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Abstract: Accurate and rapid estimation of the leaf area index (LAI) is essential for assessing crop
growth and nutritional status, guiding farm management, and providing valuable phenotyping
data for plant breeding. Compared to the tedious and time-consuming manual measurements of
the LAI, remote sensing has emerged as a valuable tool for rapid and accurate estimation of the
LAI; however, the empirical inversion modeling methods face challenges of low efficiency for actual
LAI measurements and poor model interpretability. The integration of radiative transfer models
(RTMs) can overcome these problems to some extent. The aim of this study was to explore the
potential of combining the PROSAIL model with high-resolution unmanned aerial vehicle (UAV)
multispectral imaging to estimate the LAI across different growth stages at the plot scale. In this
study, four inversion strategies for estimating the LAI were tested. Firstly, two types of lookup
tables (LUTs) were built to estimate potato LAI of different varieties across different growth stages.
Specifically, LUT1 was based on band reflectance, and LUT2 was based on vegetation index. Secondly,
the hybrid models combining LUTs generated by PROSAIL and two machine learning algorithms
(random forest (RF), Partial Least Squares Regression (PLSR)) are built to estimate potato LAI. The
determination of coefficient (R2) of models for estimating LAI by LUTs ranged from 0.24 to 0.64. The
hybrid method that integrates UAV multispectral, PROSAIL, and machine learning significantly
improved the accuracy of LAI estimation. Compared to the results based on LUT2, the hybrid
model achieved higher accuracy with the R2 of the inversion model improved by 30% to 263%. The
LAI retrieval model using the PROSAIL model and PLSR achieved an R2 as high as 0.87, while
the R2 using the RF algorithm ranged from 0.33 to 0.81. The proposed hybrid model, integrated
with UAV multispectral data, PROSAIL, and PLSR can achieve approximate accuracy compared
with the empirical inversion models, which can alleviate the labor-intensive process of handheld
LAI measurements for building inversion models. Thus, the hybrid approach provides a feasible
and efficient strategy for estimating the LAI of potato varieties across different growth stages at the
plot scale.

Keywords: potato; leaf area index; UAV multispectral imaging; PROSAIL; phenotyping

1. Introduction

As the third largest food crop in the world, the potato industry plays a crucial role in
global food security [1]. As a shallow-rooted tuber crop, the harvested organ of potato is the
underground tuber. There is a significant covariance between canopy and tuber, making
canopy growth assessment critical for assessing potato nutritional status and predicting
yield. The leaf area index (LAI) is a crucial parameter that can be directly employed to
depict the canopy structure [2]. It is closely related to the physiological functions of crops
and the nutrient and water cycles within ecosystems. It has been shown that potato yield is
positively correlated to the leaf area index to a certain extent [3]. Meanwhile, the LAI is
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of great significance in characterizing the canopy structure of vegetation and the growth
status of vegetation [4]. Since the 1960s, the LAI has been used to quantify the interception
of light by vegetation, and the interactions between features and light form the basis for
vegetation monitoring through remote sensing [5]. Consequently, the leaf area index plays
a crucial role in the remote-sensing monitoring of vegetation. Accurate monitoring of the
LAI is beneficial for enhancing production efficiency, understanding the growth dynamic
differences in different regions, and predicting the yield of potatoes, etc. This important
application can promote the sustainable development of the potato industry and bring
greater economic and social benefits to agricultural production.

Traditional methods for determining the LAI have included direct measurement, the
use of optical instruments such as the LAI-2000 [6], and point quadrat techniques [7].
These methods, which are suitable for point-like areas, become impractical and inefficient
when scaled up due to their lack of representativeness and the extensive time and labor
they require. In contrast, remote-sensing technology enables LAI estimation over broader
temporal and spatial scales, facilitating the accurate and dynamic monitoring of vegetation
status. This technology serves as an essential tool for high-throughput phenotypic analysis
in precision agriculture and breeding contexts [8].

Presently, LAI inversion models that employ remote-sensing technology are developed
through two main methodologies: empirical statistical modeling and physical inversion
modeling using RTMs [9]. Empirical models rely on establishing regression relationships
between spectral reflectance or vegetation indices and measured data. Machine learning
(ML) algorithms are the most commonly used methods for empirical modeling. ML
not only trains models to automatically recognize and analyze spectral data—thereby
improving the accuracy and generalization of LAI estimation—but also integrates data
from different sensors and spectral bands for multidimensional analysis, providing a more
comprehensive understanding of crop canopy characteristics and further enhancing LAI
estimation accuracy. However, this approach can be significantly influenced by factors
such as growth stage, ecological zone, and sensor type, which limits its applicability across
different crops or varieties [10]. RTM-based models use physical laws to elucidate the causal
relationships between plant components and radiation photon interactions, considering
factors like crop canopy structure, growth status, and environmental conditions. The
inversion of physiological indices based on RTMs is typically achieved through lookup
tables and numerical optimization but both methods require substantial computational
effort [11], limiting their use in hyperspectral scenarios. However, the hybrid inversion
method, which combines RTMs with ML algorithms, capitalizes on the strengths of both
approaches [12].

As a commonly used RTM, the PROSAIL model comprehensively accounts for the op-
tical properties of soil and the geometric characteristics of vegetation [8,9]. It includes both
forward simulation and inverse retrieval processes. By changing the input parameter val-
ues, the model simulates a large amount of hyperspectral data in the range of 400–2500 nm,
completing the spectral forward simulation. Subsequently, it combines lookup tables or
machine learning algorithms to estimate vegetation physiological and biochemical indices.
The PROSAIL model is currently used in the inversion of various indices, such as the LAI,
leaf chlorophyll content, canopy chlorophyll content, and canopy water content [13–16].
Research has shown that during the inversion of the LAI, optical remote-sensing signals
can interfere with the optical features associated with chlorophyll content, leading to uncer-
tainty in the inversion results of these two agronomic parameters [17]. Researchers have
defined the red-edge position based on the abrupt changes in the reflectance curve between
680 and 750 nm. Reflectance at this position primarily arises from multiple reflections
between the leaf layers and chlorophyll absorption [18]. Sun et al. have incorporated
red-edge reflectance into the construction of vegetation indices, effectively improving the
accuracy of crop LAI estimation [15].

The combination of RTMs with hyperspectral or multispectral imaging provides an
effective approach for monitoring plant physiological and biochemical characteristics. Previ-
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ous RTM-based inversions of physiological indicators have primarily utilized hyperspectral
and satellite multispectral data. The REGFLEC model, combined with SPOT satellite data,
has been used to estimate the LAI and chlorophyll content (Cab) for a wide range of crops,
such as maize, wheat, and soybean [19]. The PROSAIL model, in conjunction with canopy
hyperspectral information, has also been used to estimate chlorophyll content in potato
leaves [20]. Highly accurate inversions of the LAI and chlorophyll content can be obtained
using the PROSAIL model when incorporating multi-source satellite data [21]. In recent
years, unmanned aerial vehicles (UAVs) have been playing an increasingly significant role
in crop phenotyping. Compared to satellite remote sensing, UAV remote sensing offers
greater flexibility and higher spatial and temporal resolution, making it a crucial tool for
monitoring crop growth in the field [8,9]. Duan et al. evaluated the applicability of the LAI
inversion using UAV hyperspectral data combined with PROSAIL modeling, including for
potatoes [22]. While hyperspectral equipment provides rich spectral data, multispectral
sensors generate less spectral information, reducing computational demands and data
redundancy; however, a downside is that they may lack some relevant spectral bands.
In contrast, integrating UAV-based multispectral imaging with RTMs offers significant
advantages in addressing these limitations. Nevertheless, there is still limited research on
the precise estimation of potato LAI using UAV multispectral remote sensing and canopy
radiative transfer modeling, particularly in breeding and field trial plots.

Therefore, the objective of this study was to explore the potential of combining the
PROSAIL model with UAV multispectral imaging to estimate potato LAI across key grow-
ing stages under different cultivars and nitrogen rates. Specifically, this study aimed to
achieve the following: 1. Determine the sensitive model parameters of PROSAIL and the
optimal lookup table size for potato LAI inversion. 2. Explore the potential of combining
PROSAIL and UAV multispectral imaging for potato LAI inversion at plot scale. 3. Evaluate
the performance of the hybrid method for estimating the LAI, compared to traditional
empirical models based on the ground-truth measurements at different growth stages.

2. Materials and Methods
2.1. Experiment Design

The experiment was conducted in Chabei, Zhangjiakou, Hebei Province, China, in
2023 (Figure 1). This region is located in the temperate arid and semi-arid zone of East
Asia’s continental monsoon climate, with an altitude of 1390 m. The soil type is calcium
chestnut. Two potato varieties, Zhongshu 5 and Zhongshu 49 (D681), were used in the
experiment, along with five nitrogen fertilizer treatments (0, 50, 100, 250, and 400 kg·ha−1),
each with four replications. The crops were sown on 5 May and harvested on 8 Septem-
ber. Eight ground control points (GCPs) were placed around the experimental field, and
the three-dimensional coordinates of the GCPs were determined using high-precision
RTK GPS.

2.2. Data Acquisition
2.2.1. Remote-Sensing Data Acquisition and Pre-Processing

A DJI Inspire 2 (DJI Technology Co., Shenzhen, China) UAV equipped with a RedEdge-
P multispectral camera (MicaSense, Seattle, WA, USA) was used as the remote-sensing
platform (Figure 2). The spectral band information (Table 1) of the multispectral sensor is
provided in Table 1.

In order to minimize the interference of background factors on the test results, the
UAV was operated between 10:00 and 14:00. The flight altitude of the mounted multi-
spectral sensor was 30 m, with both heading overlap and side-to-side overlap set at 75%.
Calibration plates were photographed both before takeoff and after landing, and the im-
ages were radiometrically calibrated using a light sensor mounted on top of the UAV [8].
Multispectral image pre-processing (including radiometric and geometric correction) and
image stitching (including alignment, optimizing alignment, generating dense point clouds,
generating meshes, generating textures, generating digital elevation models, and digital
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orthophotos) were performed using Agisoft Metashape Professional 2.0.2 software. Ar-
cMap 10.8 software was used to realize image segmentation, and PyCharm Community
Edition 2023.2.3 software was used to complete image background removal and spectral
reflectance extraction in each band.
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Table 1. Spectral characterization of the MicaSense RedEdge-P camera for multispectral image
acquisition.

Bands Center Bands Bandwidth Resolution Field of View

Blue 475 nm 32 nm 1456 × 1088 (1.58 MP per multispectral band) 49.6◦ × 38.3◦ VFOV
Green 560 nm 27 nm 1456 × 1088 (1.58 MP per multispectral band) 49.6◦ × 38.3◦ VFOV
Red 668 nm 16 nm 1456 × 1088 (1.58 MP per multispectral band) 49.6◦ × 38.3◦ VFOV

Red-edge 717 nm 12 nm 1456 × 1088 (1.58 MP per multispectral band) 49.6◦ × 38.3◦ VFOV
Near-infrared 842 nm 57 nm 1456 × 1088 (1.58 MP per multispectral band) 49.6◦ × 38.3◦ VFO
Panchromatic 634.5 nm 463 nm 2464 × 2056 (5.1 MP panchromatic band) 44.5◦ × 37.7◦ VFOV

The spectral response function (SRF) for each band was calculated based on the
transmittance of the respective band filter of the RedEdge-P multispectral sensor. Simulated
spectral reflectance was then resampled to the center wavelength of the RedEdge-P sensor
according to the SRF (Figure 3), in order to construct the equivalent spectral reflectance of
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the simulated band information. The equivalent spectral reflectance based on the RedEdge-
P spectral response function is calculated as follows [23]:

Rrs(bandi) =

∫ λ2
λ1

Rrs(λ)SRF(λ)d(λ)∫ λ2
λ1

SRF(λ)d(λ)
(1)

where Rrs(bandi) is the equivalent spectral reflectance in bandi of the sensor; λ1 and λ2 are
the band range of the band; Rrs(λ) is the simulated optical reflectance; and SRF(λ) is the
spectral responsivity at λ wavelength.
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2.2.2. Agronomic Data Acquisition

A total of four plant canopy biomass collections were completed across 40 plots during
the potato tuber initiation and tuber bulking stages. Simultaneously, data on the leaf area
index, equivalent water thickness, chlorophyll content, and carotenoid content were also
collected (Table 2).

Table 2. Overview of agronomic data acquisition.

Growth STAGE Time Number of
Subdivisions (Number) Parameter

Tuber initiation stage 4 July 2023 80 Biomass, LAI, chlorophyll content, carotenoid content,
equivalent water thickness

Tuber initiation stage 15 July 2023 80 Biomass, LAI, equivalent water thickness

Tuber bulking stage 3 August 2023 80 Biomass, LAI, chlorophyll content, carotenoid content,
equivalent water thickness

Tuber bulking stage 14 August 2023 80 Biomass, LAI, chlorophyll content, carotenoid content,
equivalent water thickness

Six plants were collected from each plot. The leaves, stems, roots, underground stems
(excluding the tuber), and tubers were separated. The leaves were then killed at 105 ◦C for
30 min, followed by drying at 85 ◦C until the biomass reached a constant weight. Afterward,
the dry matter weight was measured. Dry matter content (g·cm−2) was calculated as the
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above-ground biomass per unit area. Before weighing the fresh weight of the samples,
leaf images were captured using a camera. Leaf image extraction was then performed
by separating the plant from the background through threshold segmentation (Figure 4).
The leaf area index was derived from the pixel occupancy of the leaf area. Equivalent
water thickness and dry matter content were calculated from the measured leaf area, dry
weight, and fresh weight. During the same period, three plants were selected from each
plot, and four leaves from each plant were brought back to the laboratory. Each leaf sample,
with an area of 2.5 cm2, was weighed to 0.1 g. The samples were then immersed in 96%
ethanol until the material turned white. Absorbance measurements were taken with a UV
spectrophotometer at 470, 649, and 665 nm wavelengths. These measurements were used
to calculate the chlorophyll and carotenoid content (in mg/g) by combining the absorbance
data with the mass of the samples. The calculation formula is as follows:

Ca = 13.95D665 − 6.88D649 (2)

Cb = 24.96D649 − 7.32D665 (3)

Cx,c =
1000D470 − 2.05Ca − 114.8Cb

245
(4)

Cab =
(Ca + Cb)× V × N

1000 × S
(5)

Car =
Cx,c × V × N

1000 × S
(6)

where Ca and Cb are the concentrations of chlorophyll a and chlorophyll b (mg·L−1);
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Cx,c is the concentration of carotenoids (mg·L−1);
Cab is the chlorophyll content (µg·cm−2);
Car is the carotenoid content (µg·cm−2);
D665, D649, and D470 represent the extinction of chloroplast pigment extracts at wave-

lengths of 665 nm, 649 nm, and 470 nm;
V is the total volume of the extract (mL); N is the dilution factor; S is the leaf area (cm2).

2.3. PROSAIL Model

The PROSAIL model, which integrates the leaf radiative transfer model PROSPECT
and the canopy radiative transfer model SAIL, is the most commonly used RTM for sim-
ulating crop canopy reflectance as a function of the LAI, leaf angle distribution function,
chlorophyll content, dry matter content, carotenoid content, leaf equivalent water thickness,
canopy reflectance background, sensor viewing angle, sun zenith, and azimuth angles [9].
The PROSPECT-5 and 4SAIL models (http://teledetection.ipgp.jussieu.fr/prosail/, ac-
cessed on 30 September 2024) were used in this study. The PROSPECT model assumes the

http://teledetection.ipgp.jussieu.fr/prosail/
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leaf blade structure as a multilayer flat plate with a rough surface. It also assumes that
light rays are both isotropic and parallel, and simulates Lambertian scattering of light rays
between the flat plates by inputting the physical and chemical parameters of the leaves.
This results in the calculation of the leaf reflectance and transmittance over the 400 to
2500 nm spectral range. The leaf spectral information simulated by the PROSPECT model
is then used as input for the SAIL model. The SAIL model assumes that the vegetation
canopy is a homogeneous, infinitely extensible mixed medium with isotropic leaves. It sim-
ulates the radiative transfer process within the canopy using radiative transfer equations
as the theoretical basis to obtain the canopy-scale reflectance. There are two commonly
used inversion methods for radiative transfer modeling, the LUT-based method and the
hybrid inversion method that combines machine learning [20]. Due to the “same effect
with different parameters” problem in RTM inversion, combining sensitivity analysis re-
sults, a priori knowledge, and measured data can effectively reduce the occurrence of this
phenomenon—where different parameters lead to the same spectral response [14].

2.3.1. Sensitivity Analysis

Sensitivity analysis is an important method for qualitatively and quantitatively assess-
ing how changes in model parameters affect the model’s output. By combining measured
data with a priori knowledge, the ranges and fixed values for model parameters used
in sensitivity analysis are determined. Based on the results of this analysis, the input
parameter ranges and fixed values for constructing the final lookup table are established.

A local sensitivity analysis of the 14 model parameters was conducted, treating each
parameter individually as a variable while fixing the others. This analysis qualitatively
evaluated how the input parameter ranges influenced the reflectance in the desired spectral
band. The sensitive model parameters were identified from the local sensitivity analysis,
and a global sensitivity analysis was then performed on these parameters using the Sobol
method to quantitatively assess how changes in the model parameters impact the model’s
output. The ranges of the sensitivity analysis parameters and the settings for fixed values
are presented in Appendix A Table A1.

2.3.2. Lookup Tables (LUTs)

In PROSAIL model inversion, the number of parameters determined by a priori
knowledge or fixed values is typically much larger than the number of field-obtained
parameters within the setup range. This discrepancy makes it difficult for radiative transfer
models to directly invert the desired vegetation growth parameters based solely on spectral
information; however, LUTs provide a solution to this issue [24]. With the LUT-based
inversion method, the optimal combination of parameters corresponding to the simulated
spectrum that most closely matches the measured spectrum can be identified through
a simple search process. In this study, the LAI was retrieved at two stages—the tuber
initiation stage and the tuber bulking stage—for both the late-maturing variety D681 and
the early-maturing variety Zhongshu 5. The simulated spectral reflectance of the PROSAIL
model was combined with the spectral response function of the RedEdge-P sensor to
calculate the equivalent spectral reflectance, which is referred to as the simulated spectral
reflectance. Two types of lookup tables were constructed: LUT1, which was based on
five bands of simulated spectral reflectance; and LUT2, which contained six simulated
vegetation indices derived from five bands of simulated spectral reflectance (see Table 3).
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Table 3. Vegetation index used in this study.

Name Formulas References

Optimized soil-adjusted vegetation
index (OSAVI) (1 + 0.16) NIR−R

NIR+R+0.16 [25]

Red-Edge Normalized Difference Vegetation
Index (NDVIre)

ρRE−ρRed
ρRE+ρRed

× ρNIR [15]

Red-Edge Modified Simple Ratio (MSRre) ρRE/ρRed−1√
ρRE/ρRed+1

× ρNIR [15]

Soil-adjusted vegetation index (SAVI) (1 + 0.5) (NIR−R)
(NIR+R+0.5)

[26]

Enhanced Vegetation Index (EVI) 2.5 NIR−R
(NIR+6R−7.5B)+1 [27]

Modified Triangular Vegetation Index 2 (MTVI2) 1.5 (1.2(NIR−G)−2.5(R−G))√
(2NIR+1)2−(6NIR−5

√
R)−0.5

[28]

In the LUT-based inversion, the LAI was estimated when the root mean square er-
ror (RMSE) and mean absolute error (MAE) between the UAV-measured values and the
simulated spectra in the lookup table were minimized, based on the cost function. The
parameter combination with the smallest mean RMSE and MAE was then chosen as the
inversion result.

The cost function used to establish the relationship between the measured spectra (or
vegetation indices) and the modeled spectra (or vegetation indices) is defined as follows:

RMSE =

√
1
n∑(Rsimulated − Rmeasured)

2 (7)

MAE =
1
n∑n

i=1|Rsimulated − Rmeasured| (8)

where n is the number of bands or vegetation indices; Rsimulated is the simulated reflectance
value or vegetation index constructed by simulated reflectance; Rmeasured is the measured
band reflectance value or vegetation index constructed by measured reflectance.

To minimize the impact of lookup table size on the final inversion results, the full-life
data for the two varieties were used as examples for pre-inversion lookups based on the
distribution ranges of the model parameters provided in Appendix A Table A2. Lookup
tables containing 1000, 5000, 10,000, 20,000, and 50,000 simulated spectral reflectance were
constructed using the Latin hypercube sampling method. The optimal lookup table size
was determined by comparing the inversion results of LUT1, and the construction of each
lookup table (LUT) was completed using this optimal size.

2.3.3. Machine Learning Algorithms

RF and PLSR are widely used to estimate potato LAI, demonstrating strong perfor-
mance in previous research. This study emphasizes the potential of empirical statistical
modeling and radiation modeling methods in estimating potato leaf area index at the
community scale, thus, RF and PLSR were chosen.

Random Forest Algorithm

The random forest (RF) algorithm introduces the concept of bagging, which involves
constructing a series of unrelated decision trees by randomly selecting samples and fea-
tures [29]. In addition, during the construction of each decision tree, each node randomly
selects a subset of features and chooses the optimal features for splitting. The model
demonstrates good predictive ability, high tolerance to noise and outliers, and can avoid
overfitting to some extent. Each decision tree makes predictions based on the selected
samples and features. By averaging the regression predictions of all decision trees, the
overall regression prediction for the forest is obtained. Training the RF model requires
setting several parameters, including the number of trees, the number of random features,
and the stopping criterion. The RF model is built using the scikit-learn library in Python,
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and the entire process is carried out in PyCharm Community Edition 2023.2.3. The number
of decision trees is set to 100, and the number of features is determined by the square root
of the total number of features. The training process stops when the minimum number of
samples in the tree nodes is one, and the minimum impurity is zero.

Partial Least Squares Regression Algorithm

Partial Least Squares Regression (PLSR) is a statistical method for modeling linear
regression between multivariate data. PLSR is able to handle multiple response variables
simultaneously and can effectively solve the multicollinearity problem by finding the
direction that explains the maximum covariance between the independent and dependent
variables to reduce the dimensionality of the data and construct predictive models [30].
PLSR model construction and validation were accomplished by loading the pls package
using the R version 4.2.2 language.

The equivalent spectral reflectance was used to construct the vegetation index; the
simulated vegetation index and the corresponding parameter input range were used as the
modeling set; and the measured data were used as the validation set. The machine learning
algorithm was combined to realize the potato LAI inversion based on the simulated data.

Hybrid Modeling Strategy

Using LUT2 simulation data as the modeling set, and RMSE and MAE as the cost
functions, we screened out the lookup table information with the smallest mean values of
RMSE and MAE compared to the UAV multispectral vegetation index. We combined the
spectral index with RF and PLSR algorithms to construct hybrid inversion models. The
field-measured LAI in 2023 was used as the validation set. The inversion model constructed
using PROSAIL simulated spectral data and the machine learning algorithm with the field-
measured LAI were compared to verify the feasibility of the hybrid modeling method for
estimating potato LAI.

2.4. Model Evaluation and Statistical Analysis

The inversion of the LAI during the tuber initiation stage and tuber bulking stage,
for two varieties, as well as the comprehensive LAI inversion for the entire growth period
of the two varieties, was achieved using simulated spectral data and input model param-
eter ranges. The inversion accuracy was validated using actual measured multispectral
data from UAV and ground-truth data. The model performance was evaluated using
two statistical indicators: the coefficient of determination (R2) and RMSE. The formulas for
the evaluation criteria are as follows:

R2 = 1 − ∑m
i=1(ŷi − y)2

∑m
i=1(yi − y)2 (9)

RMSE =

√
1
m

m

∑
i=1

(yi − ŷi)
2 (10)

where yi represents the observed LAI values; y represents the mean of the observed
LAI values; ŷi represents the predicted LAI values; and m represents the number of
prediction points.

3. Results
3.1. Sensitivity Analysis of the PROSAIL Model Parameters
3.1.1. Local Sensitivity Analysis

In order to localize the parameters of the PROSAIL model, the numerical range and
fixed value are determined based on the measured data and prior knowledge during
sensitivity analysis. As shown in Figure 5, when the LAI is less than 3 and when the LAI is
between 3 and 6, it exhibits a varying impact on the spectral reflectance response in the
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400 nm to 2500 nm bands. Specifically, an increase in the LAI is associated with an increase
in reflectance in the visible, red-edge, and near-infrared regions, with the effect being more
pronounced when the LAI is less than three. Chlorophyll content (Cab) significantly affects
the reflectance in the visible and red-edge bands, with reflectance in the visible region
decreasing as chlorophyll content increases. Carotenoid content (Car) only influences
reflectance in the visible band. The dry matter content (cm) affects reflectance in the 780 nm
to 2500 nm range, in addition to the visible spectrum. Water content (Cw) notably affects
reflectance between 860 nm and 2500 nm. The presence of brown matter (Cbrown) alters
reflectance in both the visible and near-infrared (NIR) spectra. Leaf area (ALA), nitrogen
content (N), and hotspot factor (hspot) significantly affect reflectance between 760 nm and
2400 nm. Reflectance decreases with increasing ALA but increases with higher N and
hspot values. Sky reflectance (Skyl), soil reflectance (psoil), and leaf thickness (tts) mainly
influence the NIR spectrum up to 1000 nm, with minimal impact on reflectance fluctuations.
The value of leaf thickness (tto) affects reflectance across the full spectral range but has little
effect on the visible spectrum. Since the tto is not the main focus of this study, a value of 0
is used as the standard in model construction. Finally, the parameter psi has no significant
effect on reflectance across the full band range.

The analysis shows that the LAI, ALA, hspot, N, Cab, Car, Cm, Cbrown, and Cw have
a significant effect on reflectance in the visible and red-edge bands. Although Cbrown also
influences reflectance at wavelengths shorter than 1000 nm, the actual measurement data
for Cbrown are unavailable. Based on previous studies, Cbrown is set to a constant value
of 0 when constructing the lookup table. The parameters psoil, skyl, ts, to, and psi have
negligible effects on reflectance; therefore, they are set to constant values of 0 during the
global sensitivity analysis.

3.1.2. Global Sensitivity Analysis

The results of the local sensitivity analysis showed that the spectral response in the
visible region varied with the LAI value. The global sensitivity analysis is discussed in
terms of 0 < LAI < 3 and 3 < LAI < 6, respectively. The global sensitivity analysis shows
that when the LAI < 3, the reflectance at the bands shown in Table 1 is mostly affected by
the LAI, and that 842 nm is mainly affected by Cm (69.16%). The percentage of LAI effect
on canopy reflectance at 475 nm, 560 nm, 668 nm, and 717 nm was 99.79%, 94.93%, 99.58%,
and 74.62%, respectively. When the LAI > 3, the inverse at the bands shown in Table 1
is mainly affected by the LAI, ALA, and Cab, and at 842 nm, it is still mainly affected by
Cm (73.14%). The canopy reflectance at 475 nm was mainly affected by ALA (83.64%),
followed by the LAI (9.83%). The 560 nm canopy reflectance was mainly affected by the
Cab (76.66%). The spectral reflectance at 668 nm is affected by ALA, LAI, Cab, and hspot in
the order of 37.23%, 31.18%, 15.67%, and 14.07%, respectively, and the spectral reflectance
at 717 nm is mainly affected by the Cab, which affects the results by 60.73% (Figure 6).
The results showed that the canopy structural parameters and chlorophyll content had
a great influence on the visible light and near-infrared reflectance during the vigorous
shoot growth stage, and it was very important to understand and reduce the influence of
chlorophyll content on reflectance in the LAI retrieval.

3.2. Effect of Lookup Table Size on Inversion Results

With the increase in the number of simulated spectra included in the lookup table,
the accuracy of the LAI inversion model based on PROSAIL improves (Figure 7); however,
when the number of simulated spectra exceeds 10,000, the time required to construct
the LUTs increases significantly, while the accuracy of the LAI inversion model starts to
decrease. Figure 7 shows that the construction times for LUTs containing 1000, 5000, 10,000,
20,000, and 50,000 spectral data took 88.577 s, 440.864 s, 889.426 s, 1761.24 s, and 4568.293
s, respectively. Using LUT1 with 1000 simulated data, the modeling R2 is 0.28 and RMSE
is 1.81. When the simulated spectral data in LUT1 increased to 10,000, R2 increased by
89.82% and the RMSE reduced by 57.51%. In addition, when the simulated spectra in
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the LUT exceeded 10,000 and continued to increase, the accuracy of the LAI inversion
model decreased. This may be due to the larger lookup table amplifying the effects of the
phenomenon where “different parameters have the same spectral reflectance” on the model
results. Based on the above results, LAI retrieval was conducted using the LUT containing
10,000 simulated spectra.
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3.3. Potato LAI Inversion Based on Different Methods

The results of potato LAI inversion based on the PROSAIL model are shown in Table 4
and Figure 8; the hybrid inversion method using the PROSAIL model combined with the
machine learning algorithm significantly improves the accuracy of model inversion. The
accuracy of LAI inversion using LUT1 was stable for each growth stage and each variety,
while LUT2 had a poor inversion effect for the tuber bulking stage. However, except for
the tuber bulking stage, the inversion results based on LUT2 were better than LUT1 at
each stage. The modeling accuracy of the hybrid inversion method based on LUT2 is
significantly higher than that of the previous two methods. Except for the tuber bulking
stage, the validation R2 of the hybrid model of PROSAIL and RF is between 0.53 and 0.81
but the validation R2 of this modeling method for the tuber bulking stage is only 0.33. The
inversion accuracy of the hybrid model of PROSAIL combined with PLSR at each stage
of the growth periods of potato is generally good, and the R2 of the LAI verification at
each stage and for both varieties based on this method is 0.67–0.88, and RMSE is 0.28–1.18.
Compared with the inversion results using LUT2, the model R2 of the tuber initiation stage,
the tuber bulking stage, D681, Zhongshu5, and the whole growth stage increased by 30%,
263%, 49%, 47%, and 47%, respectively. The hybrid modeling method of PROSAIL + PLSR
solves the problem of the low modeling accuracy and overfitting of PROSAIL + RF in the
tuber expansion stage, significantly improves the accuracy of the LAI inversion model, and
improves the stability of the LAI inversion model in different periods and varieties.
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Table 4. Inversion of LAI results based on LUT1, LUT2, and hybrid methods.

Modeling
Period/Species

LUT1 LUT2
PROSAIL + RF PROSAIL + PLSR

Modeling Set Validation Set Modeling Set Validation Set

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

M1 0.42 0.25 0.64 0.56 0.96 0.12 0.81 0.51 0.76 0.30 0.83 0.46
M2 0.43 1.24 0.24 1.80 0.90 0.49 0.33 1.66 0.56 0.85 0.87 1.18

D681 0.56 0.80 0.45 1.23 0.93 0.33 0.53 1.07 0.73 0.64 0.67 0.89
Z5 0.56 0.37 0.60 0.56 0.92 0.20 0.74 0.47 0.74 0.35 0.88 0.28

ALL 0.52 0.77 0.51 1.06 0.93 0.28 0.60 0.94 0.70 0.56 0.75 0.80

Note: M1, M2, Z5, and ALL represent all data during tuber initiation stage, tuber bulking stage, for zhongshu5,
and for the full-life span of the two varieties, respectively.
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Figure 8. LAI inversion results of potato varieties across all growth stages using four strategies. The
above results are for the model validation set, and the hybrid model results are for model validation
using measured data.

3.4. Comparison of LAI Inversion Results Based on PROSAIL and Empirical Modeling

The LAI inversion results for each stage or variety based on field-measured data
showed that the validation R2 of the RF model for the LAI estimation across five stages or
varieties ranged from 0.41 to 0.80 (Table 5). The model using the PLSR algorithm for the
LAI inversion was more stable than those of RF, and the LAI inversion result was the best
for the different stages or varieties, with the R2 of the model verification ranging from 0.57
to 0.94.
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Table 5. Empirical modeling results based on measured data.

Modeling
Period/Species

RF PLSR

Modeling Set Validation Set Modeling Set Validation Set

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

M1 0.84 0.24 0.75 0.29 0.79 0.28 0.69 0.31
M2 0.76 0.51 0.65 0.55 0.79 0.63 0.57 0.79

D681 0.70 0.53 0.41 0.65 0.85 0.35 0.73 0.58
Z5 0.90 0.14 0.80 0.19 0.92 0.15 0.94 0.12

ALL 0.79 0.36 0.63 0.48 0.72 0.45 0.70 0.71

Note: M1, M2, Z5, and ALL represent all data during tuber initiation stage, tuber bulking stage, for zhongshu5,
and for the full-life span of the two varieties, respectively.

These results indicate that the proposed hybrid inversion method, which combines potato
simulation data with the empirical model based on measured data, achieves excellent accuracy.
Moreover, the simulated data modeling approach requires only a small number of measured
samples to define the range of the LAI indicators and verify the model. This can effectively
reduce the challenges in constructing the inversion model, especially in cases where there is a
low measured sample size or difficulties with measurements in large-scale scenarios.

4. Discussion
4.1. Performance of Inversion Models for Potato LAI Estimation

The combination of multispectral data and the PROSAIL model can accurately estimate
the LAI at different growth stages and for different potato varieties, avoiding the problems
of limited feasibility and model instability caused by small or insufficient sample sizes in a
single growth stage. Spectral indices usually exhibit insensitivity at earlier growth stages,
and saturation at later growth stages [25,26]. When using optical imaging to invert the
leaf area index, it is prone to saturation in areas with high LAI, resulting in low inversion
accuracy [31]. In the inversion results using lookup tables and PROSAIL combined with
RF, the lower accuracy of the tuber bulking stage may be due to spectral saturation at
large LAI values—which reduces the sensitivity of reflectance in the visible, red-edge, and
near-infrared bands to LAI changes—and the increased interference of indicators such as
chlorophyll content and average leaf inclination on spectral reflectance. Future studies
should aim to mitigate the influence of these factors on LAI retrieval results by optimizing
parameters or introducing novel vegetation indices.

The observed LAI is necessary for the empirical inversion strategy, which must be
collected with manually handled measurements. As we know, LAI measurements can be
conducted using devices such as a Plant Canopy Analyzer (LAI-2000, LI-COR, Lincoln,
NE, USA), AccuPAR LP-80 ceptometer (METER Group, Pullman, WA, USA), and LI-3100C
leaf area meter (LI-COR, Lincoln, NE, USA), which is also time-consuming and labor-
intensive at the plot scale [9,10]. The hybrid strategy proposed in this manuscript combines
the PROSAIL model, high-resolution unmanned aerial vehicle multispectral imaging, and
machine learning algorithms to estimate potato LAI at the plot scale, which can be estimated
without observed LAI data collection. The accuracy of LAI estimation models by the hybrid
method and empirical modeling was compared, which displayed that the hybrid method
can provide a similar estimation accuracy compared to empirical modeling. The hybrid
approach offers substantial practical benefits due to reduced labor demands, which can
improve the LAI estimation efficiency at the plot scale.

The hybrid inversion method used in this study can be implemented based on simu-
lated data, greatly reducing the dependence on field data and proposing a feasible method
for large-scale estimation of potato LAI, which is worthy of further validation in a broader
agricultural scenario. When using PROSAIL and RF to estimate potato LAI, there exists a
sharp drop in the accuracy of the training and validation of models, with the R2 dropping
from 0.93 to 0.60. Both the modeling set and validation set were chosen by random sam-
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pling, so this drop may be caused by overfitting of the RF model. This can be attributed
to insufficient training datasets or overly complex training models [15,19,22]. Overfitting
is a common problem in machine learning—while it performs well on the training set
and poorly on the test data [10]. Building a random forest model using methods such as
bagging and booting may be a potential strategy to improve the model’s generalization
ability [18]. Moreover, increasing the amount of datasets may be helpful for improving the
LAI inversion accuracy using the random forest algorithm in future research. Moreover,
the contribution of the model structures (e.g., different deep learning algorithms) to the
LAI estimation can be explored with specific themes in the future.

4.2. Impact of Sensitive Parameter Determination on Model Results

Sensitivity analysis revealed that canopy reflectance is predominantly influenced by
ALA and Cab when the LAI exceeds three, corroborating results from previous studies [14].

External factors such as weather conditions [32], remote-sensing data acquisition
angle [23], and brown pigment content [33] at the time of image acquisition have a great
impact on LAI estimation. This suggests that differentiating between cloudy and clear
weather conditions [34,35] can enhance inversion accuracy for high LAI values. How-
ever, this study’s scope was limited to the effects of model parameter changes under
singular angles and ideal weather conditions, without considering variables like cli-
mate or light changes and increased flight angles that deviate from ideal conditions in
practical applications.

A preliminary classification of the LAI by fertility stage was conducted without a
detailed examination of the varying impacts of LAI sizes on spectral reflectance. Besides
the LAI, ALA emerges as a critical canopy structure parameter in the PROSAIL model [29],
with sensitivity analyses indicating significant effects of Cab on spectral reflectance at
specific wavelengths and ALA’s influence exceeding 50% at certain wavelengths when
LAI > 3. Therefore, acquiring precise canopy structure measurements and detailed spectral
data is crucial for minimizing the impact of Cab and other parameters to refine LAI
inversion accuracy. The RedEdge-P sensor contains only one band at the red-edge position,
which presents a challenge in constructing a valid vegetation index. Future research should
explore the extent of influence from variations in Cab data range and other canopy structure
parameters on LAI inversion, aiming to optimize vegetation indices or model parameters
to reduce their impact on LAI inversion outcomes and enhance overall accuracy.

4.3. Necessity of PROSAIL Model Parameter Calibration

During the whole growth cycle, the shoot of potatoes varies significantly. When
retrieving the LAI for different growth stages or varieties, determining the model parameter
ranges based on the measured data and prior knowledge can significantly improve the
accuracy of LAI inversion [6]. Compared to the LAI retrieval method that uses only the
reflectance of LAI-sensitive spectral bands, retrieving the LAI using the reflectance of five
bands results in higher model accuracy. Therefore, multispectral sensors that capture
more band information can be used to refine the data from each band, potentially further
improving the accuracy of the inversion model.

4.4. Effect of Lookup Table Size on Model Results

The empirical modeling method of using the spectral vegetation index to invert crop
physiological and biochemical parameters is severely limited due to the lack of physical
principles and the small amount of radiation information [11]. The use of a radiative
transfer model to invert vegetation parameters takes into account the optical characteristics
of leaves and the radiative transfer characteristics of the canopy, which is a mechanistic
method for vegetation parameter inversion [16]. LUT is a method of determining inversion
parameters from a table driven by the distribution and co-distribution patterns of defined
input variable sets and reflectance table sizes. The cost function was used to minimize the
distance between the simulated reflectance and measured reflectance and then to determine
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the entire set of primary input variables corresponding to the radiative transfer model based
on LUTs [35]. At present, the lookup table size in the PROSAIL model is generally between
2500 and 100,000 [36]. Therefore, in order to compare the accuracy and computational
efficiency of inverting the leaf area index with different lookup table sizes, this paper set
five strategies ranging from 1000 to 50,000. The results show that when the lookup table
size is 10,000, using the lookup table to invert the leaf area index has the best accuracy and
the shortest calculation time. The density of numerical input for model parameters and
the number of simulated spectra in the lookup tables significantly influence the inversion
results [37]. Based on the sensitivity analysis, we constructed five lookup tables of different
sizes to determine the optimal number of simulated spectra to include in the final lookup
table; however, due to the large number of model parameters and the high density of
model parameters, 10,000 simulated spectra had to be selected from over 10 million spectra
using Latin hypercube sampling. Given the time constraints, only two types of LUTs were
adopted in this study. Future research could focus on investigating the impact of lookup
table size and the type of lookup tables on model accuracy. Efforts should also be made to
mitigate the issue of poor model stability, which can arise from insufficient information in
the lookup table and from a small number of lookup tables.

5. Conclusions

In this study, the ability of PROSAIL models combined with UAV multispectral
imaging to estimate potato LAI at the plot scale was explored. The LAI has a significant
influence on spectral reflectance. When the LAI is less than three, the contribution of
potato LAI to the spectral reflectance in the visible light and red-edge bands ranges from
74.62% to 99.79%. The use of a lookup table containing 10,000 simulated spectra results
in desirable model accuracy in a relatively short time. Based on the simulated spectral
data, the LAI retrieval results using LUT1 for different growth stages and potato varieties
demonstrated strong stability. The accuracy of the potato LAI retrieval model based on
LUT2 was significantly higher than that of the LUT1, except during the tuber bulking stage.

The fusion of UAV multispectral imagery, the radiation transfer model, and machine
learning algorithms significantly improves accuracy. Among the four inversion strategies
tested, the hybrid model integrating UAV multispectral, PROSAIL, and PLSR yielded the
most accurate and stable performance. Compared to the results obtained with LUT2, the
hybrid model achieved higher accuracy, with the R2 of the inversion model improving by
30% to 263%. Notably, the validation R2 of the hybrid model combining PROSAIL and
PLSR during the tuber bulking stage reached 0.87, which effectively overcame the low
inversion accuracy observed with LUTs during the tuber bulking stage.

When compared with the empirical modeling method based on measured data, the
hybrid method using simulated spectra also yielded good results for potato LAI retrieval.
This suggests that PROSAIL has great potential for estimating potato LAI. Furthermore, the
hybrid method can effectively reduce the challenges associated with constructing inversion
models when sample sizes are insufficient or when measurement difficulties arise with
larger numbers of plots. This approach presents a potential strategy for estimating potato
LAI at the plot scale.
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Appendix A

Table A1. Parameterization of the PROSAIL model for sensitivity analysis.

Model Abbr. Variable Unit Data/Range (Local
Sensitivity Analysis)

Data/Scope (Global
Sensitivity Analysis)

PROSPECT-5

N Leaf structure
parameter Unitless 1–2 (0.2), 1.5 1–2

Cab Chlorophyll a + b
content µg·cm−2 10–90 (10), 40 31–89

Car Carotenoids µg·cm−2 2–14 (2), 5 6.3–14.1
Cbrown Brown pigments µg·cm−2 0–1 (0.1), 0 -

Cm Dry matter content g·cm−2 0.005–0.040 (0.005), 0.005 0.005–0.040

Cw Equivalent water
thickness g·cm−2 0.030–0.400 (0.01), 0.03 0.030–0.400

4SAIL

LAI Leaf area index m2·m−2 0–3 (0.5); 3–6 (0.5), 3.5 0–3; 3–6

ALA Average leaf
inclination angle

◦ 36–65 (5), 50 36–65

skyl Diffuse/Direct
light Unitless 0–1 (0.2), 0.2 -

psoil Soil brightness
coefficient Unitless 0–1 (0.2), 0.2 -

hspot Hot spot Unitless 0–1 (0.2), 0.33 0–1
tts Solar Zenith Angle ◦ 18.4–33.4 (3), 25 -
tto View Zenith Angle ◦ 0–90 (10), 0 -

psi Relative Azimuth
Angle

◦ 0–90 (10), 0 -

Note: The data to the right of the sensitivity analysis column “,” are the data used when setting fixed values;
the data inside “()” are the step size when this parameter is a variable, e.g., LAI: 0–3 (0.5); 3–6 (0.5), 3.5. It is
shown that when LAI is used as the variable to fix the other parameters, LAI is set in the ranges of 0–3 and 3–6,
respectively, and local sensitivity analyses are performed in steps of 0.5.

Table A2. Constructing lookup table model parameter settings.

Model Abbr. Variable Unit M1 M2 Z5 D681 ALL

PROSPECT-5

N
Leaf

structure
parameter

Unitless 1–1.5 (0.1) 1–2 (0.1) 1–2 (0.1) 1–1.5 (0.1) 1–2 (0.1)

Cab Chlorophyll
a + b content µg·cm−2 55–88.1 (5) 31–76 (5) 31–83 (5) 33.7–88.1 (5) 31–88.1 (5)

Car Carotenoids µg·cm−2 6–14.1 (0.5) 6.4–12.2 (0.5) 6–14.1 (0.5) 6–14.1 (0.5) 6.3–14.1 (0.5)

Cbrown Brown
pigments µg·cm−2 0 0 0 0 0

Cm Dry matter
content g·cm−2 0.004–0.037

(0.002)
0.008–0.05

(0.002)
0.004–0.032

(0.002)
0.004–0.05

(0.002)
0.004–0.05

(0.005)

Cw
Equivalent

water
thickness

g·cm−2 0.03 0.03 0.03 0.03 0.03

4SAIL

LAI Leaf area
index m2·m−2 0.3–2.4 (0.1) 0.6–5.5 (0.2) 0.3–3.5 (0.2) 0.3–5.5 (0.2) 0.3–5.5 (0.2)

ALA
Average leaf
inclination

angle

◦ 57–60 (1) 60–65 (1) 57–65 (1) 57–65 (10) 57–65 (1)

skyl Diffuse/Direct
light Unitless 20 20 20 20 20
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Table A2. Cont.

Model Abbr. Variable Unit M1 M2 Z5 D681 ALL

psoil
Soil

brightness
coefficient

Unitless 0.2 0.2 0.2 0.2 0.2

hspot Hot spot Unitless 0–1 (0.1) 0–1 (0.1) 0–1 (0.1) 0–1 (0.1) 0–1 (0.1)

tts Solar Zenith
Angle

◦ 30 30 30 30 30

tto View Zenith
Angle

◦ 0 0 0 0 0

psi
Relative
Azimuth

Angle

◦ 0 0 0 0 0

Note: M1, M2, Z5, and ALL denote tuber initiation stage, tuber bulking stage, Zhongshu5, and full-life stage of
the two varieties, respectively. The data in “()” are the parameter steps set when constructing the lookup table.
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