
Citation: Cheng, S.; Zeng, H.; Li, Z.;

Jin, Q.; Lv, S.; Zeng, J.; Yang, Z.

Sensorless Design and Analysis of a

Brushed DC Motor Speed Regulation

System for Branches Sawing.

Agriculture 2024, 14, 2078. https://

doi.org/10.3390/agriculture14112078

Academic Editor: Dainius

Steponavičius
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Abstract: Saw rotational speed critically influences cutting force and surface quality yet is often
destabilized by variable cutting resistance. The sensorless detection method for calculating rotational
speed based on current ripple can prevent the contact of wood chips and dust with Hall sensors.
This paper introduces a speed control system for brushed DC motors that capitalizes on the linear
relationship between current ripple frequency and rotational speed. The system achieves speed regu-
lation through indirect speed measurement and PID control. It utilizes an H-bridge circuit controlled
by the EG2014S driver chip to regulate the motor direction and braking. Current ripple detection is
accomplished through a 0.02 Ω sampling resistor and AMC1200SDUBR signal amplifier, followed by
a wavelet transform and Savitzky–Golay filtering for refined signal extraction. Experimental results
indicate that the system maintains stable speeds across the 2000–6000 RPM range, with a maximum
error of 2.32% at 6000 RPM. The improved ripple detection algorithm effectively preserves critical
signals while reducing noise. This enables the motor to quickly regain speed when resistance is
encountered, ensuring a smooth cutting surface. Compared to traditional Hall sensor systems, this
sensorless design enhances adaptability in agricultural applications.

Keywords: sensorless control; brushed DC motor; agricultural sawing; current ripple; branch sawing

1. Introduction

Saw cutting is a critical process in agricultural production, used both for harvesting
crops at maturity and for trimming during management periods. At the maturity stage,
saw cutting is primarily used for the harvest of crops such as wheat, corn, and sugarcane,
typically employing high-power, non-selective cutting methods [1,2]. Research in this area
focuses on optimizing cutting parameters, including rotational speed, feed rate, and saw
blade tooth geometry, to enhance operational efficiency and reduce energy consumption [3].

In selective cutting during crop management, such as cotton topping, tobacco topping,
and pruning fruit tree branches [4–6], both efficiency and the smoothness of the cut surface
are critical. Studies have shown that uneven cut surfaces increase the risk of fungal
infections, which can negatively affect crop yield and quality [7,8]. The quality of saw
cutting is closely tied to critical parameters, particularly rotational speed and feed rate.
Variations in cutting resistance during the process can increase motor load or even cause
stalling, making precise motor speed control essential for achieving high-quality cuts.

Brushed DC motors, as the primary power source for saw cutting speed, often experi-
ence significant reductions in speed when encountering resistance during operation. To
ensure cutting efficiency and quality, precise monitoring and timely adjustment of motor
speed are essential. Traditional control methods for brushed DC motors are typically
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divided into sensor-based and sensorless control techniques. Sensor-based control typically
requires the installation of an optical encoder or Hall-effect sensor at the rear of the motor
to measure rotational speed via pulse signals generated by the sensor [9]. However, the
high-intensity nature of saw cutting operations in agricultural environments often neces-
sitates frequent motor maintenance or replacement, and the installation of Hall sensors
significantly increases operational costs. Moreover, sensor performance is highly suscepti-
ble to environmental factors such as humidity and dust. Sensorless control methods are
generally classified into circuit model-based and current ripple-based detection techniques.
Circuit model-based control treats the brushed DC motor as an equivalent series circuit of
resistance and inductance, estimating motor speed by inputting parameters such as voltage,
current, resistance, and inductance [10]. However, these parameters are not constant in
practical applications and reduce the reliability of the model.

Current ripple arises during motor operation due to the periodic connection and
disconnection of current in the windings, a consequence of the commutator rotating and
making contact with the brushes. By exploiting the periodic variations in current ripple,
speed estimation can be performed without the need for specific motor parameters, pro-
viding critical information on rotor speed. Ramli [11] applied an adaptive filter for speed
estimation, while Vazquez-Sanchez [12] employed a support vector machine (SVM) to esti-
mate motor speed by detecting the inverse distance between pulses, combined with pulse
counting for position estimation. Radcliffe and Kumar [13] introduced a speed estimation
method based on measuring inductive spikes when the motor is de-energized. Vazquez-
Sanchez [14] achieved an error margin of less than 1 RPM within the 2000–3000 RPM range
by analyzing current spectral components and detecting speed changes within 2 s. Ne-
mec [15] further demonstrated the application of current peak processing with analog and
digital filtering to achieve electronic odometry for mobile robots.

Additionally, application notes published by Texas Instruments [16] and Microchip [17]
introduced ripple-counting techniques for speed estimation. These methods estimate
rotor position using pulse signals and employ open-loop control to adjust motor voltage.
Zhang [18] presented an enhanced Kalman filter that integrates results from both ripple-
based and model-based estimations. Vidlak [19] developed a discrete filter with a floating
bandwidth to process extracted ripple components, estimating their frequency to infer
motor speed, which is subsequently used as feedback for the speed controller.

The aforementioned method estimates motor speed by processing current ripple sig-
nals and employing noise reduction techniques, constructing a closed-loop control system
capable of meeting motor speed calculation requirements in constant-speed scenarios.
However, in branch sawing applications, the mechanical properties of branches are closely
related to their fiber distribution, and the diverse natural growth patterns of branches result
in complex and variable sawing resistance. Branch sawing operates under a single-support
condition, with typical sawing speeds between 3000 and 6000 rpm. High-speed sawing in-
duces vibrations that can lead to blade pinching, causing instability in sawing force [20,21].
Furthermore, as the cutting volume per unit time increases, sawing resistance also rises,
impacting sawing speed [22]. Compared to Hall sensors, sensorless control avoids the need
for data transmission between sensors, enabling real-time detection of speed fluctuations
caused by resistance changes during sawing. This reduces motor speed detection time to
the millisecond level, thereby achieving more effective constant-speed control.

This paper proposes a current ripple-based control method for brushed DC motors,
using estimated speed as feedback for sensorless regulation. The cascaded structure
integrates speed and current controllers, enabling precise control in agricultural saw cut-
ting applications. This approach effectively addresses stalling issues, enhances opera-
tional efficiency, and reduces the risk of disease from uneven cuts, ultimately improving
agricultural productivity.
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2. Materials and Methods
2.1. Ripple Current Extraction and Noise Analysis
2.1.1. Brushed DC Motor Structure

The basic structural model of a brushed DC motor is shown in Figure 1, with key
components and their operational principles clearly depicted. The red and blue sections
indicate the north (N) and south (S) poles of the permanent magnet, respectively. Positioned
between these poles, the coil abcd forms the rotor’s armature winding, while the yellow
semicircles represent the motor’s commutator. When the DC power supply is connected,
current flows through brush A into the coil abcd. According to Lorentz law, the coil
experiences a Lorentz force in the magnetic field, producing torque that drives the rotor to
rotate counterclockwise. As the rotor turns, brushes A and B contact different sections of
the commutator, automatically reversing the direction of current flow through the armature
winding. This design of the commutator ensures that the coil abcd is continuously subjected
to torque within the magnetic field, allowing the rotor to rotate steadily. This mechanism
enhances both the operational efficiency and stability of the motor.
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Figure 1. Structural model of brushed DC motor.

2.1.2. Current Ripple

In practical motor structures, the armature winding usually consists of multiple coils,
which vary based on the application scenario. The rotor connects to the external circuit via
brushes and a commutator. According to Faraday’s law of electromagnetic induction, as the
motor rotates, each coil generates a back electromotive force (back-EMF). This back-EMF
aids in switching the current direction through the brushes and commutator, indirectly
achieving rectification and transmitting current to the external circuit.

During the operation of a brushed DC motor, brushes contact different commutator
segments, causing variations in armature current. This creates a ripple current, which
appears as a pulsation superimposed on the DC component and resembles a sinusoidal
waveform [23].

2.1.3. Current Ripple Characteristics

The characteristics of current ripples are closely linked to the motor’s structural
parameters, with ripple amplitude influenced by factors such as the number of coils,
coil inductance, and motor power. Additionally, the frequency of the ripple components
depends on the rate of current fluctuations. Yuan [24] established a relationship between
ripple frequency and the motor’s rotational speed, as represented by the Equation (1).

fr =
cpknm

60
(1)

where fr represents the ripple frequency, p is the number of pole pairs in the motor, nm is
the rotational speed of motor, k is the number of commutator segments, and c is the parity
coefficient. When the number of commutator segments k is even, c = 1; when k is odd, c = 2.
According to Equation (1), p, k, and c are all structural parameters of the motor. Once the
motor model is selected, these parameters remain constant and are not affected by external
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factors such as temperature, humidity, or operational duration. Experimental verification
of the 775 brushed DC motor reveals that its number of pole pairs is 5. Substituting this
into Equation (1), the relationship between rotational speed and frequency for this motor is
derived, as shown in Equation (2).

nm = 6 · fr (2)

The ripple frequency is directly proportional to the motor’s rotational speed, providing
a basis for using ripple signals to estimate speed. These signals can replace Hall pulse
signals for speed estimation, offering a simpler alternative that avoids the complexities of
inductance-based mathematical models, which can be affected by variations in armature
coil resistance, number of turns, and magnetic properties.

2.1.4. Ripple Noise Extraction

In the method of calculating motor speed based on ripple frequency, once the motor
model is determined, the armature ripple current becomes the sole independent variable.
Therefore, understanding the causes and patterns of noise formation is a prerequisite
for accurately processing ripple signals. In the experiment, the loop current signal was
transmitted to a ZLG ZDS2024plus oscilloscope (sampling frequency of 200 MHz, Zhiyuan
Electronics, Guangzhou, China) using the CP2100X high-frequency AC/DC current probe
(sampling frequency of 300 kHz, accuracy of 1 mA, MICSIG Shenzhen, China). The
current ripple signal extracted at a sampling frequency of 10 kHz, when the rotational
speed was 3000 rpm, is shown in Figure 2. As depicted, the overall current ripple of the
motor exhibits periodic variations over time; however, the details reveal significant noise.
Close examination in the magnified sections shows that spikes cause false peak values in
the signal. Additionally, the extracted ripple signal displays a certain bandwidth rather
than a smooth curve, which is attributable to the use of pulse width modulation (PWM)
power supply.
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Figure 2 shows that spikes in the ripple periodic signal are concentrated around the
peak regions, primarily influenced by the motor’s structure and operational environment.
Poor contact between the brushes and the commutator is a significant factor; unstable
contact can interrupt current flow or cause fluctuations in contact resistance, leading to
spikes. Additionally, mechanical vibrations or brush wear during high-speed operation can
cause bouncing at the contact points, further increasing spike occurrence. As the surfaces of
the brushes and commutator wear, uneven contact can lead to irregular current distribution,
heightening the likelihood of spikes. Additionally, electromagnetic interference (EMI), high-
frequency noise, and transient disturbances in the power supply can distort the ripple
signal [25]. Mechanical vibrations, internal motor imbalances, and external vibration
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sources can further affect brush-commutator contact, exacerbating the spike phenomenon
within the ripple signal.

2.2. System Design and Circuit Implementation
2.2.1. Reduction in Current Ripple Noise

Analyzing the operating principles of brushed motors reveals that noise in the form
of spikes within the ripple signal is inevitable. Consequently, accurately analyzing the
ripple signal requires the application of filtering techniques to the ripple current. Given
that the ripple current signal in the armature is time-domain data, time-frequency analysis
methods are essential for eliminating internal noise and extracting the ripple period. While
Fourier transform (FT) and fast Fourier transform (FFT) effectively capture the frequency-
domain characteristics of the current signal, they offer only a global frequency-domain
description [26]. To quickly and accurately identify variations in motor speed, it is crucial
to focus on the local time-frequency features of the signal, necessitating the acquisition of
energy distribution in the time-frequency space through time-frequency transformation.
The short-time Fourier transform (STFT) decomposes the current signal into equal-length
time segments using a fixed window function, extracting the frequency-domain character-
istics of each segment. However, this fixed window approach limits resolution flexibility.
In contrast, wavelet transform employs a variable basis function, allowing for the rapid
identification of sudden signal changes, as expressed in Equation (3).

CWTφ(a, b) =< φ(t), Φa,b(t) >= a
1
2
∫ +∞

−∞
φ(t)Φ

(
tb
a

)
dt (3)

By discretizing the scale factor a = aτ
0 , (τ ∈ Z), while keeping the time-shift factor

continuous, a semi-discrete dyadic wavelet transform is derived. This discrete form of
the wavelet transform achieves scale discretization through signal decomposition and
reconstruction, which enhances computational efficiency. Meanwhile, it preserves time-
domain continuity, ensuring time-shift invariance. This approach enables efficient time-
frequency analysis and signal compression. The standard expression for this transform is
provided in Equation (4).

DWTϕ(τ, b) =< φ(t), Φτ,b(t) >=
∫

φ(t)Φτ,b(t)dt (4)

The Savitzky–Golay (S-G) filter smooths signals by fitting a polynomial using the
least-squares method, preserving key features such as extrema and width. It is particularly
effective for reducing low-frequency noise in ripple signals, which is crucial for enabling
accurate extremum detection in wavelet transforms. The S-G filter performs polynomial
fitting over a sliding window of data, with the central value retained as the filtered result.
The core of the method lies in the real-time computation of the data weight coefficient
matrix. Assuming that at least 2n data points are required for wavelet multi-resolution
decomposition of the ripple current signal, the filtering result at sampled time k is expressed
by Equation (5).

φ′(i) =


φ(i), k < 2n

x(i), k = 2n

φ′(k + 1) = x(k + 1), k = 2n + 1
(5)

Let the data window width be defined as n = 2K + 1, where K is an integer, and the
data to be processed is denoted as A, with a total length of L. The data within the window
is represented as x. By fitting a polynomial of degree j to the matrix x, the fitted values for
each point within x can be obtained as follows

X̂k = c0 + c1k + · · ·+ cjkj,−K ≤ k ≤ K (6)
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S =
[
s0, s1, · · · , sj

]
=

[
k0, k1, · · · , kj

]
(7)

The matrix of X̂ is derived in Equation (8).

X̂ =
j

∑
i=0

SiCi =
[
s0 s1 · · · sj

]


c0
c1
...
cj

 = SC (8)

The polynomial coefficient matrix C corresponds to the value when the squared error
of the least-squares fitting reaches its minimum.

v =
K

∑
k=−K

e2
k =

K

∑
k=−K

[
Xk − X̂k

]2
=

K

∑
k=−K

[
Xk −

(
c0 + c1k + · · ·+ cjkj

)]2
= minv (9)

By simplifying Equation (9), e2
k =

(
Xk − X̂k

)
= (Xk − SC)2 = min is obtained, Ex-

pressing e2
k in matrix form results in Equation (10).

e2
k = eT

k ek = XT
k Xk − 2CTSTXk + CTSTSC = min (10)

Simplifying Equation (10) yields ∂e2
k

∂C = −2STek = 0, leading to the expression for the
coefficient matrix C in Equation (11).

C =
(

STS
)−1

STXk = GTXk (11)

By substituting the coefficient matrix C into Equation (8), it can be obtained that:

x̂k = SC = S
(

STS
)−1

STXk = Dxk (12)

The time-frequency analysis of motor ripple current using wavelet transform follows
four key stages: sampling, decomposition, coefficient processing, and reconstruction, as
depicted in Figure 3. For the 775 brushed DC motor operating within an agricultural
context, with a rotational speed range of 2000–6000 rpm, the maximum frequency reaches
1000 Hz. In this study, a sampling frequency of 10 kHz was applied. After sampling,
a suitable wavelet basis function is selected to perform the inner product on the signal,
followed by iterative decomposition using the wavelet formula. This process generates
multi-level wavelet coefficient matrices for the current signal. Biorthogonal quadratic
spline wavelets, valued for their orthogonality and symmetry, are particularly effective for
extracting the periodic components of the ripple signal and detecting extrema.
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As shown in the construction of the biorthogonal quadratic spline wavelet Formula (13),
the low-pass filter coefficient matrix is E0 =

[
1/4 3/4 3/4 1/4

]T , and the high-pass fil-

ter coefficient matrix is E1 =
[
−1/4 −3/4 3/4 1/4

]T . First, perform a binary wavelet
transform on the original signal φ(t), decomposing it into four levels to obtain the high-
frequency coefficient matrix F and the approximation coefficient matrix A [i]. For the high-
frequency coefficient matrix F, apply soft thresholding with a threshold value λ = δ

√
2InK

for denoising. For the approximation coefficient matrix A, the Savitzky–Golay (S-G) fil-
tering algorithm is applied. The core of S-G filtering lies in solving the matrix D, which
requires only the window size n and the polynomial degree j as input parameters. The
polynomial coefficient matrix D can be calculated, and combined with Equation (6), the
filtered signal data can be obtained. By choosing a polynomial degree of j = 3 and a window
size of n = 128, high-frequency noise can be effectively reduced.

H0(z) = 1+3z−1+3z−2+z−3

4
H1(z) = −1−3z−1+3z−2+z−3

4

(13)

2.2.2. Wavelet Transform Detection of Ripple Signal Extreme Points

The binary wavelet transform is utilized to detect the peak values of ripple signals,
employing a method that parallels singularity detection of the signal. However, the
distinction lies in that singularity detection aims to pinpoint abrupt changes in the signal,
while peak value detection focuses on identifying stable positions of the signal. Based
on the wavelet transform Formula (4), it can be deduced that the result of the wavelet
transform corresponds to the output value of the signal after being processed through a
specific system, with the system impulse response denoted as Φa,b(t).

Let ρ(t) be the smoothing function, which can be regarded as a low-pass filter, com-
monly represented by a Gaussian function. Define ρa(t) = a

1
2 ρ

( t
a
)
; thus, the wavelet can

be expressed using the function ρ(t) as follows:

Φ(1)(t) =
dρ(t)

dt
(14)

Φ(2)(t) =
d2ρ(t)

dt
(15)

The original signal φ(t) undergoes wavelet transformation through the mother wavelets
Φ(1)(t) and Φ(2)(t), resulting in Equations (16) and (17).

CWT(1)
φ (t) = φ(t) ∗ Φ(1)(t) = a

d
dt
[φ(t) ∗ ρa(t)] (16)

CWT(2)
φ (t) = φ(t) ∗ Φ(2)(t) = a2 d2

dt
[φ(t) ∗ ρa(t)] (17)

Through Formulas (16) and (17), it is known that the CWT coefficients CWT(1)
φ (t) and

CWT(2)
φ (t) obtained from the original signal after wavelet transformation are proportional

to the first-order derivative and second-order derivative of φ(t) ∗ pa(t) respectively, and
the zero points of CWT(1)

φ (t) correspond to the extrema of the original signal, while the

zero points of CWT(2)
φ (t) correspond to the inflection points of the original function. When

the wavelet function is considered the first-order differential of a smooth function, the zero
points of the wavelet transform of the signal correspond to the extrema of the original signal;
when the wavelet function is considered the second-order differential of a smooth function,
the zero points of the coefficient obtained after the transformation are the singular points
of the original signal. That is, by using a specific wavelet for the second-order wavelet
transform, the extrema of the signal correspond to the points where CWT(1)

φ (t) = 0.
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2.2.3. PWM Voltage Regulating and Speed Stabilizing System Design

After applying the improved wavelet transform, the ripple signal was precisely ex-
tracted, enabling accurate detection of the rotational speed and its variation trends during
the sawing process. This serves as a foundation for real-time speed control adjustments. As
depicted in Figure 4, motor speed is controlled by adjusting the pulse width modulation
(PWM) duty cycle, ensuring it aligns with the target speed.

During the startup phase, the PWM duty cycle gradually increases, allowing the motor
to smoothly accelerate to the desired speed. Throughout sawing, any increase in cutting
resistance causes a speed reduction. The wavelet-based speed estimator continuously
monitors these speed fluctuations in real time, feeding the deviation from the target speed
into a proportional–integral (PI) controller. The controller then adjusts the PWM duty
cycle, increasing the motor voltage to restore the desired speed. This closed-loop control
strategy significantly enhances system responsiveness, ensuring both stability and accuracy
of the motor’s rotational speed during operation. It also allows timely adjustments to
accommodate load changes, thereby maintaining the continuity and efficiency of the
sawing process.
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2.2.4. Critical Circuit Design

An H-bridge circuit was designed using two EG2014S half-bridge driver chips to
control four MOSFETs, as shown in Figure 5. The EG2014S chip processes input logic
signals, performs output level conversion, and manages dead time control. When the main
control chip sends control signals, the EG2014S adjusts the switching states of the MOSFETs
based on these signals, enabling current switching across the motor terminals and thus
altering the motor’s operating state. The PWM1/2_IN signals control motor speed and are
connected to pins PA8 and PA9 of the main chip, while SD_IN serves as the logic control
signal from the main chip, connected to pin PG12. The control signals from the main chip
are opto-isolated before being transmitted to the input pins of the EG2014S to protect the
main chip from potential damage due to high voltage or current.

To accurately calculate motor speed from the ripple frequency of the motor current,
precise sampling of the current signal is crucial. Since the ripple signal amplitude is much
smaller than the direct current component and susceptible to external interference, an
operational amplifier circuit is used for signal amplification and noise reduction. As shown
in Figure 6, a 0.02 Ω, 2 W sampling resistor is placed in series with the current output
terminal of the H-bridge driver circuit to convert the current into a voltage signal. The
AMC1200SDUBR (Texas Instruments, Dallas, TX, USA) isolation op-amp then amplifies
this voltage signal by a factor of eight, outputting it in differential form.
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Figure 6. Ripple current detection circuit.

The amplified ripple current signal is preprocessed through a filtering circuit before
being digitized by the ADC module of the STM32F407C8T6 (STMicroelectronics, Geneva,
Switzerland) microcontroller. Using wavelet transformation combined with a Savitzky–
Golay (S-G) filter, stable ripple components are extracted. An extremum detection algorithm
based on wavelet transformation is applied to calculate the ripple period. This data, along
with direct current measurements, are fed into the controller for further analysis, enabling
precise motor speed calculation.

3. Results
3.1. Signal Noise Reduction Analysis

To validate the effectiveness of the improved wavelet threshold denoising algorithm, it
was applied to the extracted ripple data, with the results shown in Figure 7. The algorithm
successfully removed spikes and false peaks, significantly improving the overall signal
quality. Compared to the original signal, the improved method effectively eliminated
noise while preserving critical features such as peak positions, amplitude variations, and
the overall waveform trend. This demonstrates that the algorithm strikes a good balance
between noise reduction and signal fidelity, maintaining the integrity of the signal. These
results confirm the algorithm’s reliability and effectiveness in practical applications.
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3.2. Motor Speed Stabilization Test Method

In agricultural sawing applications, cutting speed and feed rate are critical factors
influencing cutting force and overall cutting quality, assuming constant saw blade structural
parameters. When the feed rate remains constant and cutting speed decreases, the volume
of material removed per unit time increases, resulting in higher cutting forces.

To evaluate the operational range of the proposed steady-speed control method, a
sawing experimental platform was developed. As shown in Figure 8, the platform consists
of a Cartesian coordinate frame constructed from aluminum profiles, a lead screw module, a
57-type stepper motor with its driver, a fixture, a circular saw blade (Dong Cheng, 4 × 30T),
and a 775 brushed DC motor. Due to the variability in branch fiber distribution and the
irreproducibility of experimental materials, a Hall sensor was used to collect speed data
for assessing the performance of the control system. A Hall sensor with a resolution of 16,
operating at 100 kHz, was installed at the motor’s tail to analyze speed data and validate
the effectiveness of the proposed steady-speed control method.
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3.3. Motor Speed Stabilization Analysis

In the motor sawing resistance experiments conducted on the experimental platform,
we collected signals for voltage, current, and the Hall sensor located at the rear of the motor
to analyze the temporal trends of these parameters. As illustrated in Figure 9, the red solid
line represents voltage, the blue dashed line indicates current, and the green dotted line
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corresponds to cutting speed. The experimental results reveal that, upon closing the circuit,
the current rapidly reaches an initial peak value before declining and stabilizing, while
the motor speed increases swiftly. Once the speed reaches approximately 3000 RPM, the
current stabilizes as well. During the initial stage of sawing, the cutting resistance causes a
sharp decrease in motor speed, leading to a reduction in back electromotive force (back
EMF) and a simultaneous decrease in voltage across the motor terminals. At the same
time, as the motor encounters resistance, the current increases, and the voltage drop (IR
drop) caused by the current flowing through the internal resistance of the motor further
lowers the voltage across its terminals. Additionally, the increase in current results in
greater energy loss in the form of Joule heating. To overcome the cutting resistance, the
PWM control compensates for the decrease in speed by increasing the voltage across the
motor terminals. However, due to the reduction in back EMF, the increase in voltage is
not significant.
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Notably, the voltage trough occurs before the speed trough, indicating that even when
the voltage rises, the motor speed continues to decline, reflecting that the effect of back
EMF counteracts part of the PWM boosting effect. As the PWM control voltage is further
increased, the motor speed gradually recovers after reaching the trough. Subsequently,
the closed-loop control system adjusts the PWM pulse width to ensure a smooth voltage
transition, avoiding significant voltage fluctuations and thus ensuring stable motor opera-
tion. This control strategy effectively maintains motor performance under load conditions,
ensuring the continuity and efficiency of the sawing process.

To further investigate the applicability of the proposed speed control method for
the sawing motor, experiments were conducted at rotational speeds of 2000, 3000, 4000,
5000, and 6000 RPM. The speeds obtained from processing the ripple sampling data were
compared with measurements from the Hall sensor located at the rear of the motor. The
experimental results are illustrated in Figure 10, which lists the experimental conditions in
descending order: 6000, 5000, 4000, 3000, and 2000 RPM.

From the analysis of the speed control effectiveness at different rotational speeds, it
was observed that as the speed increased, the error of the proposed speed measurement
method also increased. This rise in error is primarily attributed to poor contact of the carbon
brushes and motor vibrations at higher speeds. When the motor encounters resistance, the
magnitude of speed reduction is relatively small, resulting in a lower relative value at the
trough. Furthermore, at higher speeds, the slope of the speed decrease after encountering



Agriculture 2024, 14, 2078 12 of 15

resistance is relatively gentle. This phenomenon can be explained by the fact that, for the
same motor, higher speeds correspond to greater power output. Consequently, when faced
with the same cutting resistance, high-speed motors exhibit a greater power reserve.
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In terms of the steady-state performance at specific rotational speeds, prior to encoun-
tering resistance during cutting, the improved scatter distribution from the ripple detection
method in this study closely aligns with the speed measurement results obtained from
the Hall sensor. When resistance is encountered, the error in the predicted speed slightly
increases; however, after the completion of cutting, although the speed error decreases,
it remains above the level observed before cutting commenced. This phenomenon can
be attributed to the complex vibrations during the cutting process, as well as the minor
residual vibrations of the motor driving the saw blade after cutting has concluded.

Data analysis revealed that the maximum error occurred during the cutting process
at 6000 RPM, with an error margin of 2.32%, which meets the requirements for steady-
speed control. Compared with conventional Hall sensors, the improved ripple velocity
measurement method proposed in this study not only offers similar performance, but
also eliminates the need to install additional sensors, which greatly simplifies system
deployment and maintenance, and is particularly suitable for complex and changing
agricultural environments. However, it is worth noting that although the method shows
good application prospects, its performance under extreme conditions or when facing
special materials still needs to be further verified. In addition, how to further reduce
the control error under high-speed operation through optimization algorithms will be
an important direction for future research. In conclusion, this innovative speed control
strategy provides new possibilities for improving the efficiency of agricultural sawing
operations, and also provides a certain reference value for the speed control of other types
of motors in related fields.

4. Discussion

As shown in Figure 10, the system achieved stable speed control at various rotational
speeds through a PID control strategy, though the speed regulation error increased as motor
speed rose. This trend is consistent with the findings of Vazquez-Sanchez [14], who re-
ported achieving control accuracy with an error below 1 RPM in the 2000–3000 RPM range.
However, the error observed in this study was slightly higher in the same range, which
can be attributed to the consideration of vibration effects caused by resistance changes
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during the sawing process. Unlike previous studies that typically focused on motor speed
measurements under no-load or stable-load conditions, this study specifically addressed
real operating conditions in agricultural sawing tasks. At high speeds, the instability of
brush contact and the increased motor vibrations make speed estimation more challenging,
leading to an increase in errors. This trend is consistent with the findings of Hosfeld [27].
The maximum error at 6000 RPM was 2.32%, which remains within an acceptable range.
This result validates the effectiveness of current ripple-based detection, which provides
reasonably accurate speed feedback even during the frequent and substantial changes
experienced during sawing. Moreover, compared to traditional Hall sensor systems, the
sensorless approach proposed in this study eliminates the need for additional sensor instal-
lations, simplifying the system and enhancing its adaptability and reliability in complex
agricultural environments.

The brushed DC motor speed control system demonstrated strong performance, main-
taining cutting efficiency while effectively addressing speed fluctuations caused by external
disturbances. Future research could focus on optimizing signal processing algorithms to
reduce noise interference and improve speed estimation accuracy, particularly at higher
operating speeds. Hosfeld and Konigorski proposed a method to dynamically adjust the
filter frequency based on motor speed, using an iterative approach to enhance the accuracy
of speed calculations at high speeds [10]. Additionally, exploring more advanced control
strategies, such as adaptive PID or fuzzy logic control, could further improve the system’s
responsiveness and stability under dynamic conditions. Khoo proposed an algorithm
that integrates adaptive pulse detection, adaptive BEMF detection, and adaptive Kalman
filtering to enhance the accuracy of sensorless speed detection under various operating
conditions, such as acceleration, deceleration, coasting, and braking [28]. Nosheen intro-
duced a control strategy based on non-integer differential-integral equations for sensorless
speed control of induction motors, achieving a system delay significantly smaller than that
of PID-controlled systems [29]. However, while optimizing algorithms and strategies, it is
crucial to also ensure the real-time performance of the system.

5. Conclusions

Through an in-depth investigation of the application of brushed DC motors in agricul-
tural sawing scenarios, this study presents a sensorless motor speed control method based
on current ripple detection. This approach indirectly measures motor speed by extracting
the ripple components from the motor current and employs a PID adjustment strategy to
achieve effective control of the motor speed. Experimental results indicate that this method
enables stable motor speed control across a range of 2000 to 6000 RPM, particularly when
the motor encounters cutting resistance that causes a decrease in speed. In such instances,
PWM modulation increases the voltage across the motor, restoring the target speed. As the
rotational speed increases, the control error tends to rise, primarily due to unstable brush
contact and motor vibrations at higher speeds. Moreover, the improved ripple speed mea-
surement method demonstrates performance comparable to that of traditional Hall sensor
measurements but offers greater practical value in complex agricultural environments due
to the absence of the need for additional sensor installation, thereby simplifying system
maintenance and usage.
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