneous use of multiple data
sources, integrating them through a weight-optimized allocation strategy. Compared



Agriculture 2024, 14, 2076 17 of 23

to single−source models (EFs−PM or SPAD−PM), the MDF−ADRS model captures a
richer set of features, addressing the limitations of single−source models under extreme
environmental conditions. Consequently, the MDF−ADRS model outperforms other
models in terms of its overall performance, providing a more reliable and accurate tool for
crop growth monitoring in agricultural engineering.

Figure 12. This figure presents the comparative results of our model and the simple average method
(AVE), voting method (VOT), and linear weighting method based on Log R2 (LW−Log R2).

(a) MDF-ADRS (b) SpearmanLW-Log R²

(c) AVE (d) VOT

(e) EFs-PM (f) SPAD-PM

1

Figure 13. Cont.
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(a) MDF-ADRS (b) SpearmanLW-Log R²

(c) AVE (d) VOT

(e) EFs-PM (f) SPAD-PM

1

Figure 13. Results of comparison between model inversion values and measured values.

4. Discussion

This paper presents the development of a cutting-edge multi−source decision fusion
model (MDF−ADRS) based on the adjusted coefficient of determination for inverting
the leaf area index (LAI) of green plums. This model integrates both environmental
characteristic factors and SPAD values to achieve precise LAI estimates. Demonstrating
exceptional accuracy, with an R2 of 0.88 and an RMSE of 0.39 in the validation set, the
MDF−ADRS model significantly outperforms established single−source models (EFs−PM
and SPAD−PM) as well as other fusion techniques. This confirms the model’s effectiveness
in utilizing multi−source data for LAI inversion and aligns with Zhao’s [45] findings
on the superior performance of multi−source models in agricultural applications. This
study proposes an innovative multi−source data fusion approach that combines leaf SPAD
values with IoT-derived environmental factors. Compared to traditional single−source
LAI estimation methods, this approach captures the dynamic changes in the LAI more
comprehensively and significantly improves predictive accuracy. For example, Wei [47]
used Sentinel−2 imagery and PROSAIL model parameter calibration to invert the maize
canopy LAI, relying mainly on remote sensing data. In contrast, our study integrates
IoT-based environmental data, providing more detailed ground−level observations and
enhancing the robustness of the model. Shi [48] combined airborne LiDAR waveforms
with Sentinel−2 imagery to estimate the LAI using a physical model. While effective,
their method may have limitations in handling multi−source data. Our research, how-
ever, employs an adjusted R2−based multi−source decision fusion model, optimizing the
weighting of various data sources and significantly boosting both model generalization
and prediction accuracy.
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This study overcomes the limitations of single−source data approaches, excelling
particularly under complex environmental conditions. By integrating IoT environmental
data with SPAD values, our MDF−ADRS model effectively captures critical growth fac-
tors, delivering more accurate and robust LAI estimates. The model employs a weight
optimization strategy to seamlessly integrate diverse data inputs, mitigating the biases of
individual data sources. The application of the adjusted R2 further enhances the model’s
generalization capability, ensuring high predictive accuracy across different environments.
Compared to traditional methods, our fusion strategy effectively resolves issues of data
redundancy and conflict, with a clear advantage demonstrated in its results.

4.1. Limitations and Future Directions

Despite the significant progress made in this study by integrating multi−source
data, certain limitations remain. Firstly, the model’s effectiveness relies heavily on the
extensive coverage and reliability of IoT sensor networks. If the sensors’ data are inaccurate,
the model’s performance could be compromised. Secondly, the model’s dependence
on multi−source data faces additional limitations, especially under rapidly changing
environmental conditions. multi−source data typically originate from different sensor
systems, leading to potential discrepancies in data collection timings and spatial resolution.
In conditions of rapid environmental change, inconsistent data synchronization can result
in input biases, affecting the accuracy of the model’s predictions. Additionally, the quality
of different data sources may vary, particularly when sensors age, maintenance is delayed,
or environmental interference increases, potentially introducing noise, missing values, or
errors that could impact model stability. Future research will consider incorporating more
advanced data preprocessing techniques, along with data quality monitoring and anomaly
detection mechanisms, to reduce the interference from data noise. At the same time, we
plan to use methods like transfer learning to enhance the model’s adaptability, ensuring it
maintains its high performance across different environments.

Moreover, the model’s applicability across different plum varieties is another impor-
tant issue. This study focused on the key growth stages of the Luhe plum variety, which
has a short growth cycle and thrives in mild, humid climates. Different plum varieties
exhibit variations in their canopy structure, leaf morphology, and environmental adapt-
ability, making it difficult for a single model to be generalized to all plum types. Future
research should incorporate data from multiple plum varieties during model training, or
design a modular model that adjusts predictions based on specific varietal characteristics,
to improve the breadth of the model’s applicability.

Lastly, although this study did not observe significant overfitting or underfitting issues
during model development, these risks should not be overlooked. As the model integrates
a greater variety of data sources, its structure will become more complex. Therefore, in
future studies, we plan to use cross-validation, regularization techniques, and data augmen-
tation methods to mitigate the risk of overfitting. Additionally, we will explore advanced
algorithms such as deep learning or ensemble learning to better address underfitting and
improve the model’s adaptability to complex data.

In the validation phase, especially when using control−group data, challenges and
biases emerged, such as slight environmental differences between the control and ex-
perimental trees, relatively smaller sample sizes for the control data, and physiological
variations between individual trees—all of which could introduce bias into the results.
To mitigate these effects, we preprocessed the data (e.g., through standardization) and
carefully analyzed individual trees’ physiological differences. In future studies, expanding
the sample size and incorporating additional multi−scenario data will further reduce
validation biases and enhance the model’s generalization across diverse environments and
crop conditions.
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4.2. The Application and Challenges of Models in Agricultural Practice

The proposed MDF−ADRS model demonstrates high accuracy and reliability in leaf
area index (LAI) prediction. However, to effectively integrate it into routine agricultural
practices, several measures are required to ensure the model’s applicability and usability
in real−world settings. The key steps for model deployment and the associated potential
challenges are as follows:

(1) The initial steps involve setting up the necessary infrastructure and deploying data
collection systems within agricultural production areas, including systems for gather-
ing environmental, SPAD, and LAI data. This will ensure that the MDF−ADRS model
receives high−quality, real−time data support.

(2) After data collection, a data management and processing platform is needed. This
platform will clean, calibrate, and standardize the collected data, ensuring consistency
and accuracy.

(3) Farmers or agricultural technicians will undergo training to learn how to operate the
model, interpret its outputs, and translate the model’s recommendations into practical
agricultural management decisions.

During this transition, farmers may face challenges related to equipment investments,
technical training, and data management. To support a smooth integration, we plan to
provide technical support, cost−control solutions, and user-friendly platform development
to help farmers overcome these challenges.

The MDF−ADRS model has broad potential beyond LAI inversion estimations for
green plum trees and can be applied to other crops and agricultural settings. By efficiently
integrating multi−source data with a weight optimization strategy, it will be suitable for
various crop management needs. For field crops like rice and wheat, which are heavily
influenced by environmental factors and SPAD values, the model can accurately monitor
growth and optimize irrigation and fertilization, improving yield and efficiency. For
fruit crops like grapes and apples, where the LAI is key to assessing canopy health and
predicting yields, the model can precisely evaluate tree health by combining environmental
data with SPAD values. This is especially beneficial for high−value crops, where precision
management boosts yield and quality.

In conclusion, the MDF−ADRS model represents a significant breakthrough in non-
destructive LAI estimation for green plums, offering valuable tools for precision agriculture
and improving monitoring and management practices across large-scale farming operations.
Its successful application exemplifies the profound impact of integrating multi−source
data on the accuracy and efficiency of agricultural monitoring, setting a new standard for
the industry.

5. Conclusions

This study proposed a multi−source data fusion model for leaf area index (LAI) inver-
sion, significantly improving the prediction accuracy of the LAI through the integration of
environmental and SPAD data for plum trees. The main findings of the study are as follows:

(1) In the analysis of key environmental factors, the six critical factors most correlated with
plum tree LAIs were selected by comprehensively evaluating linear relationships using
statistical methods, including Pearson, Spearman, and Kendall correlation analyses.
These factors include environmental temperature (ET), soil temperature (Soil−T),
environmental humidity (EH), soil moisture (Soil−M), carbon dioxide concentration
(CO2), and light intensity (LI). These factors significantly influence the LAI at different
growth stages and are fundamental to constructing high−precision models.

(2) During model construction, two separate models were developed: the Environmental
Features-based Model (EFs−PM) and the SPAD−based Model (SPAD−PM). The
EFs−PM model used the selected key environmental factors and the PLSR algo-
rithm to capture macro−environmental effects on crop growth. The EFs−PM model
achieved an R2 of 0.69 and a root mean square error (RMSE) of 0.55 on the validation
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set. The SPAD−PM model, on the other hand, used SPAD data and PLSR to handle
the complex relationship between SPAD and the LAI, achieving an R2 of 0.62 and an
RMSE of 0.61 on the validation set.

(3) This study introduced a multi−source decision fusion model based on the adjusted
R2 (MDF−ADRS), which effectively combined the strengths of both the EFs−PM and
SPAD−PM models. By incorporating a weight optimization allocation method, the
model flexibly adjusts the weights of environmental features and SPAD data for LAI
prediction based on different environmental conditions, significantly improving its
accuracy and robustness. The MDF−ADRS model achieved an R2 of 0.88 and an
RMSE of 0.39 on the validation set, demonstrating its superior performance under
complex environmental conditions compared to that of single−source models.

In future research, adding multispectral or hyperspectral image data is expected to
significantly enhance the prediction accuracy and applicability of LAI inversion mod-
els. Specifically, key spectral features related to the LAI, such as vegetation indices and
reflectance information from specific bands, can be extracted from multispectral or hy-
perspectral data. By proposing novel fusion techniques that can integrate these different
dimensions of data, future research will enable more precise agricultural management and
improve real−time crop growth monitoring through dynamic model adjustments. How-
ever, challenges such as data processing, equipment costs, and practical implementation
need to be addressed in real−world applications. With proper technology choices and
effective training support, this direction promises to provide stronger technical tools and
management solutions for modern agriculture.
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