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Abstract: Guayule (Parthenium argentatum A. Gray) has the potential to be an alternative source of 
rubber if its co-products can be exploited on an industrial scale. Among the co-products that have 
garnered interest are the essential oils (EOs), which can reach relatively high yields. In the present 
study, the production and profile of EOs from two guayule accessions, AZ-3 and AZ-5, across dif-
ferent flowering stages (5 months) were analyzed under two irrigation regimes (100% and 50% of 
crop water evapotranspiration) and compared with control plants that received no additional water, 
(considered as a water-stress condition). The results showed that the extracted EO yield was con-
sistently higher in the AZ-3 accession than in the AZ-5, especially under water-stress conditions, 
and that the flowering stage significantly affected the yield irrespective of the accession. Further-
more, differences in EO composition were observed between accessions, with AZ-3 containing more 
monoterpenes and AZ-5 containing more sesquiterpenes. The yields obtained underline the eco-
nomic potential of guayule EO production, especially under water-stress and flowering conditions, 
and position it favorably against other aromatic plants. These results provide valuable insights for 
optimizing guayule cultivation to increase EO yields, with both economic and environmental ben-
efits. 
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The global EO market was valued at USD 23.74 billion in 2023 and is expected to 

grow at a compound annual growth rate of 7.9% through 2030, indicating a promising 
global market outlook in the coming years [1]. Therefore, the EOs industry is focused on 
the search for new applications or on the production of EOs from new raw materials [2]. 
In case of the production of new EOs, it is noteworthy that the yield and chemical com-
position of EOs and, consequently, their quality are significantly affected by several fac-
tors besides the plant species, such as the geographical origin and environmental param-
eters [3]; the part of the plant used, the age or developed stage, or the agronomical prac-
tices carried out are also crucial [4–7]. 

Guayule EOs have not been extensively studied, and the extraction yield of their EOs 
varied from 0.8% to 2.8%, depending on the part of the plant extracted and the accession 
[8–10]. Such extraction yields might be considered modest when compared with other 
industrially productive plants, such as Lavandula latifolia (4.6% in leaves and flowers) [11]. 
There are not many studies related to the production of the essential oils of other related 
spices closed to the guayule family or genus, but those that have been found to have lower 
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Abstract: Guayule (Parthenium argentatum A. Gray) has the potential to be an alternative source of
rubber if its co-products can be exploited on an industrial scale. Among the co-products that have
garnered interest are the essential oils (EOs), which can reach relatively high yields. In the present
study, the production and profile of EOs from two guayule accessions, AZ-3 and AZ-5, across different
flowering stages (5 months) were analyzed under two irrigation regimes (100% and 50% of crop water
evapotranspiration) and compared with control plants that received no additional water, (considered
as a water-stress condition). The results showed that the extracted EO yield was consistently higher in
the AZ-3 accession than in the AZ-5, especially under water-stress conditions, and that the flowering
stage significantly affected the yield irrespective of the accession. Furthermore, differences in EO
composition were observed between accessions, with AZ-3 containing more monoterpenes and AZ-5
containing more sesquiterpenes. The yields obtained underline the economic potential of guayule EO
production, especially under water-stress and flowering conditions, and position it favorably against
other aromatic plants. These results provide valuable insights for optimizing guayule cultivation to
increase EO yields, with both economic and environmental benefits.

Keywords: guayule; volatile extracts; essential oils; water supply; phenological floral stage

1. Introduction

The global EO market was valued at USD 23.74 billion in 2023 and is expected to grow
at a compound annual growth rate of 7.9% through 2030, indicating a promising global
market outlook in the coming years [1]. Therefore, the EOs industry is focused on the
search for new applications or on the production of EOs from new raw materials [2]. In case
of the production of new EOs, it is noteworthy that the yield and chemical composition of
EOs and, consequently, their quality are significantly affected by several factors besides the
plant species, such as the geographical origin and environmental parameters [3]; the part
of the plant used, the age or developed stage, or the agronomical practices carried out are
also crucial [4–7].

Guayule EOs have not been extensively studied, and the extraction yield of their
EOs varied from 0.8% to 2.8%, depending on the part of the plant extracted and the
accession [8–10]. Such extraction yields might be considered modest when compared
with other industrially productive plants, such as Lavandula latifolia (4.6% in leaves and
flowers) [11]. There are not many studies related to the production of the essential oils of
other related spices closed to the guayule family or genus, but those that have been found
to have lower EO yields, for example, Artemisia annua (0.3%) and Parthenium hysterophorus
(0.04%) and Tanacetum parthenium (L.) EOs (0.45–0.7%) [12,13], have been studied.
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Several studies in the last 40 years have demonstrated that agronomic management
practices influence the production of rubber and co-products from guayule. For example, it
has been reported that plant biomass directly increases with irrigation, while rubber yield
tends to decrease [14,15]. Similar studies investigating bioactive guayulin and argentatin
co-products in the resin have shown that their content is dependent on water and nitrogen
supply [16,17]. With respect to guayule EOs, the findings of one study with CAL-7 accession
reported that the stress caused by reducing the amount of water up to 75% (no further data
were provided) increased the EO content in flowers from 0.4 to 1.0% [18]. The composition
of volatiles was also dependent on the irrigation treatment; for example, α-pinene increased
from 5.8% to 20.6% under moderate water stress, and significant increases were also
observed for germacrene D (1.8 to 12.1%) and bicyclogermacrene (3.1 to 16.5%) [18]. No
studies have been carried out on the production of guayule EO during its flowering period,
but in the case of Origanum vulgare L., the EO yield increased with flowering from 2.5% to
4.0% [19], and an even higher yield was observed for Lavandula angustifolia (1.5 to 4.6%) [20].

Efforts are underway to make guayule crop [21,22] more efficient to be industrially
exploited, but this will only be fully realized if other chemical fractions (co-products) of the
shrub that are different from rubber can be commercially exploited as well [23–28], and the
latest proposal for its use is the production of essential oils (EOs). For this reason, the aim
of the present work was to carry out a detailed study of EO accumulation in two guayule
accessions (AZ-3 and AZ-5), considering the hypothesis that the guayule EOs yield and
volatile profile will be modified when the plant is subjected to different water treatments
during its flowering period.

2. Materials and Methods
2.1. Germplasm

Two guayule accessions, AZ-3 (P. argentatum x non mariola) and AZ-5 (P. argentatum),
were obtained from the USDA-ARS National Plant Germplasm System and were planted
in May 2019.

2.2. Field Location and Sampling

The trial field was located in Santa Cruz de la Zarza (Toledo, Spain), on a 0.8 ha ex-
perimental plot located at coordinates 39◦57′34.9200′′ N, 3◦10′18.1560′′ W, with an average
altitude of 775 m above sea level. It is the same plot and experimental design as described
previously [17]. The agro-climatic conditions were characterized by a developing arid
climate, relatively cold winters, and warm summers. The mean annual temperature is
15.4 ◦C, and the lowest mean temperature is ~9.5 ◦C during the coldest month. The average
annual precipitation is 240 mm, concentrated in the spring and autumn, causing winters to
be somewhat dry and summers very dry.

As is common in crops where different parts of the plant are at simultaneous phenolog-
ical stages, for the guayule in this study, multiple BBCH codes were recorded to accurately
describe the developmental stage of the crop together with the ten weekly samplings that
were carried out from 25 April 2023 to 25 August, as follows: S1 (25 April 2023; BBCH 23,
34, 55), S2 (3 May 2023; BBCH 23, 35, 52), S3 (9 May 2023; BBCH 23, 35, 55), S4 (17 May
2023; BBCH 23, 35, 55, 63), S5 (24 May 2023; BBCH 23, 35, 55, 66, 77), S6 (6 June 2023; BBCH
23, 35, 55, 66, 77, 86), S7 (21 June 2023; BBCH 23, 35, 55, 66, 77, 86), S8 (5 July 2023; BBCH 55,
66, 77, 86), S9 (19 July 2023; BBCH 66, 77, 86), and S10 (25 August 2023; BBCH 66, 77, 86).
Three homogeneous representative plants were randomly selected for each treatment.

2.3. Irrigation Parameters

The estimation of crop water requirements was calculated following the methodology
described in FAO-56, using the method for determining crop evapotranspiration (ETc) by
means of the dual crop coefficient [29]. The ET0 was calculated using the Penman–Monteith
equation, as recommended by FAO-56. This method integrates weather parameters to
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estimate the amount of water needed to replace the moisture lost due to evapotranspiration
from a well-watered, grass reference crop.

Each irrigation treatment was determined through a detailed water balance calculation
for each phenological period. The crop water requirement (ETc) was computed by adjusting
ET0 with the dual crop coefficient (Kc) approach, considering both crop transpiration (Kcb)
and soil evaporation (Ke). The irrigation treatments were designed to meet either 50%
or 100% of the ETc, applying water twice a week during critical growth stages such as
sprouting and flowering (Table 1). Water applications were adjusted accordingly, based
on the calculated ETc for each growth period. For the control treatment, no additional
irrigation was provided beyond the effective summer rainfall. This lack of supplemental
water created a controlled water-stress environment, particularly during periods of high
evaporative demand, which allowed us to evaluate the impact of water deficit on the crop
under local climate conditions.

Table 1. Guayule crop evapotranspiration for the three irrigation conditions tested.

Plant Stage Period of
Days

Effective
Rainfall

(mm)

0% ETc 50% ETc 100% ETc

Irrigation
(mm)

Mean Deficit
(mm)

Irrigation
(mm)

Mean Deficit
(mm)

Irrigation
(mm)

Mean Deficit
(mm)

Dormancy 90 23 0 25 0 25 0 25
Sprouting 2 2 0 56 43 54 85 50
Flowering 191 191 0 93 555 34 1109 24
Senescence 130 130 0 49 0 32 0 32

Total 365 346 0 63 597 35 1194 29

2.4. Processing and Essential Oil Extraction

Each plant was harvested at 5 cm from the soil surface, immediately weighed (fresh
weight), then dried at 60 ◦C for 48 h, and reweighed to determine the dry weight. The
flowers of each harvested plant were counted manually, distinguishing four types of
flowers: closed buds (CB), flower opening (FO), flower fully mature (FFM), and flower
senescing (FS) (Figure 1).
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For the laboratory analysis, 200 g of each of the three plants (including stems, flowers,
and leaves) were mixed together to obtain a representative sample. The procedure was
carried out in duplicate. The samples for each batch were crushed in a Thermomix for 15 s
at speed 6 (Thermomix TM 31, Vorwerk, Madrid, Spain). Extraction of EOs was performed
by steam distillation using 200 g of crushed plant material and 700 mL of distilled water in a
Clevenger-type steam distillation apparatus for 2 h. The EO was collected in an Eppendorf
tube and centrifuged at 15,000 rpm for 2 min to improve phase separation, and the resulting
volume was measured with a precision pipette. All samples were distilled in duplicate.

2.5. Volatile Identification by GC-QTOF-MS

Samples of EOs were analyzed following the method described by González-Navarro
et al. [8]: They were diluted 1:20 (EO/methanol) and then injected into a GC 7280 (Agi-
lent, Santa Clara, CA, USA) gas chromatograph system equipped with a HP5MS column
(30 m × 0.25 mm; 0.25 µm; Agilent 19091S-433UI) connected to an accurate mass QTOF-MS
(Agilent 7200) for identification. The sample was introduced into the GC using an autosam-
pler at a volume of 1 µL in split mode (1:100). The temperature of the injector was 250 ◦C,
and the helium carrier gas was set to a constant flow of 1 mL min−1. The oven temperature
was set to 70 ◦C (10 min), 3 ◦C min−1 to 95 ◦C, 4 ◦C min−1 to 170 ◦C, 20 ◦C min−1 to 300
◦C, and then maintained at 300 ◦C (2 min). The transfer line temperature was 300 ◦C.
The nitrogen collision gas was fixed at 1 mL min−1, ionization energy at 70 eV, and the
temperature of the electron ionization source at 260 ◦C. Mass spectra were acquired with a
scan range of 35–350 m/z. Compound identification was performed with the NIST mass
spectral library (version 14) using MassHunter qualitative analysis software (version 10.0,
Agilent).

2.6. Data Analysis

IBM SPSS Statistics v25 [30] was used to analyze the EO yields and the results of
volatile profiling across the ten different samplings. Analysis of variance (ANOVA) was
used to test for differences in yield between accessions within the same sampling period
as well as differences between the samplings for each accession. Both the composition
of chemical families and volatile evolution along time were compared by ANOVA in the
different germplasms using Tukey’s test at 95% confidence level. The compounds identified
in EOs (40) were analyzed by principal component analysis to select those that could
explain the main differences in the profiles among both accessions and samplings.

3. Results

AZ-3 and AZ-5 guayule accessions were grown in the same plot with homogeneous
soil and climatic conditions and the same plant maturity and were harvested at the same
time. The total annual effective rainfall (346 mm) corresponds to the average year in
this Spanish area, which is commonly concentrated during spring, as shown in Table 1,
corresponding to the flowering guayule vegetative stage with 191 mm of effective rain and,
to a lesser extent, during the senescence plant period with 130 mm of rain. As shown in
Table 1 and looking to the most significant vegetative stages, it was observed that during
flowering, the situation with higher water stress was at 0% ETc (93 mm) in comparison to
the 50 and 100% ETc mean water deficit.

3.1. Flowering and Yields of Essential Oils

As shown in Figure 2, the EO yield in accession AZ-3 differed between the two
irrigation treatments and the control and showed a clear relationship with flowering stage.
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Figure 2. Quantity of flowers (left Y axis) related to yield (right Y axis) of essential oils in AZ-3 at
(a) 0% irrigation, (b) 50% irrigation, and (c) 100% irrigation. (d) ANOVA comparing differences
between yield in the same sampling time for different irrigation regimes. Note: CB, closed buds;
PO, flower opening; FFM, flower fully mature; FS, flower senescing. S1 to S10 all represent 2023.
Different letters indicate significant differences at 95% confidence level by Tukey’s test. Lowercase
letters refer to an ANOVA comparing differences between yield in the same irrigation regime for
different sampling times Uppercase letters refer to an ANOVA comparing differences between yield
in the same sampling but different irrigation.

Independently of irrigation, the EO yield showed an overall trend for increase from
sampling 1 (S1) to S5, reaching 0.5–0.6% (Figure 2). This coincided with the progression of
flower maturity, starting with closed buds at S1 and S2, and with flower opening appearing
at S3 for shrubs receiving 0% and 50% irrigation (Figure 2a,b) and one week later for shrubs
receiving 100% irrigation (Figure 2c). Fully mature flowers started to appear at S5 in all
irrigation schemes.

Control plants (0% irrigation) showed a constant yield of EOs between S4 and S7
(Figure 2a), whereas under 50% irrigation, the EO yield remained constant from S5 to
sampling S7 (28 days), at which time a second flowering took place in both cases (S7).
Plants at 100% irrigation showed a significant decrease in EO content, reaching from 0.6%
(S5) to 0.4% at S7 (Figure 2c). At S8, the EO extraction yield in control plants reached
a value of 1.2%, at which time most flowers became mature. This was followed by a
significant decrease in EO yield 15 days later, when flowers disappeared (S9), which
remained constant over the next month (S10) with 0.9% yield (Figure 2a). For plants at 50%
irrigation (Figure 2b), a significant increase in EO yield was observed from S7 to S8, which
remained constant to S9 (15 days later), and a new increase in EO yield occurred at S10
with the appearance of new flower opening. For the 100% irrigation (Figure 2c), the highest
yield was achieved at S8 (1%) and remained constant for a further month (S10). From S6 to
S8 (Figure 2d), differences in EO yield were observed across treatments, with control plants
showing the highest yield. No significant differences were observed between the groups at
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S9, but at S10, the 50% and 100% groups showed the highest yield, the opposite of what
was observed at S6 and S8.

In AZ-5 accession, there were differences between irrigation managements: 100% irri-
gation had a significant effect on the flowering growth (S2 to S4) (Figure 3). Independently
of the management fully mature flowers did not appear until S5, when the proportion
of opening flowers and closed buds was lower, evolving to the appearance of senescing
flowers 15 days later (S6) and resulting in a consistent extraction yield from S1, reaching
0.3–0.4%. For control plants (0% irrigation), an increase in EO extraction yield (0.7%) was
observed in S7 and remained constant until the last sampling (Figure 3a), in which no
flowers were collected. Differences were observed from S8 onwards for plants irrigated
at 50% (Figure 3b) and 100% (Figure 3c). The EO extraction yield remained constant in
the 100% group (0.7%) (Figure 3c), whereas it continued to increase in the 50% irrigation
group until S10, with a maximum yield of 1.1% (Figure 3b). Notably, there was a second
flowering at S7 for the 50% irrigation group, which may be related to the high extraction
yield obtained.
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Figure 3. Quantity of flowers (left Y axis) related to yield (right Y axis) of essential oils in AZ-5 at
(a) 0% irrigation, (b) 50% irrigation, and (c) 100% irrigation. (d) ANOVA comparing differences
between yield in the same sampling time for different irrigation regimes. Note: CB, closed buds; PO,
flower opening; FFM, flower fully mature; FS, flower senescing; S1, 25 April 2023; S2, 3 May 2023; S3,
9 May 2023; S4, 17 May 2023; S5, 24 May 2023; S6, 6 June 2023; S7, 21 June 2023; S8, 5 July 2023; S9, 19
July 2023; S10, 25 August 2023. Different letters indicate significant differences at 95% confidence
level by Tukey’s test. Lowercase letters refer to an ANOVA comparing differences between yield
in the same irrigation regime for different sampling times. Uppercase letters refer to an ANOVA
comparing differences between yield in the same sampling but different irrigation.

The biomass of AZ-3 increased throughout the trial, with significant differences be-
tween the sampling periods (Figure S1). For the control (0% irrigation) plants, the greatest
biomass was reached at S8 (1.85 kg plant−1), while additional irrigation increased the
individual plant weight to well over 2 kg at the end of the sampling (S10) (Figure S1). The
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biomass dynamics and EO yield were expressed as EOs yield/production (L ha−1), as
shown in Table 2. The maximum EO yield for AZ-3 without irrigation was 175 L ha−1 at
S8. However, irrigation extended the EO extraction period with respect to the optimum
obtained without irrigation. In this case, irrigation (at any dose) provided a significant
improvement of 153–154 L ha−1 compared with the control value of 133 L ha−1 at the end of
the flowering period (S10). The performance of AZ-5 was completely different, performing
better at S10 with 50% irrigation than in the other conditions.

Table 2. Yield (L ha−1) of essential oils produced by AZ-3 and AZ-5 accessions across 10 samplings.

Sampling

AZ-3 AZ-5

0% 50% 100% 0% 50% 100%
Yield (L ha−1) Yield (L ha−1) Yield (L ha−1) Yield (L ha−1) Yield (L ha−1) Yield (L ha−1)

S1 66.00 ± 2.12 ab 52.50 ± 0.00 b 66.00 ± 8.49 ab 67.50 ± 0.00 ab 72.00 ± 10.61 ab 77.25 ± 3.18 a
S2 73.50 ± 2.12 ab 68.25 ± 5.30 ab 63.75 ± 5.30 b 81.00 ± 2.12 a 63.75 ± 5.30 b 81.00 ± 2.12 a
S3 81.00 ± 8.49 a 71.25 ± 15.91 a 60.00 ± 10.61 a 62.25 ± 13.79 a 60.00 ± 0.00 a 79.50 ± 10.61 a
S4 98.25 ± 3.18 a 62.25 ± 7.42 b 67.50 ± 14.85 b 69.75 ± 3.18 b 52.50 ± 6.36 b 81.00 ± 2.12 ab
S5 93.00 ± 12.73 a 93.00 ± 8.49 a 85.50 ± 2.12 a 58.90 ± 2.12 b 56.25 ± 5.30 b 60.00 ± 0.00 b
S6 99.00 ± 2.12 a 72.75 ± 3.18 b 73.50 ± 8.49 b 71.25 ± 5.30 b 54.75 ± 5.30 b 66.75 ± 11.67 b
S7 99.37 ± 2.65 b 82.50 ± 10.61 ab 60.00 ± 10.61 b 108.75 ± 5.30 a 57.75 ± 3.18 b 61.87 ± 13.26 b
S8 175.12 ± 14.32 a 131.25 ± 0.00 bc 139.12 ± 10.08 b 103.12 ± 2.65 c 108.00 ± 6.36 c 108.00 ± 4.24 c
S9 131.25 ± 5.30 ab 122.25 ± 19.09 ab 151.87 ± 2.65 a 105.00 ± 0.00 b 123.00 ± 14.85 ab 101.25 ± 5.30 b
S10 132.75 ± 3.18 b 153.00 ± 4.24 a 153.75 ± 5.30 a 116.25 ± 5.30 c 155.62 ± 2.65 a 114.37 ± 2.65 c

Note: S1, 25 April 2023; S2, 3 May 2023; S3, 9 May 2023; S4, 17 May 2023; S5, 24 May 2023; S6, 6 June 2023; S7,
21 June 2023; S8, 5 July 2023; S9, 19 July 2023; S10, 25 August 2023. L ha−1 means liter per hectare. Tukey’s test
was used to assign lettercase significance. Different letters refer to an ANOVA comparing differences between the
same sampling with different irrigation conditions in all accessions at 95% level of confidence. Words in bold refer
to maximum values.

3.2. Profiling of Essential Oil Volatiles

Forty volatile compounds were identified and mainly grouped into the terpene family
(73.5% in AZ-3 and 75.6% in AZ-5) and the sesquiterpene family (26.6% in AZ-3 and 24.4%
in AZ-5). These values are averages of each compound independent of sampling and
composition (see Tables S1 and S2).

A multivariate analysis was performed to determine whether sampling or irrigation
factors influenced the volatile EO profile of the two guayule accessions (Table 3). Analysis
of the sampling factor revealed only three compounds showing no significant differences:
two terpenes, namely 2-thujene (C5) and linalyl formate (C19), and the sesquiterpene
germacrene D (C29). The content of these compounds varied from 3.9 to 8.2% for C5 and
between 2.5 and 5.2% for C29 and was negligible for linalyl formate (<1%). Eight of the
forty volatiles identified (3 terpenes and 5 sesquiterpenes) showed no significant difference
for the accession factor, while fifteen of them were included in this category when the
irrigation factor was considered (10 terpenes and 5 sesquiterpenes). When the double-
factor interaction was considered, more sesquiterpenes showed no significant differences
in comparison with the single-factor analysis. The sampling × accession × irrigation
triple interaction showed that only 12 compounds would be responsible for the significant
differences: 8 terpenes and 4 sesquiterpenes (Table 3).

The EOs volatile composition at the stage where both accessions registered the maxi-
mum yield were compared (Figure 4), showing that AZ-3 contained more monoterpenes,
and AZ-5 contained more sesquiterpenes. No response was observed for the volatiles C13
(sabinol), C16 (vervenone), and C37 (viridiflorol) that could not be quantified but were
identified in the selected conditions, and the content of C15 and C17, although quantifiable,
was very low (Figure 4). For the remaining compounds, it could be observed that the
content of C1 (santolina triene), C6 (sabinene), C7 (β-myrcene), C8 (β-E-ocimene), C11
(3-carene), and C26 (caryophyllene) was significantly higher in AZ-3 than in AZ-5.
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Table 3. Multivariate analysis of the essential oil profiles.

Sampling Accession Irrigation Sampling ×
Accession

Sampling ×
Irrigation

Accession ×
Irrigation

Sampling ×
Accession ×

Irrigation

C1 Santolina triene ** *** *** ** NS *** NS

C2 α-thujene ** *** *** NS NS NS NS

C3 α-pinene *** *** *** ** NS ** NS

C4 Camphene ** *** NS *** *** ** ***

C5 2-thujene NS *** NS NS NS ** NS

C6 Sabinene *** *** *** NS NS NS NS

C7 β-myrcene *** *** ** *** *** *** ***

C8 β-E-ocimene *** *** NS *** *** *** **

C9 β-terpinene *** *** *** ** *** NS ***

C10 Limonene *** *** *** NS NS ** **

C11 3-carene *** *** *** *** *** NS ***

C12 2-methy-2-bornene *** *** NS ** *** NS NS

C13 Sabinol ** NS NS NS NS NS NS

C14 Verbenol *** NS NS NS NS NS NS

C15 Myrtenol *** ** NS NS NS NS NS

C16 Vervenone ** NS NS NS NS NS **

C17 Myrtenyl isovalerate *** *** NS *** NS NS NS

C18 Bornyl acetate *** *** *** *** *** NS ***

C19 Linalyl formate NS *** NS NS NS NS NS

C20 α-guaiene *** *** *** NS NS NS NS

C21 α-cubebene ** *** ** NS NS NS NS

C22 Modephene *** *** *** ** NS NS NS

C23 α-isocomene *** *** *** *** NS NS **

C24 β-copaene *** NS *** ** NS NS NS

C25 β-isocomene *** *** *** ** NS NS NS

C26 Caryophyllene *** *** *** NS ** *** NS

C27 Humulene *** NS *** NS NS ** NS

C28 Aromandrene *** ** NS ** NS NS NS

C29 Germacrene D NS NS *** NS NS NS NS

C30 Bicyclogermacrene *** *** *** ** *** *** ***

C31 δ-cadinene *** *** NS NS NS NS NS

C32 Elemol *** ** *** ** NS NS NS

C33 Nerolidol *** *** ** NS NS NS NS

C34 γ-muurolene *** *** ** ** NS ** NS

C35 Spathulenol *** *** NS NS ** *** ***

C36 Caryophyllene oxide *** *** NS NS NS NS NS

C37 Viridiflorol *** *** ** *** *** *** ***

C38 γ-eudesmol ** NS NS NS NS NS NS

C39 α-copaen-11-ol *** *** *** NS ** NS NS

C40 β-eudesmol ** NS *** NS NS NS NS

Volatiles with significant
differences 37 32 25 19 12 13 12

NS Total Volatiles 3 8 15 21 28 27 28

NS Terpenes 2 3 10 10 13 13 12

NS Sesquiterpenes 1 5 5 11 15 14 16

**, and *** indicate significant differences between groups of p < 0.01, and p < 0.001. NS, not significant. Terpenes
and sesquiterpenes represent the amount of each family that is not significant.
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4. Discussion

The guayule accessions of the present study (AZ-3 and AZ-5) are different from
the CAL-7 accession used in the only similar study carried out in 2008 [18]. Under the
homogeneous growth conditions used in this study, differences in essential oil yields
and flower maturity across accessions could be directly attributed to irrigation levels
(Figures 2 and 3). It is important to note that, however, as shown in Table 1, the average
daily deficit of the 50% ETc treatment was only slightly higher (34 mm) than that of the
100% ETc treatment (24 mm), which implies that this year’s rainfall satisfied a large part of
the crop’s water demand, especially in the latest treatment. A similar trend was observed
during plant senescence, although water requirements at this stage are lower (0% ETc with
49 mm of effective rain).

Irrigation influenced flower development and, consequently, essential oils yield, par-
ticularly as flowers reached full maturity: S8 and S9 for AZ-3 (Figure 2) and S10 for AZ-5
(Figure 3). When all samplings and irrigation treatments were compared in AZ-3 accession
(Figure 2d), a stabilization or increase in the EOs yield under irrigation conditions of 100%
and 50%, respectively, was observed, and this effect could be attributed to the fact that the
flower maturity cycle (S8 and S9) had ended, and a new cycle started at S10. This was not
observed at 0% irrigation, as a second flowering cycle did not occur.

The flowering period of AZ-5 accession started earlier than for AZ-3, and maturation
commenced in S2 (Figure 3). When comparing all the samplings in AZ-5, (Figure 3d),
different yields were observed, but it is significant that the 50% and 100% treatments
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showed the lowest yield at S7 compared to the control group, which coincided with greater
quantities of flowers and a higher degree of maturity, accompanied by higher yield values.
Finally, at S10, the highest yield occurred in the 50% group, with fully mature flowers in
contrast to the 0% group. Contrastingly, the 100% management group started to flower a
second time, presumably because it had more water. Overall, this analysis suggests a link
between the number and maturity of flowers and EO production.

A comparative analysis of extractions yields revealed that EO yield was higher in
AZ-3 than in AZ-5. The yield achieved with 0% irrigation was especially significant (1.2%
yield at S8), and when irrigation was applied, the highest yield was achieved two weeks
later, between S9 and S10 (1.0 and 1.1%). Thus, in relation to flowering, the results suggest
that guayule flowers need to be fully mature or senescing to achieve a higher yield of EOs.

The guayule EO yields obtained are consistent with other findings for CAL-7 [18], in
which the highest yield recorded was under water stress (1.0%), supporting the idea that
moderate stress conditions optimize EO yields [18]. This amount is consistent with the
yield for AZ-3 in the present study, whereas some water was needed (50%) for accession
AZ-5 to achieve the same yield (1.0%) compared with that for 0% irrigation (0.8%), and too
much water (100%) did not necessarily mean a greater response, as the EO yield decreased
to 0.8%. A recent study [8] also demonstrated extraction yields of the same order for
other guayule accessions, including AZ-2 (1.0%), CFS18-2005 (0.9%), CAL-7 (0.8%), and
CFS18-2005 (0.7%), at the end of the summer, although no additional irrigation was applied.

In terms of biomass, it was clearly observed that plant growth was greater in AZ-5
than in AZ-3, with a biomass higher than 2.30 kg plant−1 at control and 100% irrigation at
the end of the sampling (S10) (Table S1), although at 50% irrigation, the highest biomass
was achieved at S9 with 2.92 kg plant−1. The EOs yield/production (L ha−1) (Table 2)
revealed that accession AZ-3 achieved the highest EO yields. In the absence of irrigation,
the maximum performance of AZ-3 was 175 L ha−1 at S8, which not only represents an
economic benefit for the industry but also considers water-use efficiency and environmental
conservation. It is clear that irrigation extended the EO extraction period with respect to the
optimum obtained without irrigation. However, the results suggest that the trial with AZ-5
should perhaps have been extended to verify its maximum productive capacity, as under
these conditions, the production of 156 L ha−1 was very similar to that of AZ-3 under the
same treatment.

In sum, the amount of guayule EOs that can be obtained at an industrial level is
sufficiently important to make the crop highly profitable when compared, for example, with
other aromatic plants in production, such as lavender EOs, with yields of 61–180 L ha−1

depending on the accession [31,32]. Given the similar results with the two accessions at
50% irrigation in S10, the interest that the different volatile profiles of the two accessions
may generate in the industry may be decisive for the grower.

The volatile profile of the extracted EOs was consistent with a previous study charac-
terizing 15 guayule accessions, including industrial-scale processing of AZ-3 [8]. The major
compounds in the AZ-3 guayule accession were C1 (santolina triene), C3 (α-pinene), C6
(sabinene), and C10 (limonene). A similar profile was noted in AZ-5 with the exception of
C1, the content of which was very low (Tables S1 and S2).

The volatile EO profile of the two guayule accessions (Table 3) did not show any signif-
icant differences considering the studied factors (samplings and irrigation managements).
But if the study was reduced to the key points, that is, the time at which the accessions pro-
duced their greatest EO yield, which was at S8 (5 July 2023) for AZ-3 with no water supply
and S10 (25 August 2023) for AZ-5 with 50% irrigation, then differences were observed
among accessions (Figure 4). AZ-3 contained more monoterpenes, and AZ-5 contained
more sesquiterpenes, which means that such different volatile profiles may be exploited
differently by specialized applications within the EO industry. Without considering the
previous study with AZ-3 [8], in the present study, there were many more volatiles in num-
ber and quantity than those reported in previous studies [9,10,18]. These differences from
previous studies may be attributed to advances in chromatographic techniques and mass
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identification, which now allow for more detailed characterization of volatile compounds.
The content of C1 (santolina triene) in AZ-3 (10–15%) is clearly different from that reported
for the CAL-7 accession (0.1–0.8%) [18], and it more closely matches that of AZ-5 (values
up to 5% depending on the sampling). Contrastingly, the previously reported contents of
α-pinene (C3) (5.8–60%), camphene (C4) (0.1–1.2%), limonene (C10) (5.9%), and germacrene
D (C29) (1.8–12.1%) [9,10,18] are similar to those of the present study, for example, C3
ranging from 16.3% to 28.5% (AZ-3) and 20.1% to 41.0% (AZ-5); C4 ranging from 0.6% to
1.4% (AZ-3) and 0.8% to 2.5% (AZ-5); C10 ranging from 6.4% to 10.4% (AZ-3) and 8.7% to
11.8% (AZ-5); and C29 ranging from 2.5% to 5.2% (AZ-3) and 2.8% to 5.7% (AZ-5). While
accession AZ-3 may be more interesting for the producer due to its higher EO yield, AZ-5
may attract attention because of its higher content of sesquiterpenes, which are known to
have strongest antioxidant potential and bioactivity.

5. Conclusions

The AZ-3 guayule accession consistently showed higher EO yields than AZ-5, which
was particularly notable under water-stress conditions (93 mm effective rain, 0% ETc).
Additionally, the flower maturity stage significantly influenced the EO content. The volatile
profiles of both accessions were dominated by terpenes, although this differed in quantity
and type between AZ-3 and AZ-5. The latter contained a higher content of bioactive
sesquiterpenes, which may be more attractive to industry. The significant EO yields
obtained from guayule, especially under specific irrigation and flowering conditions,
highlight the crop’s potential for profitability when compared with other aromatic plants
EOs in the market.
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accession and (b) AZ-5 accession; Table S1: (a) Average values (%) of the compounds identified in the
essential oils of AZ-3 depending on the water applied. (b) Average values (%) of the compounds
identified in the essential oils of AZ-3 depending on the water applied; Table S2: (a) Average values
(%) of the compounds identified in the essential oils of AZ-5 dependent on the water supplied.
(b) Average values (%) of the compounds identified in the essential oils of AZ-5 depending on the
water supplied.
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