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Abstract: Sesame (Sesamum indicum L., flora of China) is an essential oil crop in China, but its growth
and development are affected by climate change. To cope with the impacts of climate change on
sesame cultivation, we used the Maximum Entropy (MaxEnt) model to analyze the bioclimatic
variables of climate suitability of sesame in China and predicted the suitable area and trend of
sesame in China under current and future climate scenarios. The results showed that the MaxEnt
model prediction was excellent. The most crucial bioclimatic variable influencing the distribution of
sesame was max temperature in the warmest month, followed by annual mean temperature, annual
precipitation, mean diurnal range, and precipitation of the driest month. Under the current climate
scenario, the suitable areas of sesame were widely distributed in China, from south (Hainan) to
north (Heilongjiang) and from east (Yellow Sea) to west (Tibet). The area of highly suitable areas was
64.51 × 104 km2, accounting for 6.69% of the total land area in China, and was primarily located in
mainly located in southern central Henan, eastern central Hubei, northern central Anhui, northern
central Jiangxi, and eastern central Hunan. The area of moderately suitable areas and lowly suitable
areas accounted for 17.45% and 25.82%, respectively. Compared with the current climate scenario,
the area of highly and lowly suitable areas under future climate scenarios increased by 0.10–11.48%
and 0.08–8.67%, while the area of moderately suitable areas decreased by 0.31–23.03%. In addition,
the increased highly suitable areas were mainly distributed in northern Henan. The decreased
moderately suitable areas were mainly distributed in Heilongjiang, Jilin, and Liaoning. This work is
practically significant for optimizing the regional layout of sesame cultivation in response to future
climate conditions.

Keywords: sesame (Sesamum indicum L.); climate change; climatic suitability; maximum entropy
(MaxEnt) model

1. Introduction

The global average temperature has risen by 0.9 ◦C since the 19th century and is
expected to increase further by 0.3 ◦C to 4.8 ◦C [1,2]. Water resources are becoming
increasingly scarce and are expected to decrease further [3]. Temperature and precipitation
are key factors determining crop growth and development and have a clear relationship
with the spatial distribution of crops [4,5]. High temperatures result in the falling of crops
at the reproductive stage. Water shortage can delay plant development and result in a
decrease in economic yield. Crop suitability determines crop planting distribution in a
given region [6,7]. Therefore, assessing the effects of climate change on crop suitability
helps further optimize crop-growing areas.
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Simulation modeling is the best tool for assessing climatic suitability. Various species
distribution models (SDMs) are widely used to predict how the potential distribution
areas of crop species response to the projected climate change [8]. SDMs can simulate the
potential distribution of species in related areas by associating the observed distribution
records of species with environmental factors [9–11]. These models include the dynamic
simulation model (BIOCLIM and CLIMEX), generalized linear model (GLM), generalized
additive model (GAM), maximum entropy model (MaxEnt), and random forest (RF) [12,13].
In recent years, the MaxEnt model has been utilized to forecast the geographic distributions
of species using environmental information [10,14]. Huang et al. [15] utilized the MaxEnt
model and ArcGIS (version 10.8) software to map the distribution of suitable areas of
invasive weeds in Asia under climate change conditions. Parthapratim et al. [16] identified
the key bioclimatic variables and assessed how climate change affects the habitat suitability
and morphological traits of Begonia aborensis Dunn (flora of China) in Northeastern India.
Zhang et al. [17] analyzed the ecological distribution and patterns of grasshopper occur-
rences using the MaxEnt model. Lu et al. [18] assessed the current climatic suitability for
soybeans (Glycine max (L.) Merr, flora of China and projected future climatic suitability
trends under various climate change scenarios. Wang et al. [19] predicted the distribution
range of Leonurus japonicus Houtt (flora of China) in China under climate change, provid-
ing the scientific basis for conservation and utilization. Thus, the MaxEnt model can be
effectively used to evaluate the climatic suitability of sesame in China.

Sesame (Sesamum indicum L.) is one of the oldest and most important oil crops and is
widely cultivated across the world, particularly in rainy areas [20]. The sesame planting
areas in China rank fourth globally, accounting for about 10% of the global planting area. To
improve sesame cultivation and cope with climate change, assessing the effects of climate
change on the climatic suitability of sesame at the national scale is valuable. Abebe et al. [21]
investigated the impact of climate change on sesame yield in North Ethiopia using the
autoregressive distributed lag time series model. Baath et al. [22] developed crop models
using estimated temperature limits to simulate the sesame management strategies under
various climate scenarios. Wang et al. [23] assessed the climatic suitability of sesame in
China’s main sesame planting areas from 1978 to 2019 based on fuzzy mathematics. The
SSPs (shared socioeconomic pathway) are a set of integrated scenarios that outline socioe-
conomic development and emissions, serving as key input parameters for climate change
prediction models in the 21st century [24]. SSP126 represents a low greenhouse gases (GHG)
concentration under government intervention with radiative forcing at 2.6 W/m2 after
2100; SSP245 represents a scenario with radiative forcing at 4.5 W/m2 after 2100; SSP370
represents a scenario with radiative forcing at 7.0 W/m2 after 2100, and SSP585 is a scenario
of high concentrations of GHG emissions without climate change policy intervention [25].
These scenarios are designed to outline future changes in population, socioeconomic fac-
tors, scientific and technological advancements, energy consumption, and the emissions of
GHG [26]. However, there have been no reports on evaluating the distribution and spatial
patterns of sesame in China under various climate scenarios using the MaxEnt model.

In this study, the key bioclimatic variables affecting sesame growth were analyzed
by the jackknife method. The MaxEnt model combined with ArcGIS software was used
to predict the potentially suitable areas of sesame in China under the current scenario
from 1970 to 2000 and future scenarios (SSP126, SSP245, SSP370, and SSP585) in different
periods (2021–2040, 2041–2060, 2061–2080, and 2081–2100). The objectives of this study
were as follows: (1) to reveal the bioclimatic variables affecting the suitability for sesame
cultivation and analyze the relationship between the predicted suitable areas and the main
bioclimatic variables; (2) to forecast the suitable areas of sesame under current and future
climate scenarios and divide them into different suitability grades; and (3) to predict the
suitable areas and then compare the change trends of sesame under the climate periods
in 2021–2040, 2041–2060, 2061–2080, and 2081–2100. This study will offer a scientific
foundation for sesame cultivation in China.
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2. Materials and Methods
2.1. Occurrence Data of Sesame

The distribution points of sesame were obtained from the Global Biodiversity Infor-
mation Facility (https://www.gbif.org/, accessed on 1 February 2024), the China Virtual
Herbarium (https://www.cvh.ac.cn/, accessed on 3 February 2024), and the China National
Specimen Information Infrastructure (https://www.nsii.org.cn, accessed on 6 February
2024). We removed the records with geo-referencing and data entry errors using the R
(version 4.2.2) package Coordinate Cleaner. A total of 234 sesame distribution points were
obtained (Figure 1). Then, we edited the latitude and longitude of the distribution points
in Excel. The China map used as the base map in ArcGIS software was downloaded from
the Data Center for Resource and Environmental Sciences, Chinese Academy of Sciences
(https://www.resdc.cn/, accessed on 8 February 2024).
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Figure 1. Distribution points of sesame in China.

2.2. Selection of Bioclimatic Variables

We downloaded bioclimatic variables for the current period (1970–2000) and four
future periods (2021–2040, 2041–2060, 2061–2080, 2081–2100) used in the study from the
WorldClim database (http://www.wordclim.org, accessed on 5 February 2024). These
bioclimatic variables include 19 variables (Bio1–Bio19, Table 1) with a spatial resolution
of 2.5 arc-minutes. The future bioclimatic variables are derived from the BCC-CSM2-MR
climate system model, which was developed by the China National Climate Center.

Many bioclimatic variables tend to increase the dimensionality of the ecological space
due to high collinearity among bioclimatic variables [27], leading to unfavorable model
predictions. Thus, it is essential to screen the bioclimatic variables for this study. Firstly, the
jackknife method was employed to evaluate the contribution percentage of 19 bioclimatic
variables, and the variables with a contribution rate of less than 1% were removed. Secondly,
the correlation coefficient was conducted by the ENMTools tool to reduce the effect of
multiple contributions of bioclimatic variables on the MaxEnt model. Bioclimatic variables
with high correlation coefficients (|r| ≥ 0.90) were removed. Finally, bioclimatic variables
were screened based on the jackknife test and correlation analysis.

https://www.gbif.org/
https://www.cvh.ac.cn/
https://www.nsii.org.cn
https://www.resdc.cn/
http://www.wordclim.org
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Table 1. Bioclimatic variables used in the MaxEnt model.

Bioclimatic Variables Description Unit

Bio1 Annual mean temperature ◦C
Bio2 Mean diurnal range ◦C
Bio3 Isothermality
Bio4 Temperature seasonality
Bio5 Max temperature of the warmest month ◦C
Bio6 Min temperature of the coldest month ◦C
Bio7 Temperature annual range ◦C
Bio8 Mean temperature of wettest quarter ◦C
Bio9 Mean temperature of driest quarter ◦C

Bio10 Mean temperature of warmest quarter ◦C
Bio11 Mean temperature of coldest quarter ◦C
Bio12 Annual precipitation mm
Bio13 Precipitation of the wettest month mm
Bio14 Precipitation of the driest month mm
Bio15 Precipitation seasonality
Bio16 Precipitation of the wettest quarter mm
Bio17 Precipitation of the driest quarter mm
Bio18 Precipitation of the warmest quarter mm
Bio19 Precipitation of the coldest quarter mm

2.3. Model Settings and Evaluation

The distribution points of sesame and bioclimatic variables were imported into the
MaxEnt (version 3.4.4) software to predict the climatic suitability. The model parameters
were set to a convergence threshold of 10–5, a maximum number of background points of
5000, and a cloglog output format. Seventy-five percent of the bioclimatic variables were
randomly selected as training data to establish the basic model parameters. The remaining
25% were used as test data to assess the model’s applicability [28]. For each subsample type,
we ran 10 replicates and averaged the results to reduce model uncertainty [29]. To reduce
the model overfitting, various combinations were tested to identify the optimal model
parameters. The regularization level of the MaxEnt model comprises two parameters:
the regularization multiplier (RM) and the feature combination (FC). The RM was set
from 1.0 to 2.5 with 0.5 intervals. Five sets of FC are set up for optimizing the model
parameters (LH: linear and hinge; LQ: linear and quadratic; LQH: linear, quadratic, and
hinge; LQPT: linear, quadratic, product, and threshold; LQHPT: linear, quadratic, hinge,
product, and threshold) [30]. The test sensitivity at 0% and 10% training omission rates
(ORs) was utilized to select the best model. A test omission rate closer to 0 at 0% and
to 0.100 at 10% indicated a higher-ranking model [31]. The performance of the MaxEnt
model was evaluated by the receiver operating curve (ROC), which plots sensitivity versus
(1–specificity) [32,33]. The area under the curve (AUC) is a useful threshold-independent
metric for assessing a model’s ability to differentiate between presence and absence, with
values ranging from 0 to 1. An AUC value below 0.50 means that the simulation result was
worse than those simulated by a random model, while a value close to 1.0 means that the
model performs better.

2.4. Reclassifying Suitable Areas and Assessing Bioclimatic Variables

The climatically suitable areas of sesame in China were output by the MaxEnt model.
ArcGIS 10.8 software was used for spatial mapping of suitability for both present and future
climate scenarios. Based on the existence probability (P) produced by the model, the natural
break point classification method (Jenks) was applied to categorize the suitable areas: the
highly suitable areas (0.8–1.0), the moderately suitable areas (0.5–0.8), the lowly suitable
areas (0.2–0.5), and the unsuitable areas (0.0–0.2), as shown in Table 2. The distribution
map of sesame in China was created using the reclassification function in ArcGIS, and
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the pixel count for various suitable areas was determined through the “attribute–symbol
system–unique value” method to calculate the area of suitable areas.

Table 2. Suitability assessment for sesame in China.

Class of Suitability Existence Probability

Highly suitable 0.8–1.0
Moderately suitable 0.5–0.8

Lowly suitable 0.2–0.5
Unsuitable 0.0–0.2

By using the “Quick Reclassify to Binary” tool in SDMTools in ArcGIS 10.8 [34], areas
with an existence probability higher than 0.2 are classified as potentially suitable areas, and
areas with an existence probability less than 0.2 are classified as non-potentially suitable
areas according to the output results of the MaxEnt model. We finally obtained a raster
file with only potentially suitable areas and non-potentially suitable areas. The changes
in potentially suitable areas for sesame during different periods were calculated using
the “Distribution Change Between Binary SDMs” tool in SDMTools, and the values were
defined as 0 for unfit, –1 for expansion, 1 for unchanged, and 2 for contraction [35], and the
area of potentially suitable areas in different periods was calculated.

3. Results
3.1. Major Bioclimatic Variable Affecting Sesame Cultivation Distribution

The result of the jackknife test showed that the contribution rates of the max temper-
ature of the warmest month, annual precipitation, and precipitation of the driest month
are 21.5%, 12.5%, and 11.3%, respectively (Table 3), indicating that these variables offer
more meaningful information to the modeling process. From the correlation analysis of the
13 bioclimatic variables, we removed five highly correlated variables and retained eight
variables for this model.

Table 3. Relative contributions of bioclimatic variables in the MaxEnt model.

Bioclimatic Variables Percent Contribution Permutation Importance

Max temperature of the warmest month 21.5 11.6
Annual precipitation 13.5 26.4

Precipitation of the driest month 11.3 16
Precipitation of the wettest month 11.2 2.2
Precipitation of the driest quarter 10.8 3.3

Mean temperature of the warmest quarter 6.8 1.1
Temperature seasonality 5.7 4.8

Mean temperature of the wettest quarter 4.7 7.8
Temperature annual range 4.1 3.4

Isothermality 2.7 1.2
Annual mean temperature 1.8 0.3

Mean diurnal range 1.6 0.7
Precipitation seasonality 1.4 9.6

Precipitation of the coldest quarter 0.8 3.5
Mean temperature of driest quarter 0.6 1.9

Min temperature of the coldest month 0.5 0.2
Precipitation of the wettest quarter 0.5 0.5

Precipitation of the warmest quarter 0.2 5.3
Mean temperature of the coldest quarter 0.1 0.2
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As shown in Figure 2, the maximum temperature of the warmest month had the
highest effect on the climatic suitability for sesame within each category of bioclimatic
variables, followed by annual mean temperature, annual precipitation, mean diurnal range,
precipitation of driest month, isothermality, precipitation seasonality, and temperature
seasonality (Figure 2).
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We selected the top five bioclimatic variables with high contribution rates to judge
the relationship between distribution probability and bioclimatic variables (Figure 3). It
was assumed that if the existence probability of sesame exceeded 0.5, the corresponding
bioclimatic variables were suitable for plant growth [36].

As shown in Figure 3, the probability was less than 0.5 when the max temperature of
the warmest month was less than 29.94 ◦C and greater than 34.08 ◦C. The probability was
the highest at 0.667 when the max temperature of the warmest month was 34.08 ◦C. So the
optimum value of the max temperature of the warmest month was 29.94–34.08 ◦C. The
probability was less than 0.5 when the annual mean temperature was less than 13.60 ◦C. The
probability was the highest at 0.759 when the annual mean temperature was 29.90 ◦C. So
the optimum value was 13.60–29.90 ◦C. The probability was less than 0.5 when the annual
precipitation was less than 814.20 mm. The probability was the highest at 0.678 when the
annual precipitation was 1801.28 mm. So the optimum value was 814.20–1801.28 mm. The
probability was less than 0.5 when the mean diurnal range was greater than 10.32 ◦C. The
probability was the highest at 0.687 when the mean diurnal range was 2.66–4.07 ◦C. So the
optimum value was 2.66–10.32 ◦C. The probability was less than 0.5 when the precipitation
of the driest month was less than 11.50 mm. The probability was the highest at 0.851 when
the precipitation of the driest month was 116.64–117.57 mm. So the optimum value was
11.50–212.30 mm.
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3.2. Model Calibration and Performance

The models with different settings achieved low test omission rates, ranging from
0.004 to 0.059 at a 0% training omission rate and from 0.095 to 0.127 at a 10% training
omission rate (Table 4). Both results were more aligned with the expected value when the
test omission rates at 0% and 10% were 0.004 and 0.095, and the corresponding AUC test
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was 0.841, showing a high prediction accuracy. Therefore, the linear, quadratic, product,
threshold, and RM = 2.0 were chosen as the best model parameters to reduce overfitting.

Table 4. Performance of the MaxEnt model with various parameter settings.

Setting OR AUCtest ± SD

RM FC 0% 10%

1 LH 0.029 0.184 0.810 ± 0.023
1.5 LH 0.013 0.109 0.827 ± 0.021
2 LH 0.013 0.113 0.831 ± 0.021

2.5 LH 0.009 0.138 0.813 ± 0.022
1 LQ 0.059 0.127 0.816 ± 0.023

1.5 LQ 0.007 0.102 0.817 ± 0.023
2 LQ 0.009 0.127 0.807 ± 0.024

2.5 LQ 0.018 0.116 0.811 ± 0.024
1 LQH 0.018 0.179 0.812 ± 0.023

1.5 LQH 0.016 0.161 0.823 ± 0.022
2 LQH 0.009 0.146 0.824 ± 0.022

2.5 LQH 0.007 0.102 0.829 ± 0.021
1 LQPT 0.025 0.216 0.817 ± 0.023

1.5 LQPT 0.016 0.143 0.832 ± 0.022
2 LQPT 0.004 0.095 0.841 ± 0.020

2.5 LQPT 0.011 0.138 0.828 ± 0.022
1 LQHPT 0.016 0.198 0.822 ± 0.022

1.5 LQHPT 0.029 0.175 0.824 ± 0.023
2 LQHPT 0.009 0.132 0.826 ± 0.021

2.5 LQHPT 0.009 0.166 0.816 ± 0.022
SD is the standard deviation. AUCtest refers to the area under the receiver operating characteristic curve calculated
using test data.

The screened eight bioclimatic variables were imported into the MaxEnt model with
the selected parameters. The average AUC value of the test sets was 0.841, indicating that
the MaxEnt model has high prediction accuracy, and is reliable for predicting the suitable
areas of sesame planting (Figure 4).
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3.3. Spatial Distribution of Suitable Areas for Sesame Under Current Climate Scenario

Figure 5 shows that under the current scenario, the suitable areas (highly suitable areas,
moderately suitable areas, and lowly suitable areas) of sesame were widely distributed
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in China, from south (Hainan) to north (Heilongjiang) and from east (Yellow Sea) to
west (Tibet). The area of suitable areas was 481.95 × 104 km2, accounting for 49.96%
of the total land area in China. The area of highly suitable areas was 64.51 × 104 km2,
accounting for 6.69%, and mainly located in southern central Henan, eastern central Hubei,
northern central Anhui, northern central Jiangxi, and eastern central Hunan. The area of
moderately suitable areas was 168.16 × 104 km2, accounting for 17.45%, and concentrated
in northeast Henan, eastern Sichuan, most parts of Hebei, Shandong, Jiangsu, Fujian,
Guangdong, Guangxi, and Hainan, small parts of Heilongjiang, Jilin, Liaoning, Yunnan,
and Xinjiang. The area of lowly suitable areas was 249.28 × 104 km2, accounting for 25.82%,
primarily distributed in eastern Sichuan, most parts of Guizhou, Shaanxi, Shanxi, Ningxia,
Heilongjiang, Jilin, Liaoning, Yunnan, and Inner Mongolia, small parts of Gansu and
Shandong.
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3.4. Spatial Distribution of Suitable Areas for Sesame Under Future Climate Scenarios

Figure 6 shows that the distribution of suitable areas had the same trend under the future
climate scenarios compared with the current climate scenario. The area of total suitable areas
ranged from 448.31 × 104 km2 to 477.49 × 104 km2, accounting for 46.51–49.54% of China’s
total land area. The area of highly suitable areas, moderately suitable areas, lowly suitable areas,
and unsuitable areas ranged from 60.05 × 104–71.92 × 104 km2, 129.43 × 104–167.65 × 104 km2,
237.17 × 104–270.88 × 104 km2, 486.39 × 104–515.56 × 104 km2, respectively.

No significant difference in the distribution of suitable areas under future climate sce-
narios compared to the current climate scenario. Furthermore, under SSP126 in 2021–2040,
2041–2060, 2061–2080, and 2081–2100, the area of highly suitable areas accounted for 6.84%,
6.26%, 6.97%, and 6.79% of China’s total land area, as well as accounting for 6.83%, 6.75%,
6.70%, and 7.04% under SSP245, accounting for 6.23%, 6.75%, 7.06%, and 7.46% under
SSP370, accounting for 6.73%, 6.70%, 6.85%, and 6.58% under SSP585.

The area of moderately suitable areas accounted for 13.84%, 17.39%, 13.43%, and
13.87% under SSP126 in 2021–2040, 2041–2060, 2061–2080, 2081–2100, as well as accounting
for 14.71%, 13.74%, 14.32%, and 15.65% under SSP245, accounting for 15.05%, 14.68%,
14.37%, and 14.27% under SSP370, accounting for 16.15%, 15.90%, 14.03%, 16.04% under
SSP585. The area of lowly suitable areas and unsuitable areas accounted for 24.61–28.10%
and 50.46–53.49% under future climate scenarios, respectively.
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As shown in Table 5, under SSP126, the area of highly suitable areas decreased by
6.43% during 2041–2060 and increased by 2.27%, 4.13%, and 1.42% during 2021–2040,
2061–2080, and 2081–2100. The area of highly suitable areas during four periods increased
by 2.09%, 0.85%, 0.10%, and 5.14% under SSP245. Under SSP370, the area of highly suitable
areas increased by 0.78%, 5.47%, and 11.48% during 2041–2060, 2061–2080, and 2081–2100
and decreased by 6.92% during 2021–2040. Under SSP585, the area of highly suitable areas
increased by 0.60%, 0.16%, and 2.39% during 2021–2040, 2041–2060, and 2061–2080 and
decreased by 1.73% during 2081–2100.

The area of moderately suitable areas during four periods decreased by 20.67%, 0.31%,
23.03%, and 20.49% under SSP126, as well as decreasing by 15.71%, 21.24%, 17.90%, and
10.29% under SSP245, decreasing by 13.74%, 15.89%, 17.61%, and 18.19% under SSP370,
respectively, decreasing by 7.42%, 8.85%, 19.61%, and 8.05% under SSP585.

The increased highly suitable areas were mainly concentrated in northern Henan. The
decreased moderately suitable areas for sesame were mainly distributed in Heilongjiang,
Jilin, and Liaoning.
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Table 5. The difference of suitable areas under current and future climate scenarios.

Predicted Area (104 km2) Comparison with Current Distribution (%)

Scenarios Periods Unsuitable
Areas

Lowly
Suitable

Areas

Moderately
Suitable

Areas

Highly
Suitable

Areas

Unsuitable
Areas

Lowly
Suitable

Areas

Moderately
Suitable

Areas

Highly
Suitable

Areas

Current 1970–2000 481.92 249.28 168.16 64.51

SSP126

2021–2040 499.96 264.54 133.40 65.97 3.74 6.12 –20.67 2.27
2041–2060 486.39 249.47 167.65 60.36 0.93 0.08 –0.31 –6.43
2061–2080 496.39 270.88 129.43 67.17 3.00 8.67 –23.03 4.13
2081–2100 510.36 254.38 133.70 65.43 5.90 2.05 –20.49 1.42

SSP245

2021–2040 510.34 245.93 141.74 65.86 5.90 –1.34 –15.71 2.09
2041–2060 504.78 261.59 132.44 65.06 4.74 4.94 –21.24 0.85
2061–2080 500.36 260.87 138.06 64.58 3.83 4.65 –17.90 0.10
2081–2100 508.02 237.17 150.86 67.82 5.42 –4.86 –10.29 5.14

SSP370

2021–2040 515.56 243.21 145.06 60.05 6.98 –2.43 –13.74 –6.92
2041–2060 501.32 256.09 141.45 65.01 4.03 2.70 –15.89 0.78
2061–2080 504.40 252.89 138.54 68.04 4.66 1.45 –17.61 5.47
2081–2100 488.10 266.28 137.57 71.92 1.28 6.82 –18.19 11.48

SSP585

2021–2040 491.86 251.42 155.68 64.90 2.06 0.86 –7.42 0.60
2041–2060 503.26 242.72 153.28 64.61 4.43 –2.63 –8.85 0.16
2061–2080 495.23 267.40 135.19 66.05 2.76 7.27 –19.61 2.39
2081–2100 493.90 251.95 154.63 63.39 2.49 1.07 –8.05 –1.73

Under the four climate scenarios, the area of unsuitable areas increased, ranging from
0.93% to 6.98%. The area of lowly suitable areas increased, ranging from 0.08% to 8.67%,
with the largest increase in 2061–2080 under SSP126, followed by 2081–2100 under SSP370
with 6.82%. In contrast, the area of lowly suitable areas decreased, ranging from 1.34% to
4.86%, with the largest decrease in 2081–2100 under SS245, followed by 2041–2060 under
SSP585 with 2.63%.

3.5. Changes in the Spatial Distribution of Suitable Areas for Sesame

The suitable areas under the four future climate scenarios were mainly concentrated
in Heilongjiang, Liaoning, Jilin, Beijing, Tianjin, Shandong, Hebei, Henan, Anhui, Hubei,
Jiangxi, Hunan, Guangxi, Guangdong, Fujian, Jiangsu, Zhejiang, and most parts of Sichuan,
Yunnan, Inner Mongolia, Shanxi, and Shaanxi (Figure 7).

As shown in Table 6, under SSP126, the potential distribution of sesame presented an
overall contraction trend in current–2040s, 2060s–2080s, and 2080s–2100s, the area of suit-
able areas shrank by 2.44%, 1.97%, and 1.96%, comprising 23.56 × 104 km2, 19.00 × 104 km2,
and 18.86 × 104 km2, respectively, which mainly concentrated in southeast Inner Mongolia
and eastern Yunnan. However, the area of suitable areas in the 2040s–2060s expanded by
20.90 × 104 km2 (2.17%), which was mainly concentrated in southeast Inner Mongolia.

Under SSP245, the area of suitable areas in the current–2040s and 2080s–2100s shrank
by 31.17 × 104 km2 (3.23%) and 17.80 × 104 km2 (1.85%), were mainly concentrated in
southeast Inner Mongolia and eastern Yunnan. In contrast, the suitable areas of sesame
presented an expansion trend in the 2040s–2060s and 2060s–2080s, the area of suitable areas
expanded by 1.84% and 0.88%, comprising 17.76 × 104 km2 and 8.48 × 104 km2, where
mainly concentrated in central Inner Mongolia and eastern Yunnan.

Under SSP370, the potential distribution of sesame presented an overall contrac-
tion trend in the current–2040s and 2060s–2080s, the area of suitable areas shrank by
38.74 × 104 km2 (4.02%) and 10.46 × 104 km2 (1.09%), respectively, which mainly con-
centrated in eastern Inner Mongolia, eastern Gansu, and eastern Yunnan. However, the
area of suitable areas in the 2040s–2060s and 2080s–2100s expanded by 2.36% and 2.06%,
comprising 22.75 × 104 km2 and 19.85 × 104 km2, where mainly concentrated in eastern
Inner Mongolia, eastern Gansu, and eastern Yunnan.
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Table 6. Area of suitable areas for sesame in different periods.

Current–2040s 2040s–2060s 2060s–2080s 2080s–2100s

Area
(104 km2)

Percent
(%)

Area
(104 km2)

Percent
(%)

Area
(104 km2)

Percent
(%)

Area
(104 km2)

Percent
(%)

SSP126

Expansion 5.52 0.57 20.90 2.17 9.01 0.93 4.90 0.51
Unsuitable 476.40 49.43 479.06 49.70 477.38 49.53 491.49 50.99
Unchanged 458.39 47.56 456.58 47.37 458.48 47.57 448.62 46.54
Contraction 23.56 2.44 7.33 0.76 19.00 1.97 18.86 1.96

SSP245

Expansion 2.75 0.29 17.76 1.84 8.48 0.88 10.14 1.05
Unsuitable 479.17 49.71 492.58 51.10 496.30 51.49 490.22 50.86
Unchanged 450.78 46.77 441.32 45.79 455.03 47.21 445.71 46.24
Contraction 31.17 3.23 12.21 1.27 4.06 0.42 17.80 1.85

SSP370

Expansion 5.11 0.53 22.75 2.36 7.38 0.77 19.85 2.06
Unsuitable 476.81 49.47 492.80 51.13 493.94 51.25 484.55 50.27
Unchanged 443.21 45.98 439.80 45.63 452.09 46.90 455.92 47.30
Contraction 38.74 4.02 8.51 0.88 10.46 1.09 3.55 0.37

SSP585

Expansion 16.78 1.74 14.36 1.49 15.98 1.66 12.77 1.33
Unsuitable 465.14 48.26 477.50 49.54 487.28 50.55 482.45 50.05
Unchanged 455.23 47.23 446.25 46.30 452.67 46.96 457.20 47.43
Contraction 26.72 2.77 25.76 2.67 7.95 0.82 11.45 1.19
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Under SSP585, the suitable areas of sesame presented an overall contraction trend in
the current–2040s and 2040s–2060s, the area of suitable areas shrank by 26.72 × 104 km2

(2.77%) and 25.76 × 104 km2 (2.67%), where mainly concentrated in central and eastern
Inner Mongolia. In contrast, the suitable areas in 2060s–2080s and 2080s–2100s, respectively,
expanded by 1.66% and 1.33%, comprising 15.98 × 104 km2 and 12.77 × 104 km2.

4. Discussion
4.1. Effect of Bioclimatic Variables on Geographical Distribution of Sesame

Bioclimatic variables are the main factors that regulate crop growth rate, yield, and
geographical distribution. In order to understand the effect of bioclimatic variables on the
geographical distribution of sesame, this study analyzed the input variables of MaxEnt
model using jackknife test and determined that the max temperature of the warmest month
(Bio5) was the critical bioclimatic variable affecting the sesame distribution, followed
by annual mean temperature (Bio1), annual precipitation (Bio12), mean diurnal range
(Bio2), precipitation of driest month (Bio14), isothermality (Bio3), precipitation seasonality
(Bio15), and temperature seasonality (Bio4). Based on the response curve, the probability of
sesame distribution and the range of values for each bioclimatic variable are determined.
Among these variables, the optimum value range of the annual mean temperature was
13.60–29.90 ◦C, and the optimal value range of the max temperature of the warmest month
was 29.94–34.08 ◦C. Baath et al. [22] found that the basic temperature limits to fulfill sesame
biomass accumulation were 15.7 ◦C (Tmin), 27.3 ◦C (Topt), and 44.6 ◦C (Tmax). Sesame was
able to flower at medium and high temperatures. However, the yield gradually decreases
when the temperature is above 25 ◦C, and there is no seed yield when the temperature is
above 33 ◦C. In addition, Wang et al. [37] found that long-term temperatures higher than
35 ◦C will retard growth and delay flowering. Our findings are consistent with previous
studies conducted by Baath [22] and Wang [37].

Global warming intensifies the global water cycle, resulting in more extreme precipita-
tion. Sesame is sensitive to waterlogging, and excessive moisture conditions can severely
hinder its growth and decrease yield and quality [38]. However, drought at the sowing
stage decreases the seedling emergence rate, and persistent drought in the growth stage
delays the growth and development of sesame [39]. Our results showed that the sum of the
contributions of annual precipitation and precipitation of the driest month was 11.4%, and
the optimal range of annual precipitation was 814.20–1801.28 mm, the optimal range of
precipitation of the driest month was 11.50–212.30 mm.

4.2. Effect of Climate Change on Geographical Distribution of Sesame

Our results showed that sesame is widely distributed in China, from south (Hainan)
to north (Heilongjiang) and from east (Yellow Sea) to west (Tibet). Luo et al. [40] indicated
that sesame is widely distributed in China. And the sesame planting areas are mainly
concentrated in Henan, Hubei, and Anhui, accounting for about 70% of the total sesame
planting areas, followed by Jiangxi, Jiangsu, Shandong, Hunan, Hebei, and other provinces,
accounting for about 20% of the total sesame-planting areas. Based on national statistical
data from 1985 to 2015, Wang et al. [41] found that the sesame-planting areas in China are
mainly concentrated in the Dabie Mountain Range area and northwestern Liaoning. In
our study, the highly suitable areas were concentrated in southern central Henan, eastern
central Hubei, northern central Anhui, northern central Jiangxi, and eastern central Hunan.
The moderately suitable areas were concentrated in northeast Henan, eastern Sichuan, most
parts of Hebei, Shandong, Jiangsu, Fujian, Guangdong, Guangxi, and Hainan. In this study,
the AUC value of the MaxEnt model was 0.841, and the model predictions were consistent
with the actual distribution, indicating that the MaxEnt model is reliable in predicting the
distribution of sesame.

Under the future climate scenarios, the contraction rate of suitable areas for sesame is
greater than the expansion rate, with a decreasing trend in the suitable areas. The area of
unsuitable areas showed an increasing trend. Among the suitable areas, the area of highly
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suitable areas and low suitable areas all increased. In contrast, the area of moderately
suitable areas decreased, ranging from 0.31% to 23.03%. The decline range in moderately
suitable areas was higher than the increase range in highly suitable and lowly suitable
areas, resulting in a decrease in suitable areas. This may be because moderately suitable
areas are usually closer to crop or ecosystem tolerance thresholds, and small environmental
changes may result in significant reductions in moderately suitable areas.

The fifth assessment report of the Intergovernmental Panel on Climate Change (IPCC)
points out that the global warming is about 1.5 ◦C, 1.1–2.6 ◦C, 1.4–3.1 ◦C, and 2.6–4.8 ◦C
under different future climate scenarios. In this study, climate warming under different sce-
narios had different effects on sesame suitability. The area of highly suitable areas increased,
ranging from 0.10% to 11.48%, except for 2041–2060 under SSP126, 2021–2040 under SSP370,
and 2081–2100 under SSP585. The lowly suitable areas increased, ranging from 0.08% to
8.67% except for 2021–2040 and 2081–2100 under SSP126, 2021–2040 under SSP370, and
2041–2060 under SSP585. The area of highly suitable areas increased significantly under
SSP370. The temperature rise of 1.4–3.1 ◦C is conducive to the spatial expansion of sesame.
Therefore, the bioclimatic variables under SSP370 are more favorable for the expansion of
suitable areas for sesame in China because increasing temperatures and precipitation are
more capable of meeting the climatic demands of sesame in China.

Under the four future climate scenarios, the highly suitable areas for sesame were
centered on the five traditional sesame planting areas, including Henan, Anhui, Hubei,
Hunan, and Jiangxi, which have a relatively stable distribution pattern. These regions
are characterized by favorable climatic conditions, such as adequate precipitation and
suitable temperatures. The study showed that no significant migration of the suitable
areas was found. In addition, the increased highly suitable areas were mainly located
in northern Henan because of the thermophilic habit of sesame, and climate warming
promoted the expansion of sesame planting areas. In addition, climate warming led to an
increase in precipitation [42]. Sesame is a drought-tolerant and flood-resistant crop [43,44].
Northern Henan has low precipitation throughout the year, and the increased precipitation
creates more favorable conditions for sesame growth. The decreased moderately suitable
areas were mainly distributed in Liaoning and other northeastern regions due to increased
evaporation caused by increasing temperatures. High evaporation led to an increased
demand for sesame precipitation, and precipitation in the northeast areas did not meet the
demand for sesame growth.

4.3. Suggestions and Potential Limitations

Wang et al. [41] also found that China’s sesame production areas have changed slightly
in the past 30 years, mainly concentrated in Henan, Anhui, and Hubei. Therefore, when
choosing sesame-planting areas, factors such as policy and capital should be first considered,
followed by climatic factors. In addition, it is recommended to increase sesame-planting
areas in the highly suitable areas and the moderately suitable areas, such as southern central
Henan, northeast Henan, eastern central Hubei, northern central Anhui, northern central
Jiangxi, eastern central Hunan, eastern Sichuan, Hebei, and Shandong.

This study predicted the potential distribution areas of sesame in China by evaluating
the effects of meteorological resources on sesame. However, we did not consider the effects
of soil, topography, climate disasters, and bioecological factors. In future research, we will
incorporate these additional variables to enhance the prediction accuracy of suitable areas
for sesame distribution.

5. Conclusions

This study showed that the crucial bioclimatic variables affecting sesame distribution
were max temperature of warmest month, annual mean temperature, annual precipitation,
mean diurnal range, precipitation of driest month, isothermality, precipitation seasonality,
and temperature seasonality. The suitable areas of sesame distribution changed with
meteorological resources. Under the current climate scenario, the area of highly suitable
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areas, moderately suitable areas, and lowly suitable areas accounted for 6.69%, 17.45%, and
25.82% of China’s total land area, respectively. Compared with the current climate scenario,
the suitable areas expanded ranging from 0.29% to 2.36% and contracted ranging from 0.42%
to 4.02%, were mainly distributed in eastern Inner Mongolia, eastern Gansu, and eastern
Yunnan. Furthermore, the area of highly and lowly suitable areas under future climate
scenarios increased by 0.10–11.48% and 0.08–8.67%, while the area of moderately suitable
areas decreased by 0.31–23.03%. The suitable areas for sesame cultivation shifted slightly,
the area of highly suitable areas in northern Henan increased, the area of moderately
suitable areas in Heilongjiang, Jilin, and Liaoning decreased, and the lowly suitable areas in
Inner Mongolia decreased. And the bioclimatic variables under SSP370 are more favorable
for the expansion of suitable areas for sesame in China under future climate scenarios. Our
study offers insights into both current and future suitable areas and supplies an adaptive
management strategy for sesame cultivation in China in the face of climate change.
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