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Abstract: Among the challenges posed by real orchard environments, where the slender new plum
fruit stalks exhibit varying postures and share similar coloration with surrounding leaves and
branches, the significant obscuration caused by leaves leads to inaccurate segmentation of the
fruit stalks, thereby complicating the precise localization of picking points and other related issues.
This paper proposes a method for new plum fruit stalk recognition and picking point localization
based on the improved DeepLabv3+ model. Firstly, it employs the lightweight MobileNetv2 as the
backbone feature extraction network. Secondly, the Convolutional Block Attention Module (CBAM)
is integrated into the decoder to enhance the model’s ability to extract key features of the fruit stalks.
Moreover, dense atrous spatial pyramid pooling (DenseASPP) is utilized to replace the original ASPP
module, thereby reducing segmentation leakage. Finally, a picking point localization method is
designed based on a refinement algorithm and an endpoint detection algorithm to meet the specific
picking demands of new plum, identifying the endpoints along the skeletal line of the fruit stalks as
the optimal picking points. The experimental results demonstrate that the mean intersection over
union (MIoU) and mean pixel accuracy (MPA) of the enhanced DeepLabv3+ model are 86.13% and
92.92%, respectively, with a model size of only 59.6 MB. In comparison to PSPNet, U-Net, and the
original DeepLabv3+ model, the MIoU improves by 13.78, 0.34, and 1.31 percentage points, while
the MPA shows enhancements of 15.35, 1.72, and 1.38 percentage points, respectively. Notably, with
the endpoint of the fruit stalk’s skeletal structure designated as the picking point for new plums, the
localization success rate reaches 88.8%, thereby meeting the requirements for precise segmentation
and picking point localization in actual orchard environments. Furthermore, this advancement offers
substantial technical support for the research and development of new plum harvesting robots.

Keywords: deep learning; semantic segmentation; attention mechanism; picking point location

1. Introduction

New plums, a European variety renowned for its rich nutritional and medicinal
properties, are extensively cultivated in the Kashgar and Yili regions of Xinjiang. The
maturity period of new plums is relatively short, necessitating rapid completion of the
harvesting process; otherwise, significant economic losses may ensue. Currently, the
harvesting of new plums primarily relies on manual picking methods [1]. However, with
the accelerated aging of the population in China and a growing shortage of labor resources
in rural areas, manual harvesting significantly elevates labor costs. Consequently, the
research and development of highly automated and intelligent picking robots for new
plums has emerged as a pivotal trend in the future of plum harvesting [2,3].
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In the unstructured operating environment of orchards, the ability to quickly and
accurately identify new plum fruit stalks and determine the optimal picking point is a
critical technology for enabling rapid harvesting by new plum-picking robots. The intricate
conditions of new plum orchards, characterized by the slender nature of new plum stalks
and significant variations in their postures, exacerbate the challenges associated with
accurately identifying new plums stalks and locating the optimal picking point [4].

Currently, the methods for identifying and localizing fruit peduncles can be broadly
classified into two major types: traditional identification and localization methods, and
those based on deep learning techniques [5,6]. Traditional recognition and localization
techniques predominantly depend on attributes such as color, shape, and texture to differ-
entiate fruit stalks from their surrounding background. For instance, Bac et al. [7] employed
guide lines as visual cues to identify and locate bell pepper peduncles. Xiong et al. [8]
implemented a corner point detection algorithm, analyzing the rate of change of corner
points in both horizontal and vertical directions to determine the picking point for lychee
peduncles. Additionally, Ji et al. [9] utilized 2R-G-B color features for identifying tomato
fruits and auxiliary markers, with the intersection of the fitted fruit peduncle curve and
auxiliary marker edges serving as the picking point, achieving a success rate of 88.6%. Luo
et al. [10] segmented grape bunches based on color features, pinpointing the picking loca-
tion by examining the relationship between the fruit stalk and the fruit, attaining a location
accuracy of 88.3%. In recent years, the rapid advancement of machine vision technology
has led to the widespread adoption of deep learning-based methods for fruit recognition
and localization. For example, Yu et al. [11] utilized the R-YOLO model to assess the growth
posture of strawberries and determine the picking point based on the rotational angle of
the identified bounding box axis. Peng et al. [12] enhanced the segmentation accuracy of
lychee fruit stalks in orchard environments by incorporating transfer learning and spatial
pyramid pooling into the DeepLabv3+ model. Furthermore, Ning et al. [13] employed an
improved Mask R-CNN for the recognition and segmentation of grape fruit stalks, using
the centers of the horizontal edges closest to the mass center of the fruit stalk image as
the final picking points. Additionally, Rong et al. [14] proposed an improved Swin Trans-
former V2 semantic segmentation model along with a picking point recognition algorithm,
achieving a remarkable recognition rate of 97.4%. Yan et al. [15] proposed a lightweight
convolutional neural network approach for tea segmentation and picking point localization,
incorporating the optimized MobileNetv2 architecture along with the densely connected
atrous spatial pyramid pooling (DASPP) module within the MC-DM framework to enhance
the accuracy of picking point identification for tea buds. Wu et al. [16] achieved enhanced
segmentation accuracy for potato root systems by integrating an improved backbone net-
work with the DeepLabv3+ model, as well as incorporating the CARAFE up-sampling
module and the CBAM attention mechanism, with the potential to reach an accuracy of
94.05%. The preceding research has introduced a variety of methodologies aimed at the
identification and localization of fruit stems, achieving substantial breakthroughs in the
process. In comparison to the conventional recognition and positioning methods utilizing
deep learning, these traditional approaches impose stricter requirements on the orchard
environment, exhibit poor adaptability to varying conditions, and demonstrate inadequate
recognition performance for fruit stems characterized by variable shapes and unstable
positions. These limitations render them challenging to implement effectively in practical
applications. Currently, in light of the challenges associated with the recognition and posi-
tioning of new plum stems addressed in this paper, we have selected a deep learning-based
method for the recognition and localization of fruit stems.

New plum fruit stalks exhibit slender forms and variable postures, with their col-
oration closely resembling that of the surrounding leaves and branches. Consequently,
accurately segmenting the fruit stalks within the intricate orchard environment remains a
formidable challenge. To address this challenge, this study proposes an enhanced method-
ology for the identification of new plum fruit stalks and the localization of picking points,
utilizing the DeepLabv3+ model. This involves the replacement of the backbone network
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and the introduction of dense void space pyramid pooling and a lightweight attention
mechanism module, which collectively enhance the model’s segmentation accuracy while
simultaneously reducing its size. Subsequently, the fruit stalk of a new plum is segmented
using the enhanced DeepLabv3+ model, resulting in a segmented image of the fruit stalk.
Following this, the image binarization algorithm, skeleton refinement algorithm, and expan-
sion operation are employed to extract the skeleton line from the segmented image. Finally,
the endpoint detection algorithm is utilized to identify the endpoints of the skeleton line,
designating them as the picking points. This approach ensures the integrity of the fruit stalk
during harvesting and maximizes the economic benefits associated with new plums. This
study offers critical data support for the rapid harvesting of new plum fruit, demonstrating
significant practical application value in the actual context of orchard picking.

The primary contribution of this research is twofold: Firstly, it addresses the challenge
of accurately segmenting new plum fruit stalks within the intricate environment of orchards,
a task complicated by the slender morphology of the stalks, the diverse range of gestural
variations, and the similarity in coloration between the fruit stalks and the trees’ foliage
and branches. Secondly, this study proposes an innovative localization methodology for
plum picking points that is predicated on skeleton refinement and endpoint detection
algorithms, effectively addressing the challenge of accurately identifying the plum picking
points. Finally, the methodology delineated herein offers a substantial technical foundation
for the ongoing advancement of new-plum-picking robotic systems.

2. Dataset Construction and Labeling

To authentically replicate the actual working conditions encountered by new-plum-
picking robots in orchard environments, the dataset utilized in this study was collected
from new plum plantations located in Chabchal County, Ili Kazakh Autonomous Prefecture,
China. Data collection occurred between August and September 2023, during the hours of
10:00 to 18:00, utilizing an iPhone 13 as the collection device. To acquire representative im-
age data of fruit stalks within the complex orchard environment, a total of 413 clear images
were captured under varying lighting conditions and of diverse postures. To enhance the
learning capacity and robustness of the model, data augmentation techniques, including
mirroring, rotating, and panning, were applied to the original images. Consequently, the
enhanced dataset comprised 1220 images, with an example illustrated in Figure 1. By
means of extending and transforming the existing data, novel data samples were generated,
thereby augmenting the size and diversity of the dataset. This methodology facilitates the
model’s capacity to generalize to previously unseen data with greater efficacy. Furthermore,
with the aid of data enhancement techniques, it is possible to train more robust models on
constrained datasets, thereby enhancing both the accuracy and generalization capabilities
of the model. Subsequently, the LabelMe annotation tool was employed to annotate the
dataset, focusing exclusively on new plum fruit stalks, with an example of the annotations
presented in Figure 2. Finally, the dataset was partitioned into training and testing subsets
in an 8:2 ratio.
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3. The Construction of the New Plum Fruit Stalk Segmentation Model and Picking
Point Localization
3.1. DeepLabv3+ Modeling

The DeepLabv3+ model [17,18] represents a seminal algorithm within the domain of
semantic segmentation. This model utilizes an atrous convolution technique to expand
its receptive field, thereby facilitating the acquisition of a broader spectrum of contextual
information without incurring additional computational costs. The fundamental archi-
tecture of DeepLabv3+ is composed of two primary components: the encoder and the
decoder. The encoder component employs the Xception network [19] as its backbone for
feature extraction, systematically separating the extracted features into shallow and deep
categories. Subsequently, the deep features are supplied to the atrous spatial pyramid
pooling (ASPP) module, where the effective extraction of features is achieved through
multi-scale convolutions that incorporate varying dilation rates. This procedure empowers
the model to concentrate on the high-level features of images while simultaneously ad-
dressing the low-level details, thereby enhancing the model’s sensitivity to the intricacies
and boundaries of the segmented images. The decoder component is tasked with upsam-
pling the deep features from the ASPP output, utilizing fourfold linear interpolation and
executing feature fusion with the shallow features extracted from the backbone network.
Additionally, another round of quadruple linear interpolation is conducted to reconstruct
the feature map, ultimately yielding the segmentation result. The decoder is meticulously
designed to facilitate the fine-grained segmentation of images through the cascading of
upsampling procedures with the encoder features, thereby allowing the model to pinpoint
image boundaries with greater precision, consequently enhancing the overall accuracy of
semantic segmentation.

3.2. Improvements to the DeepLabv3+ Model

The DeepLabv3+ model demonstrates effective segmentation of new plum fruit stalks;
however, it presents certain challenges. Firstly, the backbone extraction network comprises
numerous layers and parameters, leading to increased overall model complexity, which
hampers its deployment on mobile embedded devices. Secondly, the model displays re-
duced performance in accurately segmenting detailed information within images. This
paper addresses the aforementioned challenges, as well as the specific issues encountered
during the segmentation of new plum fruit stalks, by implementing targeted improvements
to the DeepLabv3+ model. Firstly, to address the original DeepLabv3+ model’s excessive
layers and high number of parameters in the backbone extraction network, this study
replaces the original backbone with the improved lightweight MobileNetv2 network [20].
This substitution aims to reduce the parameter count and model complexity, facilitating
deployment on mobile embedded devices. Secondly, to mitigate inaccurate segmenta-
tion caused by occlusion from branches and leaves, a lightweight attention mechanism,
CBAM [21], is incorporated into the decoder section. This enhancement aims to bolster
the model’s capability to extract features pertinent to the new plum fruit stalks. Finally,
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to enhance the model’s sensitivity to the edge details of the fruit stalks, the dense atrous
spatial pyramid pooling (DenseASPP) [22] module is employed, utilizing dilation rates of
3, 3, 6, 9, and 24. This modification replaces the ASPP module to minimize issues related to
leaky segmentation within the model. The structure of the improved model is illustrated
in Figure 3.
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3.2.1. Lightweight Feature Extraction Module

As a feature extraction backbone for the DeepLabv3+ model, Xception is characterized
by a considerable number of parameters, prolonged training times, and high complex-
ity, which collectively impede its deployment on mobile embedded devices. To mitigate
the computational burden associated with the number of parameters and to decrease the
model’s complexity, this study uses the lightweight MobileNetv2 architecture to supplant
the original backbone network. MobileNetv2, introduced by Google’s research team in
2018, serves as an effective backbone network module. This architecture is distinguished
by its compact size, reduced parameter count, and accelerated computational speed. This
framework is specifically designed as a lightweight solution for image segmentation and
object detection tasks. The network employs depthwise separable convolution, effectively
decoupling spatial and channel convolutions, thereby reducing both the parameter count
and the computational complexity. The structural architecture of the network is illustrated
in Figure 4. Building upon the foundations of MobileNetv1, MobileNetv2 incorporates a
reciprocal residual structure and linear bottleneck. This architecture utilizes 1 × 1 convolu-
tions to increase the input dimensions, followed by 3× 3 depthwise separable convolutions
for feature extraction. Ultimately, a 1 × 1 convolution is employed to reduce the dimen-
sionality of the output. To enhance the integration of the MobileNetv2 architecture within
the DeepLabv3+ model, this study proposes further modifications to its network structure.
Initially, the architecture employs fourfold downsampling to replace the original fivefold
downsampling implemented in the previous network structure, allowing for improved
retention of image details. This modification enhances the segmentation quality at the
image boundaries and subsequently eliminates the global average pooling and feature
classification modules to further minimize the model’s parameter count.
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3.2.2. CBAM Attention Mechanism

To enhance the model’s capability to extract features of new plum stems within the
complex orchard environment, this study incorporates the lightweight CBAM attention
mechanism in the model’s decoder section. The lightweight architecture of the CBAM
attention mechanism avoids reliance on extensive convolutional structures, comprising
instead a limited number of pooling layers and feature fusion operations. This design
effectively mitigates the computational burden associated with convolutional operations,
thereby reducing the module’s complexity and overall computational demands. The CBAM
attention mechanism comprises a channel attention module and a spatial attention module.
The architecture of this mechanism is illustrated in Figure 5. Initially, the input feature map
undergoes global maximum and average pooling, after which it is processed by both fully
connected and convolutional layers, culminating in weight normalization via the sigmoid
function. Consequently, both the weighted channel feature map and the spatially weighted
feature map are derived. Ultimately, the output features from both the channel attention
and spatial attention modules are multiplied elementwise to generate the final attention-
enhanced features. The primary function of the channel attention mechanism is to amplify
the feature information across each channel, whereas the spatial attention mechanism
serves to weigh the importance of varying feature information. To enhance the model’s
focus on critical feature information, the CBAM attention mechanism effectively augments
the model’s capacity to represent significant feature details through the integration of
both channel attention and spatial attention, thereby improving its performance in image
segmentation tasks.

3.2.3. Pyramid Pooling Module for Dense Void Spaces

The ASPP module in the DeepLabv3+ model effectively integrates dilated convolu-
tion features with varying expansion rates, thereby broadening the network’s receptive
field without compromising its resolution. This module consists of 1 × 1 convolutions,
3 × 3 convolutions with distinct expansion coefficients, and a global average pooling layer.
Through concatenation followed by 1 × 1 convolution, information from multiple branches
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is amalgamated to enhance the model’s capability to comprehend multi-scale contexts, in-
creasing the sensitivity field of features without compromising feature resolution, enabling
the acquisition of multi-scale image information. However, the ASPP module requires
a significant expansion rate to achieve an adequate receptive field when processing new
high-resolution images; excessively high expansion rates can lead to dilation convolution
failure, resulting in suboptimal image segmentation performance. To address these issues,
this study introduces the DenseASPP module, the architecture of which is depicted in
Figure 6. The module amalgamates the outputs of individual dilated convolutions through
a dense connectivity approach, thereby creating a denser feature pyramid. A sequence of
dilated convolutions with varying expansion rates is combined and cascaded to achieve
a broader receptive field. This approach effectively circumvents the failure of dilated
convolutions that can arise from excessive expansion rates. The target object, the new plum
stem, is relatively small; thus, an excessively large expansion rate can result in the loss of
critical image details, leading to unsatisfactory segmentation outcomes, particularly at the
boundaries of the new plum stem. Consequently, this study modified the three dilated
convolution layers in the DenseASPP module, originally set to expansion rates of 6, 12, and
18, to new expansion rates of 3, 6, and 9, thereby enhancing the model’s focus on the details
of the new plum stem. The calculation formula for a single receptive field is presented
as follows:

Rk,r = (r− 1)× (k− 1) + k (1)
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The size of the receptive field for a cascade of two atrous convolutional layers is
calculated as follows:

Rk,r = ∑N
n=1 kn − (n− 1) (2)

where Rk,r denotes the size of the receptive field, r denotes the dilation rate, k denotes
the convolution kernel size, and n is the number of null convolution layers. ASPP is the
parallelization of null convolution layers with different dilation rates, where the maximum
receptive field corresponds to the highest dilation rate, with dilation rates of 3, 6, and 9,
indicating the extent of the maximum receptive field:

Rmax = max[R3,9] = 19 (3)

DenseASPP obtains a larger receptive field by stacking and connecting the cavity
convolutional layers, and the maximum receptive field for expansion rates of (3, 6, 9) is as
follows:

Rmax = R3,3 + R3,6 + R3,9 − 2 = 37 (4)

3.3. Picking Point Location

The localization of the picking point represents a critical step in the operational process
of new-plum-picking robots. According to local standards of Xinjiang Uygur Autonomous
Region [23], new plums with intact fruit peduncles are classified as high-quality fruits,
yielding maximum economic benefits. This study employs fruit stalk refinement and end-
point detection algorithms to accurately identify the picking point. Initially, the improved
DeepLabv3+ model is utilized for semantic segmentation of the fruit stalks, effectively
isolating new plum stalks from the background before binarizing the segmented image;
subsequently, the skeletal line of the fruit stalk is extracted using the refinement algorithm,
followed by an expansion operation to compensate for any missing sections of the skeletal
line; finally, the endpoint detection algorithm is employed to extract the fruit stalk, and the
coordinates of the skeletal line’s endpoint are then extracted via the endpoint detection
algorithm, designating this endpoint as the final picking point. This approach ensures the
maximum integrity of the fruit stalks, thereby optimizing the economic benefits derived
from new plums. The operational process is illustrated in Figure 7.
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The refinement algorithm employed in this study is the Zhang–Suen refinement
algorithm [24], a binary image refinement technique based on iterative processing that
removes unwanted pixel points while preserving only the skeleton points. In each iteration,
the algorithm deletes pixels that satisfy specific conditions, progressively refining the target.
This process continues through multiple iterations until all qualifying pixels are removed,
at which point the algorithm concludes its operation, ultimately achieving the goal of target
skeletonization.

4. Tests and Analysis
4.1. Experimental Environment

This study utilized a 64-bit Windows 10 operating system with 32 GB of RAM, an
NVIDIA GeForce RTX 4080 graphics card, and a 13th Gen Intel® Core™ i7-13700KF proces-
sor. The experiments were conducted using the PyTorch 1.12.1 deep learning framework,
CUDA version 12.0, and Python version 3.7. The training batch size was set to 8, with the
Adam optimizer employed, an initial learning rate of 0.0005, and a weight decay parameter
of 0.0001. The number of training iterations was 150.

4.2. Model Evaluation Indicators

To accurately assess the performance of the model, this study emphasizes the use of
the mean intersection over union (MIoU), mean pixel accuracy (MPA), and model size as
the evaluation metrics for semantic segmentation models.

The mean intersection over union (MIoU) represents the average of the ratio of the
intersection and the merger of the results and the true values for each type of prediction,
and it is calculated as follows:

mIoU =
1

k + 1

k

∑
i=0

pii
k
∑

j=0
pij +

k
∑

j=0
pji − pii

(5)

The mean pixel accuracy (mPA) represents the ratio of correctly predicted pixels to the
total number of pixels and is calculated as follows:

MPA =
1

k + 1

k

∑
i=0

pii
k
∑

j=0
pij

(6)

where k + 1 represents the number of labels (k) versus the total class of the background; Pii
denotes the number of pixels predicted correctly; Pij denotes the number of pixels of class i
predicted as class j; Pji denotes the number of pixels of class j predicted as class i.

4.3. Comparative Analysis of Test Results
4.3.1. Comparative Tests of Attention Mechanisms

To investigate the influence of various attention mechanisms on model performance,
this study performed comparative experiments by substituting the CBAM attention mecha-
nism with three alternative mechanisms, SE (Squeeze-and-Excitation Networks) [25], ECA
(Efficient Channel Attention Network) [26], and NAM (Normalization-based Attention
Module) [27], within the context of the enhanced DeepLabv3+ model. The experimental
results are presented in Table 1. As demonstrated in Table 1, the implementation of four
distinct attention mechanisms—ECA, NAM, SE, and CBAM—resulted in an improve-
ment in the model’s MIoU by 0.69, 0.83, 1.13, and 1.31 percentage points, respectively, in
comparison to the original DeepLabv3+ model. Concurrently, the model’s MPA showed
enhancements of 0.3, 0.33, 1.03, and 1.38 percentage points, respectively. Notably, the model
incorporating the CBAM attention mechanism yielded the most favorable performance.
This phenomenon can be attributed to the CBAM mechanism’s integration of channel and
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spatial attention, which facilitates the dual extraction of input features. Consequently, the
model is better positioned to focus on critical channel and spatial location features, thereby
significantly enhancing its segmentation accuracy.

Table 1. Comparative trials of different attention mechanisms.

Network Models Backbone Network Attention Module MIoU/% MPA/%

DeepLabv3+ Xception NONE 84.82 91.54
DeepLabv3+ MobileNetv2 ECA 85.51 91.84
DeepLabv3+ MobileNetv2 NAM 85.65 91.87
DeepLabv3+ MobileNetv2 SE 85.95 92.57
DeepLabv3+ MobileNetv2 CBAM 86.13 92.92

4.3.2. Comparison of Ablation Tests

To thoroughly investigate the impacts of the three proposed enhancement strategies
on the model presented in this paper, four sets of ablation experiments were designed
employing the control variable method; the experimental results are summarized in Table 2.
As illustrated in Table 2, the adoption of the improved MobileNetv2 as the backbone net-
work resulted in a marginal decline in segmentation accuracy due to model lightweighting,
with the MIoU and MPA decreasing by 0.18 and 0.75 percentage points, respectively, when
compared to the original DeepLabv3+ model. Following the incorporation of the CBAM
attention mechanism in Experiment 2, the MIoU and MPA of the model increased by
0.32 and 1.2 percentage points, respectively, indicating that the integration of the CBAM
attention mechanism significantly enhanced the model’s segmentation accuracy. In Ex-
periment 4, the incorporation of the DenseASPP module resulted in enhancements of
1.17 and 0.93 percentage points in the model’s MIoU and MPA, respectively, when com-
pared to Experiment 3. This indicates that the addition of the DenseASPP module improved
the model’s ability to focus on the details of the new plum fruit stalks, thereby signifi-
cantly boosting its segmentation accuracy. When compared to the original DeepLabv3+
model, the simultaneous introduction of the three enhancement strategies led to improve-
ments of 1.31 and 1.38 percentage points in the model’s MIoU and MPA, respectively.
This finding suggests that all three enhancement strategies exert positive effects on the
model’s performance.

Table 2. Ablation test.

Test MobileNetv2 CBAM DenseASPP MIoU/% MPA/%

1 × × × 84.82 91.54
2

√
× × 84.64 90.79

3
√ √

× 84.96 91.99
4

√ √ √
86.13 92.92

4.3.3. Comparison Experiments of Different Segmentation Models

To effectively demonstrate the superiority of the improved model presented in this
study, a comparative analysis was conducted against mainstream semantic segmentation
models, namely PSPNet and U-Net, utilizing the same dataset. The experimental results, as
illustrated in Table 3, along with the visualization results shown in Figure 8, indicate that
compared to those of the PSPNet [28], U-Net [29], and DeepLabv3+ models, the MIoU of
the proposed model was enhanced by 13.78, 0.34, and 1.31 percentage points, respectively,
while the MPA showed improvements of 15.35, 1.72, and 1.38 percentage points. The
segmentation performance of the proposed model was significantly superior to that of the
other three models. In terms of model lightweighting, the proposed model had a size of
only 59.6 MB, representing a reduction of 118.4, 107.4, and 149.4 MB, respectively, compared
to the other three models. This model is particularly suitable for deployment on mobile
devices. In summary, when compared to the PSPNet, U-Net, and DeepLabv3+ models,
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the proposed model exhibited the highest MIoU and MPA, along with the lowest model
size. It achieved high segmentation accuracy while maintaining lightweight characteristics.
This paper proposes an enhancement of the DeepLabv3+ model for new plum fruit stalk
recognition, referencing the advantages noted in the literature [12], which highlights the
capability of maintaining high segmentation accuracy alongside a reduced model size.
Consequently, the proposed model is more suitable for application in embedded removable
devices. Unlike the approaches discussed in the literature [14], which have limitations
due to the slim nature of new plum fruit stalks and the similar coloration of the leaves,
the introduction of the DenseASPP module in our model significantly enhances the focus
on the intricate details of segmentation specific to new plum fruit stalks, thereby fulfill-
ing the requirements for accurate segmentation of new plum fruit stalks in the complex
orchard environment.

Table 3. Comparative experiments on different models.

Network Models Backbone Network MIoU/% MPA/% Model Size/MB

PSPNet Resnet50 72.35 77.57 178
U-Net Resnet50 85.79 91.20 167

DeepLabv3+ Xception 84.82 91.54 209
Paper Model MobileNetv2 86.13 92.92 59.6
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To facilitate a comparison of the segmentation performance across the four models,
Figure 9 illustrates their respective effects on the test set, with the yellow box highlighting
a magnified view of the regions exhibiting segmentation deficiencies. The yellow box
specifically indicates the magnified region where segmentation inaccuracies occur. As
illustrated in Figure 9, the U-Net model demonstrates superior segmentation of fruit
stalks in unobstructed scenarios; however, it exhibits segmentation discontinuities and
inaccuracies in edge delineation when faced with leaf occlusion. Both the PSPNet and
original DeepLabv3+ models exhibit insufficient attention to the edge details of fruit stalks,
resulting in mis-segmentation and jagged edge delineation. In comparison to the other
three models, the enhanced DeepLabv3+ model achieves smoother segmentation of fruit
stalk edges and minimizes omissions and misclassifications, thereby yielding the most
favorable segmentation outcomes.
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4.3.4. Positioning Tests

To further validate the reliability of the picking point positioning methodology intro-
duced in this study, a selection of 73 images was drawn from the test dataset to conduct
a picking point positioning experiment. The selected images encompassed 81 ripe new
prune stalks, of which 72 samples were successfully located, while 9 samples were not
successfully identified. The primary cause of the positioning failures was a significant in-
fluence of light on the fruit stems, coupled with an extensive area covered by branches and
leaves. This ultimately led to inaccurate segmentation of the fruit stems and, consequently,
imprecise positioning. To address the positioning failures arising from the influence of
light and the substantial area of branches and leaves, implementing shading panels on the
image acquisition equipment and adjusting the acquisition angle are proposed as viable
solutions. Based on the experiments, the success rate of the newly developed plum picking
positioning method reached 88.8%, with the positioning outcomes illustrated in Figure 10.
In comparison to the literature [12,13], the newly developed plum picking positioning
method not only guarantees accurate positioning within actual orchard environments
but also is relatively straightforward to operate, thereby circumventing issues such as
prolonged positioning times and inaccuracies arising from a complex positioning process.
Consequently, the methodology delineated in this study exhibits robustness.
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4.3.5. Field Segmentation and Localization Experiments in Orchards

To further assess the feasibility of the segmentation and localization algorithm, we
conducted a field test at a new plum plantation in Tsabchal County, Ili Kazakh Autonomous
Prefecture, in August 2024. The test site is depicted in Figure 11. The experiment was
conducted from 8:00 to 14:00 under sunny weather conditions, utilizing equipment that
included an iPhone 13 for image capture, a camera tripod, a notebook, and a mobile control
terminal. The experimental setup focused on the single-crop cultivation of new plums.
Initially, images of the new plum fruit stalks were captured using the image acquisition
equipment. Subsequently, these images were transmitted to the mobile control terminal for
processing. The enhanced DeepLabv3+ model was employed to segment the fruit stalks,
followed by the application of the endpoint localization method proposed in this paper to
determine the picking point, yielding pixel coordinate outputs for the identified locations.
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A collection of images depicting the new plum fruit stalks was tested to select represen-
tative samples for segmentation and localization, with results illustrated in Figure 12. Under
varying lighting conditions—including front light, backlight, and occlusion by branches
and leaves—the improved DeepLabv3+ model successfully segmented the new plum fruit
stalks with high accuracy. Following accurate segmentation, the endpoint localization
method was employed to determine the picking point. In diverse orchard environments,
the picking point was consistently localized at the upper end of the new plum stalk, with
corresponding pixel coordinate values presented in Table 4. The field test validated the
feasibility of the proposed segmentation and picking point localization method for new
plum fruit stalks, simultaneously providing essential technical support for the subsequent
development of new-plum-picking robots.

Table 4. Sample pixel coordinate points.

Serial Number Test Environment Pixel Coordinate Point

Sample 1 Phototropism (1011, 918)
Sample 2 Backlight (1303, 889)
Sample 3 Branch occlusion (1049, 862)
Sample 4 Leaf shading (719, 450)Agriculture 2024, 14, 2120 15 of 17 
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5. Conclusions

Addressing the challenges of recognizing new plum stems and locating picking points
within orchard environments, this study proposes an enhanced DeepLabV3+ network
model designed for the segmentation and identification of fruit stems. The principal
conclusions drawn from this research are as follows:

This study proposes a new plum fruit stalk recognition method based on an improved
DeepLabv3+ framework. The method employs MobileNetv2 as the backbone network to
minimize the model weight and incorporates the CBAM attention mechanism to enhance
the model’s capacity for extracting critical feature information from the fruit stalks. Fur-
thermore, the introduction of the DenseASPP module improves the model’s focus on edge
details, thereby mitigating the occurrence of missed segmentation. The mean intersection
over union (MIoU) of this model is 86.13%, while the mean pixel accuracy (MPA) stands at
92.92%, representing increases of 1.31 and 1.38 percentage points compared to the original
model, respectively.

In comparative tests conducted on the same dataset, the model presented in this paper
demonstrated significant improvements over the PSPNet and U-Net models, achieving
increases in the mean intersection over union (MIoU) of 13.78 and 0.34 percentage points,
as well as enhancements in the mean pixel accuracy (MPA) of 15.35 and 1.72 percentage
points, respectively. Furthermore, this model exhibited the smallest size and the best overall
performance, effectively meeting the requirements for real-time segmentation of new plum
fruit stalks in orchard environments.

In this study, fruit stem thinning and endpoint detection algorithms were employed
to accurately determine the final picking points of new plum stems. Additionally, the
segmentation of fruit stem images facilitated binarization and skeletonization operations to
extract the skeletal structure of the fruit stem, culminating in the application of the endpoint
detection algorithm to finalize the identification of the picking point. The experimental
results indicated that the success rate of locating the picking point was 88.8%, thereby
offering valuable technical support for subsequent robotic-arm picking operations.
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