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Abstract: Improving productivity in industrial farming is crucial for precision agriculture, particularly
in the broiler breeding sector, where swift identification of dead broilers is vital for preventing disease
outbreaks and minimizing financial losses. Traditionally, the detection process relies on manual
identification by farmers, which is both labor-intensive and inefficient. Recent advances in computer
vision and deep learning have resulted in promising automatic dead broiler detection systems. In
this study, we present an automatic detection and segmentation system for dead broilers that uses
transformer-based dual-stream networks. The proposed dual-stream method comprises two streams
that reflect the segmentation and detection networks. In our approach, the detection network supplies
location-based features of dead broilers to the segmentation network, aiding in the prevention of live
broiler mis-segmentation. This integration allows for more accurate identification and segmentation
of dead broilers within the farm environment. Additionally, we utilized the self-attention mechanism
of the transformer to uncover high-level relationships among the features, thereby enhancing the
overall accuracy and robustness. Experiments indicated that the proposed approach achieved an
average IoU of 88% on the test set, indicating its strong detection capabilities and precise segmentation
of dead broilers.

Keywords: dead broiler segmentation; CNN; deep learning; precision agriculture

1. Introduction

Precision agriculture has emerged as a crucial framework for industrial farming
and is crucial in boosting productivity. This field is increasingly embracing automation
technologies to reduce labor requirements and leverage advanced computer vision methods
to achieve high efficiency in diverse applications [1,2].

The poultry industry has adopted precision agriculture tools, such as animal wear-
ables, computer vision, and other sensing technologies, for the real-time tracking of an-
imal conditions to boost efficiency and reduce costs. In particular, computer vision is
considered a game changer, offering solutions for various needs, such as poultry house
management [3,4], early disease detection [5–7], weight monitoring [8–10], carcass eval-
uation [11,12], and egg quality analysis [13]. These technologies ensure better monitor-
ing of health and welfare [14,15] and drastically reduce the manual labor required for
routine operations.

Recent research has increasingly focused on broiler chickens as a vital food source [5,16,17].
In broiler farms, rapid detection and removal of dead chickens is crucial for maintaining
animal welfare, minimizing the spread of disease, and optimizing production efficiency. Tra-
ditional manual methods for detecting dead broilers are labor-intensive, time-consuming,
and prone to human errors. This often leads to delays in identifying and removing dead
chickens, increasing the risk of contamination and the spread of infection among flocks [6].
An automated dead broiler detection and segmentation system can significantly reduce
these risks by providing real-time monitoring and alerts, ensuring a healthier environment
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for birds and better productivity for the farm. Implementing such systems can minimize
costs by reducing labor requirements and minimizing potential losses owing to disease
outbreaks. Specifically, the automated segmentation results for dead broilers provided
more detailed information. These detailed data are invaluable for further precise analyses,
offering insights that can be used for future improvements and management strategies on
broiler farms. Overall, automated detection systems are essential for modern broiler farm
management to promote economic and ethical benefits.

Recent advances in computer vision have significantly affected the agricultural sector
by offering new solutions to traditional challenges. This technology is valued for its ability
to replicate human visual capabilities and affordability. In particular, convolutional neural
networks (CNNs) are crucial in achieving remarkable accuracy in image recognition [18],
surpassing human performance in certain cases. These networks excel in image classifi-
cation, object detection [19], and image segmentation [20,21]. Therefore, CNNs are highly
valuable because of their ability to handle complex visual tasks, which has led to their
widespread use across academic and commercial sectors.

Recently, computer vision and CNN have been widely used to study broiler behav-
ior [1,6,22–24]. A summary of these studies is provided in Table 1. The YOLO v4-based
automated system [1] was proposed to detect and remove dead chickens in poultry houses.
It operates in both remote-controlled and fully automatic modes, effectively reducing
human–poultry contact while maintaining the efficient removal of deceased chickens. van
der Eijk et al. [22] explored the use of computer vision algorithms, specifically, Mask R-
CNN [25], to automatically detect individual broilers and monitor their resource use in
both experimental and commercial settings. The developed models demonstrated high
accuracy in identifying broilers and tracking their interactions with resources, such as
feeders, bales, and perches. Yang et al. [23] addressed the challenge of detecting dead hens
in caged environments by improving the YOLOv7 model. These enhancements include
using a convolutional block attention module (CBAM) for improved feature extraction.
The system integrates edge devices and inspection robots to achieve high detection accu-
racy in real-world farms. Bao et al. [24] proposed an AI-based sensor-detection method
for identifying dead and sick chickens on farms, addressing the limitations of manual
inspection. This method uses foot rings to measure chicken movement and calculates
the three-dimensional variance in activity intensity. Machine learning algorithms analyze
data to determine the health status of chickens. Okinda et al. [17] developed a machine
vision system for the early detection and prediction of diseases in broiler chickens using a
non-intrusive depth camera. It monitors posture and mobility changes and extracts features
such as shape descriptors and walking speed to identify the health status. Hao et al. [6]
developed a detection system for identifying dead broilers in stacked cage environments
using an autonomous wheeled vehicle. This vehicle navigates through the cement aisles of
a broiler house equipped with camera sensors that capture images of the broilers within
the cages. A YOLOv3-based model was then applied to analyze the side-view images
and accurately detect dead broilers. Li et al. [26] presented a method for detecting sick
laying hens by using infrared thermal imaging combined with deep learning. It utilizes
CNN to identify areas of interest (head, body, and legs) from thermal images and extracts
temperature data. Massari et al. [27] explored the use of computer vision-based indices to
monitor the broiler chicken responses to different rearing environments, particularly under
thermal comfort and heat stress conditions. It introduces two indices, cluster and unrest, to
analyze movement patterns and behavior in enriched versus non-enriched environments.
This system utilizes video analysis to assess how environmental factors, such as enrichment,
affect bird activity and well-being.
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Table 1. Comparative overview of studies on automated detection and monitoring in poultry farming.

Study Year Proposed Architecture Dataset Used Result

Liu et al. [1] 2021
YOLO v4-based

automated chicken
removal system

Chicken Mortality Detection
Dataset

Accurately identifies and
removes dead chickens,

reducing human contact and
improving biosecurity.

J. A. J. et al. [22] 2022
Mask R-CNN with

zone-based classifiers for
resource monitoring

Custom dataset from
research facility and

commercial farm

Achieved accurate broiler
detection and effective

monitoring of resource use in
various zones (feeders, bales,

perches, etc.).

Yang et al. [23] 2024 Enhanced YOLOv7 with
CBAM Caged hen farm images

Achieved high accuracy for dead
hen detection, optimized for

mobile deployment

Bao et al. [24] 2021 Machine learning-based
sensor network

Custom sensor data from
chicken farms

Effectively detects dead and sick
chickens, enhancing automation

in large-scale farms.

Okinda et al. [17] 2019 Machine vision with
RBF-SVM classifier Video and depth camera data Enables automated, early disease

detection in broilers.

Hao et al. [6] 2022 Improved YOLOv3 with
SPP and CIoU loss Custom broiler farm dataset

Achieved effective dead broiler
detection in stacked cages,
enhancing farm inspection

automation.

Li et al. [26] 2021 CNN with infrared
thermal imaging

Infrared images of laying
hens

Detects sick hens by analyzing
temperature patterns, enabling

early identification.

Massari et al. [27] 2022 Computer vision with
cluster and unrest indices

Video data from controlled
environment

Demonstrated effectiveness in
monitoring broiler movement

and detecting heat stress,
highlighting environmental

impact on behavior.

Inspired by previous studies, we propose a machine-learning-based approach for
detecting and segmenting dead broilers. The proposed network was built on a dual-stream
framework consisting of separate detection and segmentation modules. A dual-stream
network is a type of deep learning architecture that uses two parallel pathways to simulta-
neously process different aspects of input data [28,29]. Each stream was tailored to handle
a specific task or feature extraction process, allowing the model to learn complementary
information. For instance, in a detection and segmentation task, one stream focuses on
detecting the presence and location of objects, whereas the other refines the segmentation
of object regions. This design enables the network to efficiently combine detection accuracy
with precise boundary delineation for more robust performance. The proposed method
aims to segment regions containing dead broilers. Although the initial detection results of
dead broilers are necessary for the segmentation task, this method was designed to perform
both detection and segmentation in parallel. The detection network identified the locations
of dead broilers and provided a segmentation network with information to exclude live
birds. We employed heatmap regression techniques [30] to highlight the regions of dead
broiler chickens. Heatmap regression is a computer vision method that generates a spatial
heat map representing the probability of a target’s presence at each pixel location. In this
approach, Gaussian distributions were overlaid on heat maps at the locations of dead
broilers, creating smooth peaks that correspond to their positions. This allows the network
to identify and focus on the most likely areas where dead broilers are located, thereby
enhancing detection accuracy. In addition, we successfully integrated the self-attention
mechanism into the final part of the encoder. The self-attention mechanism allows the
model to weigh the importance of different spatial features and capture long-range depen-
dencies and interactions [31]. This is particularly beneficial for broiler detection networks
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because it enables the model to better differentiate between dead and live broilers by
focusing on subtle and contextually significant cues in crowded or complex environments.

The structure of this paper is organized as follows: Section 2 describes the materials
and the proposed method in detail. Section 3 presents the experimental results and an
in-depth discussion of the results. Finally, Section 4 summarizes the conclusions drawn
from this study and suggests directions for future research.

2. Materials and Methods
2.1. Dataset Collection and Description

We used the publicly available dead broiler detection and segmentation datasets
provided in the study [32]. This dataset contained 86 instances of dead broilers and included
regions of interest (ROIs) for their locations. For the segmentation task, we manually
generated binary segmentation masks with three different individuals and labeled each
sample. The dataset was split into training, validation, and test sets, with approximately
71.4%, 17.1%, and 11.4% of the data, respectively. The final mask is selected by averaging
the annotations. For the detection task, we placed a Gaussian mask at the center of each
dead broiler. This Gaussian mask acted as a heat map, highlighting the most likely location
of the broiler. The intensity of the Gaussian distribution peaks at the center of the target
and gradually decreases toward the edges, effectively guiding the detection network
toward the most relevant regions. Figure 1 provides an overview of the dataset used
for training and evaluating the dead-broiler detection models. The first row shows raw
images collected under different environmental conditions, illustrating the variability in
the appearance of dead broilers. The second row contains binary masks that accurately
outline the regions where dead broilers were present, serving as the ground truth for the
segmentation tasks. The third row shows Gaussian heat maps centered on the locations
of dead broilers, which were used to guide the models during training to better localize
the target areas. Owing to the limited dataset of 86 samples, we conducted a 5-fold cross-
validation to evaluate the performance of the model and used the average of the results as
the final performance metric.
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2.2. Methodology
2.2.1. Overall Architecture

An overview of the proposed method is presented in Figure 2. This figure illustrates the
architecture of the proposed dual-task network for dead-broiler detection and segmentation.
The input image was first passed through an encoder consisting of multiple convolutional
layers with 3 × 3 kernels, instance normalization (IN), ReLU activation, and 2 × 2 Max
Pooling operations. The encoded features are then fed into a transformer module that
captures long-range dependencies and relationships between the features. Following the
transformer, the network is split into two branches: one for the segmentation task and
the other for heatmap regression. The segmentation branch uses a series of convolutional
and upsampling layers to generate a binary mask for the dead broilers, optimized using
Dice Loss. The heatmap regression branch produced a Gaussian heatmap centered on the
detected location of dead broilers, optimized using L2 Loss. In addition, the features from
the heatmap regression decoder were merged with the segmentation layers to provide an
additional spatial context that helped refine the segmentation results. Heatmap regression
is intended mainly as a supportive feature rather than a core output. Thus, we adopted a
one-way feature-sharing approach, where information flows from the heatmap regression
branch to the segmentation branch only and not in the reverse direction. This design
choice ensures that the segmentation network receives priority, allowing it to isolate dead
broiler areas more accurately. Feature concatenation and skip connections were employed
to preserve spatial information throughout the decoding process, thereby contributing to
improved accuracy in both tasks.
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Figure 2. Proposed dual-stream network for the detection and segmentation of dead broiler.

During the encoding phase, the network progressively increased the number of fea-
ture maps from 64 to 512, intensifying its ability to capture and process more complex
features from the input images. Conversely, in the decoding phase, the feature maps were
gradually reduced from 512 to 64, allowing the network to reconstruct finer details while
retaining essential information from the encoded features. The segmentation decoder
then receives additional feature information from the detection decoder. Specifically, at
each corresponding layer of the segmentation decoder, feature maps from the detection
decoder are concatenated to provide spatial and contextual cues that assist in refining the
segmentation process. For instance, if the detection decoder outputs a feature map with
128 channels in a particular layer, and the segmentation decoder has 128 channels in the
corresponding layer, the concatenation results in a feature map with 256 channels. The
additional feature channels are calculated as follows: if the detection decoder outputs a



Agriculture 2024, 14, 2082 6 of 14

feature with 64, 128, 256, and 512 channels at various stages, the segmentation decoder at
each corresponding stage will double its channels owing to concatenation. Thus, the input
channels for the segmentation decoder were 128, 256, 512, and 1024.

2.2.2. Transformer Module

In this section, we employ a transformer block to learn the contextual relationships
between the tillage boundary points extracted from the soft Argmax function. Transform-
ers [31] are a type of neural network architecture that has become foundational in various
fields of machine learning, including natural language processing and computer vision.
Transformers utilize a multi-layered structure that incorporates Self-Attention mechanisms,
allowing each input element to interact with others in the sequence. This enables the
model to capture contextual relationships among features more effectively, making it espe-
cially useful for computer vision tasks that involve complex spatial patterns. In our study,
we leverage the Transformer’s ability to accurately predict the locations of dead broilers,
incorporating these predictions into the segmentation process.

Figure 3 illustrates the architecture of a transformer block utilized to recalibrate the
encoded feature maps, which is crucial in learning the relationships among different spatial
regions of an image. The input to the transformer block is an encoded feature map of
dimensions c × h × w, where c represents the number of channels and h and w correspond
to the height and width, respectively. The encoded features were first reshaped into a
sequence of length hw × c and normalized using layer normalization [33] (LN):

LN(x) =
x − µ

σ
× γ + β (1)

where µ denotes the mean of the input vector x, and σ is the standard deviation. The learnable
parameters γ and β control the scaling and shifting of the normalized output, respectively.
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The transformer block uses multi-head attention to capture dependencies among
different spatial regions within the feature map. Queries (Q), keys (K), and values (V) are
derived from the normalized features using linear transformations [31]. The multi-head
attention mechanism calculates the attention scores by performing a scaled dot product, as
defined by the following:

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (2)

where
√

dk is a scaling factor that stabilizes the gradients. The formulas Q = XWQ,
K = XWK, and V = XWV define the transformations applied to input feature X using the
query, key, and value weight matrices, respectively. Each head i computes its own set of
queries, keys, and values, as follows:

headi = Attention
(

QWQ
i , KWK

i , VWV
i

)
(3)

In multi-head attention, the outputs from all heads are concatenated and projected
using a weight matrix WO:

MultiHead(Q, K, V) = Concat(head1, . . . , headn)WO (4)

This multi-head approach enables the model to focus on different aspects of the input
simultaneously, capturing richer feature representations and improving its ability to under-
stand complex relationships within the data. This is particularly useful for distinguishing
subtle differences between live and dead broiler chickens. The ability to focus on the distant
parts of an image allows the model to recognize the presence of dead broilers, even when
they are partially hidden or surrounded by live broilers. A residual connection integrates
the attention output with the original input features, followed by a multi-layer perceptron
(MLP) that refines the recalibrated feature map. The output was reshaped into dimen-
sions c × h × w, producing a feature map that encoded both local and global contextual
information, thereby enhancing the ability of the model.

2.2.3. Joint Loss Function

To optimize the model for both the segmentation and heatmap regression tasks, we
employed a joint loss function that combined the Dice loss and weighted L2 loss:

LJoint = LDice + γLL2 (5)

where LDice represents the Dice loss, LL2 is the L2 loss used for heatmap regression and γ

is a weight parameter that controls the influence of the L2 loss on the overall optimization
process. In our experiments, we set γ = 0.1, ensuring that the primary focus remains
on the segmentation task while still incorporating valuable spatial information from the
heatmap regression. This balance leads to an improved overall performance in detecting
and segmenting the regions of dead broilers.

2.2.4. Implementation Detail

Experiments were performed using a system equipped with an Intel Core i9-10900X
CPU at 3.70 GHz, 48 GB RAM, and an Nvidia GeForce RTX 3090 GPU. We used PyTorch ver-
sion 1.8.0) to train and test the network. The input images were resized to 224 × 224 pixels
to streamline processing and reduce computational overhead. The training process utilized
the Adam optimizer, starting with an initial learning rate of 0.0001, which was multiplied
by 0.1 every 200 epochs over a total of 600 epochs. To enhance model robustness and
generalization, we applied data augmentation techniques such as brightness adjustments,
rotations ranging from −25 to 25 degrees, and horizontal and vertical shifts. In the trans-
former block, we set the number of attention heads to four, with each head having an
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embedding vector with a size of 64. In the heat map regression task, the Gaussian scale
score was set to 15. A Gaussian heatmap was used to indicate the location of dead broilers
without incorporating additional information about size or shape. With this approach, our
goal is not to generate highly precise Gaussians but to produce a general representation of
the target locations.

2.3. Evaluation Metrics

The proposed method was evaluated using four metrics: the intersection over union
(IoU), precision, recall, and F-measure. As previously mentioned, our primary goal was
to evaluate the segmentation performance of the model. The IoU measures the overlap
between the predicted segmentation Pred and ground truth GT. It is defined as the ratio of
the intersection area to the union area of Pred and GT:

Pred =
|Pred ∩ GT|
|Pred ∪ GT| (6)

Precision measures the accuracy of positive predictions and is calculated as the ratio
of true-positive pixels to all pixels predicted to be positive.

Precision =
TP

TP + FP
(7)

where TP (True Positives TPs) refer to correctly predicted pixels, while FP (False Positives
FPs) refer to pixels incorrectly identified as positive. The recall evaluates the proportion of
actual positives correctly identified by the model.

Recall =
TP

TP + FN
(8)

False Negatives (FNs) represent the actual positive pixels that the model failed to
predict. The F-measure is a balanced metric that combines precision and recall into a
single value:

F − measure =
2 × Precision × Recall

Precision + Recall
(9)

The F-measure ranges from 0 to 1, with values closer to 1 indicating a better balance
between precision and recall rates. To evaluate the performance, we applied a threshold of
0.5 to the model’s output and converted the segmentation results into binary masks.

3. Results and Discussion
3.1. Performance Comparison

In previous studies, detection methods such as YOLO primarily focused on predicting
bounding boxes to identify dead broilers, making direct comparisons with segmentation-
focused approaches challenging. Since our method outputs segmentation maps, we se-
lected representative segmentation models—U-Net [20], FCN [34], LinkNet [35], and
DeepLabV3 [21]—to benchmark our performance. These models are well-established for
segmentation tasks, providing a more relevant comparison. All models were trained and
tested using a 5-fold cross-validation process, and the results reflect the average perfor-
mance across the folds. Table 2 presents the segmentation performance of the proposed
method alongside four other methods widely used models, using key metrics such as IoU,
precision, recall, and F-measure. Figure 4 shows the training and validation loss of our
model over epochs.
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Table 2. Comparison of segmentation performance between the proposed method and existing methods.

Method
Metrics (Standard Deviation)

IOU Precision Recall F-Measure

U-Net 83.86 (0.69) 87.76 (0.67) 89.13 (0.68) 88.17 (0.99)
FCN 82.94 (1.46) 82.50 (0.54) 91.98 (0.59) 86.15 (0.69)

LinkNet 82.78 (1.52) 82.73 (0.49) 89.43 (1.36) 85.64 (0.78)
DeepLabV3 84.53 (0.88) 91.39 (0.78) 89.61 (0.87) 89.97 (0.87)

Proposed
method 85.58 (1.41) 90.60 (1.06) 93.76 (0.53) 92.05 (1.14)Agriculture 2024, 14, x FOR PEER REVIEW 9 of 14 
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The proposed method demonstrates superior performance in terms of IoU, achieving
85.58%, which surpasses DeepLabV3′s 84.53% and shows a significant improvement over
U-Net, FCN, and LinkNet. In terms of precision, the proposed method reaches 90.60%,
which is slightly lower than the highest precision achieved by DeepLabV3 at 91.39%. How-
ever, the proposed method excels in recall, obtaining a score of 93.76%, notably higher
than all other methods. The balance between precision and recall is summarized by the
F-measure, where the proposed method outperforms the existing methods. These results
highlight the capability of the proposed approach to achieve more consistent and reliable
segmentation across various conditions. In Figure 5, the box plots illustrate the distri-
bution of segmentation performance metrics (IoU, precision, recall, and F-measure) for
each method, including U-Net, FCN, LinkNet, DeepLabV3, and the proposed method.
The proposed method demonstrates a higher median and tighter distribution across most
metrics, indicating more consistent and superior performance. Table 3 presents the per-
formance comparison of the proposed model across different numbers of attention heads
in the transformer. As the number of heads increases, there is a general improvement in
IoU. Starting from 84.82 with one head, the IoU improves to 85.58 with four heads. The
F-measure, which balances precision and recall, also shows improvement as the number of
heads increases. The value starts at 90.33 with one head, increases gradually, and reaches
92.05 with four heads. Overall, the results suggest that increasing the number of attention
heads in the transformer architecture enhances the ability of the model to understand
complex spatial relationships, leading to better segmentation performance. Table 4 presents
the performance comparison between different configurations of the proposed method,
including variations without heatmap regression and feature sharing. The results indicate
that the full version of the proposed method, which incorporates both heatmap regression
and feature sharing, achieves the highest overall performance, with an IoU of 85.58% and
an F-measure of 92.05%. The absence of the heatmap regression layer results in a slight
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decrease in IoU and Recall, suggesting that the spatial guidance provided by the heatmap
aids in better segmentation of target regions. When feature sharing is removed, the per-
formance drops slightly. Overall, the results emphasize the beneficial role of the heatmap
regression layer in improving the segmentation performance of the proposed method.
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Figure 5. Box plots display the distribution of performance metrics (IoU, Precision, Recall,
and F-measure) for each segmentation method (U-Net, FCN, LinkNet, DeepLabV3, and the
Proposed method).

Table 3. Performance comparison according to the number of heads in the transformer.

Number of
Heads

Metrics (Standard Deviation)
IOU Precision Recall F-Measure

1 84.82 (0.55) 88.23 (0.77) 93.43 (1.06) 90.33 (0.81)
2 85.04 (1.32) 87.58 (0.39) 92.58 (1.06) 90.27 (0.81)
3 84.73 (0.42) 89.25 (1.32) 94.51 (1.19) 91.36 (0.52)
4 85.58 (1.41) 90.60 (1.06) 93.76 (0.53) 92.05 (1.14)

Table 4. Performance comparison of different variations of the proposed method, including the
impact of heatmap regression and feature sharing.

Method
Metrics (Standard Deviation)

IOU Precision Recall F-Measure

Proposed method
without heatmap

regression
84.88 (1.66) 91.11 (1.13) 89.44 (0.68) 91.33 (1.33)

Proposed method
without feature sharing 85.13 (1.33) 89.85 (0.99) 94.45 (0.63) 91.53 (0.86)

Proposed method 85.58 (1.41) 90.60 (1.06) 93.76 (0.53) 92.05 (1.14)

3.2. Visualization Results

Figure 6 shows the segmentation results of the proposed method. The top row con-
tains examples of single-dead broilers, demonstrating the ability of the model to accurately
detect isolated instances. The bottom row, on the other hand, presents more complex
scenarios where the dead broilers are surrounded by other broilers. Despite the complexity
of these scenarios, the proposed method effectively distinguished between the live and
dead broilers. The ability to separate live from deceased animals is critical for practi-
cal applications, ensuring accurate detection in crowded farm environments. Figure 7
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presents the visualization results of the proposed method for segmenting dead broilers and
generating heat maps. The first column shows the original input images of the broilers.
The second column presents the ground truth segmentation masks (GT-seg), which serve
as a reference for evaluating the segmentation accuracy. The third column displays the
segmentation results produced by the model (Output-seg), which closely align with the
ground-truth masks, pointing to an accurate segmentation. Although the output heat maps
did not perfectly match the ground truth, they effectively highlighted relevant areas. This
is because our approach focuses more on obtaining accurate segmentation results than on
making the heat maps appear the same as the ground truth. The heat maps assist the model
in focusing on dead broiler regions, thus supporting better segmentation performance,
even if they do not exactly mirror the ground truth. Overall, the figure demonstrates the
effectiveness of the proposed method in achieving precise segmentation and producing
heat maps that support the accurate localization of dead broilers. Further emphasizing the
balance between segmentation accuracy and practical guidance through heat maps.
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3.3. Discussion

In our current dataset, there were no occluded chickens, which could limit the model’s
performance in real-world applications where occlusion is frequent. However, if we
include data with occluded chickens during training, we expect the model could better
learn to predict occluded instances. Additionally, our methodology employs a dual-stream
approach, where heatmaps provide spatial guidance by predicting the locations of dead
chickens. This design could aid the model in detecting occluded regions, potentially
improving segmentation accuracy even under challenging conditions. Future work could
incorporate occluded chicken data to further validate and enhance the robustness of the
proposed method.

While the proposed system generally performs well, certain configurations may lead
to suboptimal results. For instance, when the influence of the heatmap is set too high,
the model may become overly reliant on the heatmap guidance, causing false positives in
regions with similar textures or patterns. Conversely, reducing the heatmap’s influence
can lead to missed detections, as the model may not be adequately guided to the target
areas. These cases highlight the importance of carefully tuning the heatmap parameters to
balance detection accuracy and robustness.

4. Conclusions

In this study, we introduce a novel automatic detection and segmentation system for
identifying dead broilers using a transformer-based dual-stream network. The dual-stream
design integrates detection and segmentation networks, where the detection network pro-
vides valuable location feature information to the segmentation network. This collaborative
structure effectively prevents the mis-segmentation of live broilers, ensuring that dead
broilers are accurately identified and segmented. Furthermore, the system leverages the
self-attention mechanism of transformers to capture the complex relationships between
the features. This feature allows the network to analyze high-level spatial relationships,
making it particularly effective in distinguishing dead broilers from their surroundings.
Experiments indicate that the proposed method showed a competitive performance with
existing methods, proving its effectiveness in the precise segmentation of dead broilers. In
future work, we plan to expand our experiments to larger datasets, evaluate the system
under more challenging conditions, and enhance the precision of the segmentation results.
The contributions of this study are as follows:

1. We proposed a novel dual-stream architecture that simultaneously handles the detec-
tion and segmentation of dead broilers. The detection module located potential areas
containing dead broilers, and the segmentation module refined these identified areas,
enabling precise boundary delineation.

2. To improve the ability of the model to capture long-range dependencies and contextual
information, we integrated self-attention layers into the network architecture. This
enabled a better understanding of the spatial relationships between the detected
dead broilers and the overall scene context, enhancing the robustness of the model in
complex environments.

3. This method utilizes heat map regression to map the probable locations of dead
broilers by overlaying Gaussian distributions at these points. This approach provides
a refined method for prioritizing critical areas during detection and segmentation.
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