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Abstract: Quality inspection is a pivotal component in the intelligent sorting of Astragalus mem-
branaceus (Huangqi), a medicinal plant of significant pharmacological importance. To improve the
precision and efficiency of assessing the quality of Astragalus slices, we present the FA-SD-YOLO
model, an innovative advancement over the YOLOv8n architecture. This model introduces several
novel modifications to enhance feature extraction and fusion while reducing computational complex-
ity. The FA-SD-YOLO model replaces the conventional C2f module with the C2F-F module, developed
using the FasterNet architecture, and substitutes the SPPF module with the Adaptive Inverted Fusion
(AIFI) module. These changes markedly enhance the model’s feature fusion capabilities. Additionally,
the integration of the SD module into the detection head optimizes parameter efficiency while improv-
ing detection performance. Performance evaluation highlights the superiority of the FA-SD-YOLO
model. It achieves accuracy and recall rates of 88.6% and 89.6%, outperforming the YOLOv8n model
by 1.8% and 1.3%, respectively. The model’s F1 score reaches 89.1%, and the mean average precision
(mAP) improves to 93.2%, reflecting increases of 1.6% and 2.4% over YOLOv8n. These enhancements
are accompanied by significant reductions in model size and computational cost: the parameter count
is reduced to 1.58 million (a 47.3% reduction), and the FLOPS drops to 4.6 G (a 43.2% reduction).
When compared with other state-of-the-art models, including YOLOv5s, YOLOv6s, YOLOv9t, and
YOLOv11n, the FA-SD-YOLO model demonstrates superior performance across key metrics such as
accuracy, F1 score, mAP, and FLOPS. Notably, it achieves a remarkable recognition speed of 13.8 ms
per image, underscoring its efficiency and suitability for real-time applications. The FA-SD-YOLO
model represents a robust and effective solution for the quality inspection of Astragalus membranaceus
slices, providing reliable technical support for intelligent sorting machinery in the processing of this
important medicinal herb.

Keywords: Astragalus slices; FA-SD-YOLO; quality detection

1. Introduction

Astragalus (Huangqi), a widely used herb in traditional Chinese medicine, is known
for its diverse pharmacological properties, including anti-fatigue, antioxidant, and immune-
enhancing effects [1–3]. During the quality sorting of Astragalus slices, traditional methods
often rely on manual labor, which, while effective in ensuring quality, is labor-intensive and
time-consuming. Existing color sorters for traditional Chinese medicine (TCM) materials
are capable of performing preliminary screening of Astragalus slices. However, these
systems are typically based on basic recognition of color and shape, which limits their
accuracy. This is particularly problematic for slices that resemble healthy Astragalus but
exhibit underlying defects, such as rot, which can be difficult to detect through simple color-
based sorting. As a result, the overall effectiveness of the sorting process is compromised.
With the rapid advancements in deep learning and intelligent detection technologies, there
is a growing need for the development of more efficient and precise algorithms to facilitate
the creation of automated sorting systems for Astragalus slices.
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Deep learning is a cutting-edge technology with superior capabilities for feature
learning and extraction, outperforming traditional machine learning algorithms in many
applications [4,5]. Its impact on traditional Chinese medicine (TCM) detection has been
transformative, with an increasing number of deep learning models being applied to the
identification and quality assessment of medicinal materials. For example, Q. Xue and
colleagues developed an internal defect detection model for ginseng using the Faster R-
CNN algorithm, enabling X-ray systems to intelligently detect and sort red ginseng based
on internal defects, achieving a mean average precision of 95% [6]. Laiali Almazaydeh
and collaborators applied the Mask R-CNN algorithm for the identification and detec-
tion of over 30 types of herbs, achieving an average accuracy of 95.7% [7]. Zhao P. and
colleagues proposed a VGG-16-based herbal medicine identification model to assist in
recognizing traditional Chinese medicinal materials [8]. Additionally, Liu S. and team
utilized GoogleNet for plant identification in TCM, achieving TOP-1 and TOP-5 accuracy
rates of 67.4% and 92.4%, respectively [9].

The YOLO (You Only Look Once) series of algorithms are widely recognized in deep
learning for their effectiveness in real-time object detection. These algorithms uniquely
integrate feature extraction and classification into a single, unified process, which has made
them indispensable in image recognition tasks. YOLO is particularly known for its rapid
detection capabilities, allowing for real-time analysis while maintaining high accuracy. As
a result, YOLO and its enhanced versions have been increasingly applied to the detection
of traditional Chinese medicinal materials. For instance, Teng Y. and colleagues employed
the YOLOv5 model with the CBAM attention mechanism to identify Fritillaria ussuriensis,
achieving a detection accuracy of 91.32% [10]. Similarly, Gao S. and collaborators applied
the YOLOv3 model for recognition tasks involving various traditional Chinese medicinal
disks, achieving an average detection accuracy of 96% [11]. Geng T. and his team utilized
the lightweight YOLOv5s network to analyze microscopic images of honeysuckle, achieving
a mean average precision (mAP) of 0.81 at a threshold of 0.5, demonstrating the model’s
effectiveness in recognizing microscopic features of TCM materials [12]. Moreover, Hongxu
Zhang and his group focused on red ginseng detection by developing a YOLOv5s model
based on hyperspectral imaging, successfully differentiating between various parts of red
ginseng, with recognition rates of 96.79% for the rhizome and 95.94% for the main root [13].

In the field of deep learning, research into traditional Chinese medicinal materials
has predominantly focused on the classification and identification of different herbs, as
well as preliminary assessments of their quality. Given the significant variations among
different types of medicinal materials, these authors often found it relatively straightfor-
ward to distinguish and identify them. However, research into detailed quality inspection
within the same category of materials remains limited. This is especially true for Astra-
galus membranaceus, where the application of deep learning techniques has been relatively
underdeveloped. In the quality inspection of Astragalus slices, the high degree of simi-
larity between certain samples presents a significant challenge, complicating the task of
effectively distinguishing between healthy and defective slices.

This study employs the YOLOv8 model for the quality inspection of Astragalus slices
and introduces a novel quality inspection method based on the FA-SD-YOLO model. The
main contributions of this paper are as follows:

(1) The C2F-F module, which combines the FasterNet module with C2f, is integrated into
the YOLOv8n model. This modification reduces FLOPS (Floating Point Operations
Per Second) while maintaining the model’s capability to accurately detect the quality
of Astragalus slices.

(2) The AIFI module is used in place of the SPPF module, allowing the YOLOv8n model
to better focus on key detection features of the target objects (the Astragalus slices),
thus improving detection accuracy.

(3) To further reduce FLOPS, the YOLOv8n head network is replaced with the SD module.

In comparison to the YOLOv8n model, the FA-SD-YOLO model reduces the number
of parameters while enhancing detection performance for Astragalus slice quality, pro-
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viding crucial technical support for sorting equipment used in the quality assessment of
Astragalus slices.

2. Materials and Methods
2.1. Image Enhancement and Construction of Datasets

This study focused on Gansu Astragalus slices as the research subject and utilized
a Hikvision camera (model MV-CB013-20UC-B) to capture images. The camera has a
resolution of 1.3 megapixels, and the image collection height was set at 20 cm. A total
of 1158 images of Astragalus slices were collected, which were then divided into three
sets: a training set (814 images, 75%), a validation set (171 images, 15%), and a test set
(173 images, 15%). All images were annotated using LabelImg software. To align with the
practical requirements for quality screening, the slices were categorized into five types:
Normal, Rot, Special-shaped (SS), Special-shaped_Rot (SR), and Stem.

In this study, image enhancement techniques were applied to a subset of the training
set images to increase the number of training samples. Four augmentation methods were
used: rotation, flipping, scaling, and noise addition (Gaussian noise and salt-and-pepper
noise). As a result, the number of training samples was increased from 814 to 1220. The
image augmentation process is illustrated in Figure 1. The original training set consisted
of 814 images, from which 406 images were randomly selected and divided equally into
three groups. The first group was subjected to a rotation operation, with angles randomly
selected as 90◦ or 180◦. The second group underwent a mirror operation. In the third group,
a scaling operation was performed with a scaling factor randomly selected as 0.8 or 1.2.
These enhancements generated an additional 306 images. The enhanced images were then
combined with the original 814 to give a total of 1220 images in the training set. Noise
(Gaussian or pretzel) was then randomly added to the training set images with a 50%
probability of noise inclusion.
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2.2. Construction of the Astragalus membranaceus Slice Detection Model

This study introduces an innovative improvement to the YOLOv8n model by propos-
ing the FA-SD-YOLO model, with its structure depicted in Figure 2. The FasterNet module
was combined with C2f to form the C2f-F module, and different insertion points of the
C2f-F module within the model were analyzed to identify the optimal configuration for
performance enhancement. Additionally, the SPPF module was replaced with the AIFI
module to enhance feature extraction and representation capabilities. In the sensor head of
the model, the original sensor head was substituted with the SD module. These modifica-
tions not only improve the model’s ability to detect the quality of Astragalus slices but also
significantly reduce the number of parameters and computational complexity.
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2.2.1. YOLOv8 Model

The target detection network of YOLOv8 consists of three main components: the
backbone, neck, and head. The backbone employs the C2f module to extract deep features
from the image, which has fewer parameters than the C3 module used in YOLOv5 while
delivering superior feature extraction performance. The neck utilizes a PAN-FPN structure,
which fuses features from different stages to enhance feature representation. The head
includes both detection and classification components that output the detection results [14].
Additionally, YOLOv8 incorporates an anchorless framework and an adaptive NMS (Non-
Maximum Suppression) algorithm, which reduce the need for extensive hyperparameter
tuning and optimize detection accuracy, thereby minimizing missed detections.

2.2.2. Structure of the C2f-F Module

The FasterNet network, as illustrated in Figure 3a, is a deep learning architecture
designed to reduce model size and inference time while maintaining accuracy. The core
concept is to decrease the number of floating point operations through a PCon convolutional
structure. FasterNet consists of four stages, each preceded by either an embedding layer
for downsampling and channel augmentation (using a 4 × 4 standard convolution with
a stride of 4) or a merging layer (using a 2 × 2 standard convolution with a stride of
2). Each stage is composed of multiple FasterNet modules [15]. The output layer of
the network includes a global average pooling layer, a 1 × 1 convolutional layer, and
a fully connected layer [15]. The FasterNet modules themselves are constructed using
a PConv layer followed by two 1 × 1 convolutional layers, forming what is known as
the inverse residual block. This block enhances feature expressiveness by expanding the
number of channels in the intermediate layers. PConv (partial convolution) performs
convolutional operations on a partial subset of the input channels, leaving the rest of the
channels unchanged. This selective convolution approach reduces computational overhead
compared with traditional convolution, effectively minimizing computational redundancy
and improving overall efficiency.
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Embedding the FasterNet Block module into the C2f module forms the C2f-F module
(Figure 3b), which reduces computational load and memory access, thereby improving the
model’s operational speed. In the C2f-F module, image features are first extracted through
a convolutional layer. These features are then passed into a Split layer, where they are
divided into two branches. One branch of features flows directly into the Concat module,
while the other branch is processed through two consecutive FasterNet Blocks.

Each FasterNet Block consists of a PConv convolutional layer, several additional
convolutional layers, and a residual connection. When features enter the PConv layer,
only a subset of the channels undergoes convolution, while the remaining channels are
left unchanged. This selective convolution strategy significantly reduces computational
complexity. The residual connection structure adds the input features to those processed
by the PConv layer and the two convolutional layers, mitigating the gradient vanishing
problem during network training. The features processed by the two FasterNet Blocks
are then concatenated with the features that were passed directly through the Concat
module, resulting in a richer feature representation. Finally, the output features of the
C2f-F module are obtained after passing through a convolutional layer. The C2f-F module
reduces redundant computations and increases processing speed, all while maintaining the
network’s detection capability.

2.2.3. Construction of AIFI and Focal Modulation Modules

AIFI (Attention-based Intra-scale Feature Interaction) is a scale-intrinsic interaction
module that leverages attention mechanisms to enhance the efficiency and effectiveness
of feature extraction. Its primary goal is to improve the network’s ability to focus on
relevant features by facilitating rich fusion among features within the same scale. This
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process enables the model to capture finer-grained information and enhances its ability to
discriminate between object features [16].

The architecture of AIFI is illustrated in Figure 4, with the corresponding equations
detailed in Formulas 1–2. Initially, the two-dimensional feature maps derived from layer
S5 are projected into a high-dimensional space, where they are processed by the AIFI
module. This module integrates a multi-head self-attention mechanism (as described
in Formula 3) consisting of several independent attention heads. Each head focuses on
different information subspaces, allowing the model to capture diverse feature interactions.
The outputs of these heads are then combined with the original input through a residual
connection, followed by layer normalization to ensure precise modeling of the intricate
interactions within the input sequence. The refined features are then passed through a
feedforward neural network (FFN) for further nonlinear transformation. After another
round of layer normalization, the module generates attention scores. These scores are then
transformed back into a two-dimensional format, denoted as F5. The RT-DETR proposal
suggests that deeper features from S5 contain more semantically rich information, which is
particularly useful for distinguishing objects. In contrast, the shallower features from S3
and S4 contain less semantic information. Thus, applying the encoder solely to S5 features
not only reduces computational complexity but also maintains detection performance with
minimal compromise.

Q, K, V = Flatten(S5) (1)

F5 = Reshape(AIFI(Q, K, V)) (2)

MultiHeadAttention(S) = Concat(softmax(
QiK

T
i√

dk
)Vi)

h

i=1
∗ Wo (3)

where Q, K, and V represent the three vectors of queries, keys, and values; h is the number
of heads of attention, and Wo is the output transformation matrix.
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The integration of the AIFI module into the YOLOv8 model enhances its capabilities
by enabling contextual fusion, feature enhancement, and attention focusing. The AIFI
module effectively integrates global contextual information from images using an attention
mechanism, allowing the model to understand the relationships between spatially distant
regions. This is crucial for image recognition tasks, in which understanding such relation-
ships improves detection accuracy. The features processed by the attention mechanism and
the feedforward neural network contain richer semantic information, which boosts both the
accuracy and robustness of the detection model. Compared with traditional convolutional
neural networks, the attention mechanism in AIFI excels at handling long-range dependen-
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cies, enabling the model to better understand the overall structure of the target object, even
when it appears in different regions of the image. Furthermore, the structure of AIFI allows
the model to focus on the most important areas of the image, improving the detection of
relevant features. Additionally, the AIFI module incorporates position encoding, which
integrates spatial location information into the features, helping the model distinguish
between features in different locations and thereby enhancing target localization accuracy.

Focal Modulation is a novel attention mechanism designed to replace traditional self-
attention (SA) mechanisms, aiming to enhance network performance in object detection
tasks [17]. The module consists of three key components: (1) hierarchical contextual infor-
mation extraction through depth-wise convolutions, which capture both short-term and
long-term dependencies; (2) gated aggregation, in which visual context is selectively pooled
based on the content of each token; and (3) injection of the aggregated information into the
query, achieved through either pointwise multiplication or affine transformations [18].

In this study, the AIFI and Focal Modulation modules were used to replace the SPPF
module, capitalizing on their ability to automatically learn the correlations between features.
To further optimize feature extraction, convolutional layers (Conv) were added before the
AIFI and Focal Modulation modules to capture local features. This combination is designed
to significantly enhance the detection accuracy for targets of varying sizes.

2.2.4. Construction of SD Module

Group Normalization (GN) is a normalization technique used in deep learning to
address the limitations of Batch Normalization (BN), particularly when dealing with small
batch sizes. The process involves dividing the input features into subsets based on the
channel dimensions and then computing the mean and standard deviation for each subset
independently. The statistical information obtained from these calculations was used to
normalize the elements within each subset [19].

Shared convolution refers to the practice in deep convolutional neural networks in
which multiple convolutional layers use the same convolutional kernel weights, enabling
the network to extract consistent features across different locations. This approach reduces
the model’s parameter count through weight sharing, thereby improving computational
efficiency [20]. The benefits of shared convolution include mitigating the risk of overfitting,
reducing model size, accelerating training speed, and enhancing performance under limited
computational resources. Additionally, it helps the network acquire more stable feature
representations at different levels.

This study employed a shared convolutional module (SD module) as the detection
head of the model (see Figure 5). Initially, different features pass through 1×1 convolutional
layers with GP-N, followed by two shared 3 × 3 convolutional layers, also with GP-N.
After processing through these layers, the output from each part was passed to a Conv_Box
layer and a Conv_Cls layer.
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2.3. Experimental Platform

This study used the Linux operating system with an NVIDIA P40 GPU. The primary
software included Python 3.8, Torch 1.24.0, CUDA 12.0, and cuDNN 8.6. The input image
size for the network was 640 × 640 × 3 pixels. The learning rate was set to 0.01, with a
batch size of 32 and a total of 200 epochs. All models were trained using the same dataset
and hyperparameters.

2.4. Evaluation Indicators

In this study, in order to comprehensively evaluate the performance of the model, we
used the following assessment metrics: the F1 score and the average accuracy under the
0.5 threshold (mAP@0.5). The specific formulas are shown below.

P =
TP

TP + FP
(4)

R =
TP

TP + FN
(5)

F1 = (2 × P × R)/(P + R) (6)

AP =
∫ 1

0
P(R)dR (7)

mAP =
∑C

i=1 APi

C
(8)

where TP is true positive, FP is false positive, FN is false negative, and C is the number
of categories.

In addition to the above evaluation metrics, the speed and computational complexity
of the model were also evaluated using the following indicators: image recognition speed
(ms/img), FLOPs, and number of parameters. The formulas for these are as follows:

Parameters = ∑(F × F × I × O) (9)

FLOPs = ∑(F × F × I × O × H × W) (10)

where F is the convolution kernel size, I is the number of input channels, O is the number
of output channels, and H and W are the feature map height and width, respectively.

The stability evaluation index of the model adopts standard deviation and coefficient
of variation, and the formula is as follows:

σ =

√
∑k

i=1(xi − x)2

k
(11)

CV =
σ

x
× 100% (12)

where σ is the standard deviation, CVCV is the coefficient of variation, x is the sample
mean, and k is the number of samples.

3. Results and Analysis
3.1. YOLOv8 Models and Performance Comparison

The scales parameter in the YOLOv8 architecture defines the various model sizes and
complexities, where the depth and width parameters control the model’s depth and width,
respectively. Specifically, there are five YOLOv8 variants, ranging from small to large. For
quality detection of the Huangqislices, the Huangqi slice dataset was used to evaluate
the performance of the YOLOv8 model. As shown in Table 1, the mAP values across the
YOLOv8 models show slight variations. The YOLOv8l model achieves the highest mAP at
91.4%, while the YOLOv8n model has a mAP of 90.8%, which is 0.6% lower. Notably, the
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YOLOv8n model has the lowest parameter count (3,006,623) and floating point operations
(FLOPS) count (8.1 G) among the five models, indicating that it achieves higher detection
accuracy with a smaller model size and reduced computational complexity. Based on
these findings, this study aimed to make further improvements to the YOLOv8n model,
optimizing it for the real-time requirements of Huangqi slice detection.

Table 1. YOLOv8 models performance comparison.

Model Width mAP
(%) Model Size (MB) Parameter GFLOPS

YOLOv8n 0.25 90.8 5.96 3006623 8.1
YOLOv8s 0.50 90.8 21.4 11127519 28.4
YOLOv8m 0.75 91.0 49.6 25842655 78.7
YOLOv8l 1.00 91.4 83.5 43610463 164.8
YOLOv8x 1.25 90.4 130 68157423 258.1

3.2. Effect of Different C2f-F Module Positions on Model Performance

The C2f-F module was used to replace the C2f module in both the backbone and neck
networks of the YOLOv8n model to evaluate its impact on model performance. Position 1
refers to replacing the original C2f module with the C2f-F module in the backbone network,
while Position 2 indicates the replacement of the C2f module with the C2f-F module in the
neck network. Position 1 + 2 represents the replacement of the C2f module with the C2f-F
module in both the backbone and neck networks of the YOLOv8n model. The details of the
results are provided in Table 2.

Table 2. Comparison of performance when C2f-F modules are used in different positions.

Model p (%) R (%) F1 (%) Map (%) Model Size (MB) FLOPs (G) Layer

YOLOv8n 86.8 88.3 87.5 90.8 5.95 8.1 168
Position 1 85.7 87.3 86.5 91.6 5.26 7.0 186
Position 2 83.0 89.8 86.3 92.2 5.30 7.4 180

Position1 + Position 2 86.9 87.4 87.2 92.3 4.61 6.3 198

The introduction of the C2f-F module at different positions in the YOLOv8 model
enhanced both the mAP and reduced the model size and FLOPS, though there was some
fluctuation in the F1 score. The results indicate that, compared with the base model, the
model with the C2f-F module introduced at Position 1 experienced a 1.0% decrease in
the F1 score, while its mAP increased by 0.8%. At Position 2, the F1 score decreased by
1.2%, but the mAP improved by 1.4%. The model with the C2f-F module introduced
at both Position 1 and Position 2 showed the smallest drop in F1 score (0.3%) and the
most significant improvement in mAP (1.5%), achieving a total mAP of 92.3%, the best
average performance across multiple categories. Additionally, the Position 1 + 2 model
had the smallest size at 4.61 MB, a reduction of 1.34 MB from the original model, and the
lowest FLOPS at 6.3 G, a reduction of 1.8 G from the original. These results validate the
effectiveness of the C2f-F module in model lightweighting.

3.3. Performance of Different Modules Replacing SPPF

In the YOLOv8n model, the SPPF module is responsible for fusing features at different
scales to enhance the model’s recognition capabilities. To explore more effective feature
extraction methods, this study tested two replacement strategies: the first involves using
the AIFI module, which adaptively integrates feature information and optimizes feature
representation; the second involves introducing the Focal Modulation module, which
improves the model’s ability to detect key targets by dynamically adjusting the focus of
feature maps. Both modules were introduced in place of the SPPF module to evaluate their
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impact on the detection performance of the YOLOv8n model. The experimental results are
presented in Table 3.

Table 3. Comparison performance of AIFI and Focal Modulation.

Model P (%) R (%) F1 (%) mAP (%) Model Size (MB) FLOPs (G) Layer

YOLOv8n 86.8 88.3 87.5 90.8 5.95 8.1 168
AIFI 85.4 89.1 87.2 92.9 5.81 8.0 175

Focal Modulation 87.2 86.6 86.9 92.6 6.16 8.2 175

The F1 score of the AIFI model was 87.2%, a decrease of 0.3% compared with the
original model. However, the mAP increased to 92.9%, an improvement of 2.1% over
the original model, and both model size and FLOPS were slightly lower. In contrast, the
Focal Modulation model had an F1 score of 86.9%, a decrease of 0.6% compared with the
original, but the mAP improved to 92.6%, a gain of 1.8%. Both model size and FLOPS
were slightly higher than the original model. When comparing the two, the AIFI model
outperformed the Focal Modulation model, with a 0.3% higher F1 score and a 0.3% higher
mAP. Additionally, the AIFI model had a model size and FLOPS that were 0.35 MB and
0.2 G lower, respectively. Based on these results, the AIFI module was selected to replace
the SPPF module in the YOLOv8n model, as it enhanced feature extraction capabilities
while reducing computational load.

3.4. Ablation Test

Ablation testing was employed to examine the impact of specific substructures or
training methods on model performance. In this study, based on the YOLOv8n model, the
C2F-F module was introduced to replace the C2F module in both the backbone and neck
networks, aiming to enhance feature fusion capabilities and improve computational speed.
The AIFI module was used to replace the SPPF module in the backbone network to boost
the model’s recognition ability. Additionally, the SD module was incorporated to replace
the recognition head of the YOLOv8n model, with the goal of reducing model parameters
and increasing recognition speed.

In this study, ablation tests were conducted to compare the performance of various
upgraded models. YOLOv8-F refers to the model in which the C2f-F module replaces
the C2f module. YOLOv8-A denotes the model in which the AIFI module replaces the
SPPF module in the backbone network. YOLOv8-SD represents the model in which the SD
module replaces the detection head. YOLOv8-FA is the model in which the C2f-F module
replaces the C2f module, and the AIFI module replaces the SPPF module in the backbone
network. Finally, FA-SD-YOLO refers to the model in which the C2f-F module replaces the
C2f module, the AIFI module replaces the SPPF module in the backbone network, and the
SD module replaces the detection head. The results are presented in Table 4 and Figure 6.

The YOLOv8-F model, compared with the YOLOv8n model, shows a slight improve-
ment in accuracy and mAP, increasing by 0.1% and 1.5%, respectively. However, there
is a small decline in recall rate and F1 score, which decreased by 1.1% and 0.3%, respec-
tively. In contrast, the YOLOv8-A model exhibits a different trend: while accuracy and the
F1 score drop slightly, the recall rate and mAP see notable improvements, increasing by
0.8% and 2.1%, respectively. Both models demonstrate a common enhancement in mAP,
highlighting the effectiveness of the YOLOv8-F and YOLOv8-A modules in improving
detection performance across all categories. The YOLOv8-FA model, by combining the
strengths of the C2f-F and AIFI modules, delivers a more significant overall performance
boost. Compared with the YOLOv8n model, the YOLOv8-FA model shows improvements
in precision, F1 score, and mAP, with increases of 3.3%, 0.8%, and 2.3%, respectively. These
gains reflect an enhancement in the model’s capabilities. However, the recall rate decreases
by 1.7%, suggesting that while the YOLOv8-FA model excels in several key metrics, there
is still room for further improvement in recall. When comparing the FA-SD-YOLO model
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to the YOLOv8n model, significant differences emerge. Specifically, the F1 scores for the
Rot, SR, and Stem categories in the FA-SD-YOLO model improve by 1.0%, 6.8%, and 0.4%,
respectively, with the SR category showing the most notable improvement. In contrast,
the Normal and SS categories experience slight declines in F1 scores by 0.4% and 0.3%,
respectively—however, these reductions are minimal and can be seen as minor fluctua-
tions. Additionally, the FA-SD-YOLO model outperforms the YOLOv8n model in terms
of AP values across several categories: Normal, Rot, SS, SR, and Stem, with increases of
0.5%, 2.0%, 1.8%, 7.3%, and 0.3%, respectively. The most significant improvement is seen
in the SR category. The FA-SD-YOLO model also improves precision by 1.8%, recall rate
by 1.3%, overall F1 score by 1.6%, and mAP by 2.4%. In summary, the FA-SD-YOLO model
outperforms the YOLOv8n model on multiple key performance indicators, demonstrating
the effectiveness and validity of the proposed model improvements.

Table 4. Ablation test results.

Model P (%)
R

(%)
F1 (%) AP (%) F1

(%)
mAP
(%)Normal Rot SS SR Stem Normal Rot SS SR Stem

YOLOv8n 86.8 88.3 93.8 83.4 87.0 79.0 94.4 96.8 87.1 91.2 83.9 95.1 87.5 90.8
YOLOv8-F 86.9 87.4 92.7 81.6 84.9 80.3 96.0 96.9 89.9 92.6 87.4 94.5 87.2 92.3
YOLOv8-A 85.4 89.1 92.5 81.9 85.9 80.2 95.4 96.8 90.4 92.9 88.8 95.4 87.2 92.9

YOLOv8-SD 84.5 88.9 94.0 81.0 84.8 78.3 95.3 96.9 84.7 93.5 87.9 95.7 86.6 91.7
YOLOv8-FA 90.1 86.6 93.2 80.3 87.0 84.9 95.9 97.2 87.7 94.0 90.5 96.0 88.3 93.1

FA-SD-YOLO 88.6 89.6 93.4 84.4 86.7 85.8 94.8 97.3 89.1 93.0 91.2 95.4 89.1 93.2
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Figure 7 presents the parameters and FLOPS of the models used in the ablation
experiment. Compared with the YOLOv8n model, the YOLOv8-F, YOLOv8-SD, and
YOLOv8-FA models exhibit a reduction in both the number of parameters and FLOPS,
indicating that the C2f-F and SD modules effectively contribute to model lightweighting.
The YOLOv8-A model shows only a marginal reduction in parameters and FLOPS relative
to the YOLOv8n model. However, the FA-SD-YOLO model stands out with the lowest
number of parameters and FLOPS, recording 1,585,000 parameters and 4.6 G FLOPS,
representing a reduction of 47.3% in parameters and 43.2% in FLOPS compared with the
original YOLOv8n model. This emphasizes the lightweight nature of the improved models,
showcasing their efficiency.
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Figure 8 illustrates the curves for the mean accuracy (mAP) and loss function during
the ablation experiments on the validation set. All six models began to converge and
stabilize gradually after 50 epochs. The YOLOv8n model’s mAP reached its peak early
and then plateaued, while the FA-SD-YOLO model exhibited a slightly higher mAP than
the other models after approximately 80 epochs. The loss curves of all six models show a
similar trend, but the FA-SD-YOLO model’s loss remained slightly lower in the later stages
of training. These results highlight that the optimization strategies implemented in this
study have significantly enhanced the performance of the model.
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Figure 8. MAP and loss curves of the ablation test model.

Figure 9 presents the detection results for three Huangqi slice images, as evaluated
by the six models. In Image 1, all six models successfully identified the targets with
no errors. For Image 2, the YOLOv8n model made one detection error, while the other
models maintained accurate detection performance. In Image 3, the YOLOv8n, YOLOv8-A,
and YOLOv8-SD models each made one detection error, whereas the remaining models
correctly identified all targets. The specific errors are highlighted with a red ‘×’ to indicate
the incorrectly detected parts.
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In order to further assess the performance and stability of the YOLOv8n baseline
model and the FA-SD-YOLO model, a 5-fold cross-validation method was used to train and
validate the two models, and a test set was used to assess the stability of the models using
the standard deviation and coefficient of variation. The smaller the standard deviation, the
narrower the range of fluctuation in the model’s assessment index values. The coefficient of
variation can eliminate the influence of data size, reacting only to the relative degree of data
dispersion—the smaller the coefficient of variation, the better the consistency of the model’s
assessment indexes’ numerical performance and the more stable the model becomes. The
specific results are shown in Table 5. The average precision, average recall, average F1, and
average mAP of the YOLOv8n model are 82.8%, 85.4%, 84.1%, and 89.3%, respectively. The
average precision, average recall, average F1, and average mAP of the FA-SD-YOLO model
are 86.4%, 85.1%, 85.9%, and 91.2%, respectively, where the average precision, average
F1, and average mAP are 3.6%, 1.8% and 1.9% higher than those of the YOLOv8n model,
respectively. This result verified that the performance of FA-SD-YOLO for the quality
detection of Astragalus tablets was due to the YOLOv8n model. In addition, the FA-SD-
YOLO model was lower than the YOLOv8n model in terms of precision, standard deviation
of the F1 score, and mAP, although the standard deviation of recall was slightly increased.
Similarly, the FA-SD-YOLO model was lower than the YOLOv8n model in terms of the
coefficients of variation for precision, F1 score, and mAP, while the coefficients of variation
for recall increased slightly. A comprehensive analysis of the model cross-validation results
showed that the FA-SD-YOLO model was superior to YOLOv8n in all assessment metrics,
and the overall stability was also better than that of YOLOv8n.

Table 5. Model evaluation results and stability results.

Model P R F1 mAP

YOLOv8n
Mean (%) 82.8 85.4 84.1 89.3

Std 0.026 0.011 0.013 0.015
CV (%) 3.163 1.338 1.503 1.658

FA-SD-YOLO
Mean (%) 86.4 85.5 85.9 91.2

Std 0.016 0.017 0.007 0.002
CV (%) 1.801 2.756 0.752 0.219

3.5. Quality Analysis Results of Astragalus membranaceus Slices by Different Detection Models

To further validate the performance of the improved model, this study compared the
FA-SD-YOLO with several other models, including YOLOv3-tiny, YOLOv3, YOLOv5s,
YOLOv6s, YOLOv9t, YOLOv9n, YOLOv10n, and YOLOv11n. The precision-recall (P-R)
curves of these models are shown in Figure 10, where the FA-SD-YOLO model stands out
with the largest area under the P-R curve, indicating the highest mean average precision
(mAP). Specific detection results are presented in Table 6, where the FA-SD-YOLO model
demonstrates superior precision, F1 score, and mAP compared with the other models. Its
recall rate is tied with the YOLOv5s model for first place. In terms of detection speed, the
FA-SD-YOLO model excels with a detection time of 13.8 ms per image, which is 0.3 ms
faster than YOLOv5s and 1.4 ms faster than YOLOv9s. However, it is slightly slower than
YOLOv9t (by 0.5 ms) and YOLOv6s (by 0.2 ms). The YOLOv3-tiny model achieves the
fastest detection speed but performs relatively weakly across other evaluation metrics.
Additionally, the FA-SD-YOLO model has significantly lower FLOPS (4.6 G), which is
24.3%, 1.6%, 29.1%, 38.9%, 60.5%, 17.2%, 70.7%, and 73.0% of the FLOPS of the YOLOv3-
tiny, YOLOv3, YOLOv5s, YOLOv6s, YOLOv9t, YOLOv9s, YOLOv10n, and YOLOv11n
models, respectively. In conclusion, the FA-SD-YOLO model strikes a balance between
high detection accuracy and reduced computational complexity, making it well suited
for efficient Astragalus quality inspection tasks. This provides a solid foundation for its
deployment in Astragalus quality sorting equipment.
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Figure 10. P-R curves of test sets for different models.

Table 6. Analysis of the detection results of the different models.

Model p (%) R (%) F1
(%)

mAP
(%) ms/img FLOPS (G)

YOLOv3_tiny 84.5 88.6 86.5 90.7 12.9 18.9
YOLOv3 86.6 87.0 86.8 90.8 28.1 282.2
YOLOv5s 87.6 89.6 88.6 90.4 14.1 15.8
YOLOv6s 84.1 88.2 86.1 91.8 13.6 11.8
YOLOv9t 87.9 85.5 86.7 91.3 14.3 7.6
YOLOv9s 84.8 87.3 86.0 89.8 15.2 26.7

YOLOv10n 84.8 86.1 85.4 91.7 14.0 6.5
YOLOv11n 86.0 87.8 86.8 91.8 14.6 6.3

FA-SD-YOLO 88.6 89.6 89.1 93.2 13.8 4.6

4. Discussion

This study utilized the FasterNet, AIFI, and SD modules to optimize the performance
and parameter efficiency of the YOLOv8n model for Astragalus slice quality inspection.
The results indicate that both the FasterNet and AIFI modules are particularly effective in
reducing parameter computation and enhancing feature representation. These modules
have been applied in various detection tasks across different domains. For example, Shi
Lei and colleagues combined the FasterNet network with the Swin Transformer module
to form the FSST model, achieving rapid and accurate identification of wheat growth
stages [21]. Yang Q and others employed the FasterNet network as the backbone for the
YOLOv7n model in underwater target detection, optimizing the loss function to improve
the efficiency of feature space extraction in complex environments [22].

The AIFI module, a core component of the DETR model, enhances the model’s ability
to process both local and global information by integrating attention mechanisms. Its
incorporation into various image detection models has proven effective. For instance,
Xie M and colleagues introduced the AIFI module into the YOLOv5 model, leveraging
self-attention to improve the recognition rate of tire defects [23]. These studies collectively
highlight the significant application potential of the FasterNet and AIFI modules in the
field of image detection.

Quality inspection serves as a crucial safeguard for the intelligent sorting of Astra-
galus slices, facilitating the automatic and precise screening of these slices. This process
enhances production efficiency and ensures consumer safety. Presently, the quality sorting
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of Astragalus slices in China predominantly relies on manual operations, which are labor-
intensive and time-consuming. Research in the realm of Astragalus slice quality detection
is still in its nascent stages. The integration and application of advanced models, such as
FasterNet and AIFI, in this field are still in their infancy. Additionally, there is a paucity of
research exploring the use of traditional machine learning and deep learning algorithms
for the quality inspection of Astragalus slices, with only two relevant studies identified.
Zhang Lei and colleagues have conducted preprocessing, including enhancement and
normalization, on images of Gansu Astragalus slices [24]. They utilized linear classifiers
to classify the integrated features of color and texture. This research employed traditional
feature extraction and design, which may be susceptible to factors such as background and
light source, affecting model accuracy. Zhang BingZheng proposed a DT-SVM classifier
traditional target detection algorithm for classifying five types of Astragalus slices: normal,
hollow, cracked, petiole, and fibrous [25]. Based on attention mechanisms, he introduced an
improved YOLOX-s detection algorithm. The model achieved an overall sorting accuracy
rate of 84.33% and a detection speed of 2.27 slices per second. However, this model’s
detection speed was relatively low and did not address the removal of rotten Astragalus
slices. Astragalus is prone to rot during its growth cycle due to environmental influences,
and incomplete slices may also be produced during machine slicing. Consequently, the
removal of rotten and incomplete Astragalus slices is a vital task. The FA-SD-YOLO model
developed in this study can detect normal, rotten, incomplete, and incomplete_rot As-
tragalus slices and stems, providing a reference and viability for the application of deep
learning models in the intelligent sorting of Astragalus. The mAP of the proposed FA-
SD-YOLO model reached 93.2%, and the detection speed achieved 13.8 milliseconds per
image. However, when employing the model for Astragalus slice quality detection, it was
observed that Astragalus slices categorized as Normal, Rot, and Stem were predominantly
correctly identified, while slices categorized as special-shaped and special-shaped_rot were
occasionally misclassified. This may be attributed to the high similarity between special-
shaped Astragalus slices and special-shaped_rot slices, which complicates the identification
process. Therefore, future research should focus on developing a more comprehensive
Astragalus slice quality detection model.

5. Conclusions

In this study, a dataset comprising images of Huangqi (Astragalus) slices was devel-
oped, and five YOLOv8 models of varying sizes (n, s, m, l, and x) were evaluated. The
results revealed negligible differences in the mean average precision (mAP) values among
these models. Consequently, the YOLOv8n model was selected as the base and enhanced
by replacing the original C2F module with the C2F-F module and the SPPF module with
the AIFI module to improve feature fusion and extraction capabilities. Additionally, a
novel detection head, the SD module, was introduced to reduce the model’s computa-
tional complexity. Ablation experiments were conducted to validate the enhanced model’s
effectiveness. The key findings are summarized below:

(1) By combining the FasterNet module with the C2F module to create the C2F-F module
as a substitute for the original C2F module and examining the impact of the C2F-F
module’s placement (in the backbone, neck, or both) on model performance, the
experiments showed that incorporating the C2F-F module in both the backbone and
neck networks resulted in a 1.5% increase in mean average precision (mAP). Although
there was a slight 0.3% decrease in the F1 score, the computational complexity (FLOPS)
was reduced by 1.8 G, demonstrating that the FasterNet module effectively reduces
computational requirements while maintaining detection performance.

(2) The study aimed to investigate the effects of replacing the SPPF module with the AIFI
module and the Focused Modulation module on detection efficiency. The research
showed that substituting the SPPF module with the AIFI module enhanced model
performance, with the mAP reaching 92.9%, while FLOPS decreased by 0.1 G. These
results highlight the AIFI module’s effectiveness in facilitating feature enhancement.
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When both the C2F-F and AIFI modules were integrated into the model, the F1 score
and mAP achieved were 88.3% and 93.1%, respectively, thereby improving the model’s
detection performance for the quality of Astragalus membranaceus slices.

(3) The integration of the FasterNet module, the AIFI module, and the SD module into the
YOLOv8n model resulted in the FA-SD-YOLO model, which demonstrated excellent
performance in the quality detection of Huangqi slices. The accuracy and recall rates
of the new model were 88.6% and 89.6%, respectively, while the F1 score and mAP
were 89.1% and 93.2%, respectively. Compared with the original YOLOv8n model,
the accuracy rate increased by 1.8%, the recall rate by 1.3%, the F1 score by 1.6%,
and the mAP by 2.4%, while the FLOPS decreased by 43.2%, fully demonstrating the
FA-SD-YOLO model’s effectiveness in enhancing detection capabilities.

(4) Comparative analysis with various mainstream object recognition models (including
YOLOv3 tiny, YOLOv3, YOLOv5s, YOLOv6s, YOLOv09t, YOLOv9n, YOLOv10n, and
YOLOv11n) revealed that the FA-SD YOLO model required only 13.8 ms per image
for recognition speed, with FLOPS of only 4.6 G, significantly lower than the other six
models compared, and it also had the highest mAP value.

The FA-SD-YOLO model proposed in this study achieved the highest F1 score and
mAP, striking a balance between speed and model complexity, meeting the requirements
for fast and accurate detection of Huangqi slices. It provides reliable technical support for
the intelligent sorting equipment of Huangqi slices.
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