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Abstract: The permanent magnet synchronous motor (PMSM) is a key power component in agricul-
tural machinery. The harsh and variable working environments encountered during the operation of
agricultural machinery pose significant challenges to the safe operation of PMSMs. Early diagnosis
of inter-turn short-circuit (ITSC) faults is crucial for improving the safety of the motor. In this study,
a fault diagnosis method based on an improved convolutional neural network (CNN) architecture
is proposed, featuring two main contributions. First, a dilated convolutional neural network is
combined with residual structures, multi-scale structures, and channel attention mechanisms to
enhance the training efficiency of the model and the quality of feature extraction. Second, Bayesian
optimization algorithms are applied for the automatic tuning of architecture hyperparameters in deep
learning models, achieving automatic optimization of the hyperparameters for the fault diagnosis
model of ITSCs. To validate the effectiveness of the proposed algorithm, 17 simulated tests of ITSC
fault severities were conducted under both constant conditions and dynamic conditions. The results
show that the proposed model achieves the best performance regarding the validation accuracy
(98.2%), standard deviation, F1 scores, and feature learning capability compared to four other models
with different architectures, demonstrating the effectiveness and superiority of the algorithm.

Keywords: agricultural mechanization; fault diagnosis; permanent magnet synchronous motors
(PMSMs); inter-turn short-circuit (ITSC) fault; Bayesian optimization

1. Introduction

Since the 21st century, the world has been experiencing rapid changes due to issues
such as global, ecological, and climate shifts, along with population growth [1]. Environ-
mental protection and food security have garnered increasing attention, creating an urgent
need for safe, intelligent, and sustainable solutions [2]. Agricultural mechanization plays a
vital role in advancing agricultural modernization and sustainable development, making
intelligent fault diagnosis research of paramount importance [3]. Agricultural machinery
is extensively utilized in all aspects of modern agricultural production, including tillage,
fertilization, sowing, and harvesting. Given their vital role in the production process,
the efficient operation of these machines directly impacts both the efficiency and yield
of agricultural output [4]. Motors are key power components in agricultural machinery,
being responsible for providing stable torque and achieving efficient energy conversion,
thereby enhancing mechanical efficiency and reducing energy loss, which makes them
more environmentally friendly [5]. PMSMs are widely used in agricultural mechanization
due to their excellent torque control performance, high power density, and high efficiency,
coupled with China’s natural advantage in rare earth resources [5]. They are utilized in
equipment such as electric tractors, seeders, harvesters, spraying equipment, tillage, and
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seeding machinery, significantly enhancing the intelligence and automation levels of agri-
cultural production. However, the operating conditions and environment of agricultural
machinery pose challenges to the safe operation of PMSMs [6]. The faults of PMSMs can
generally be categorized into mechanical faults, permanent magnet faults, and electrical
faults [7]. Mechanical faults primarily refer to the failures caused by the damage of mechan-
ical components, such as bearings, rotors, and shafts, with common fault types including
eccentricity and bearing failures. Permanent magnet faults refer to irreversible partial or
total demagnetization of the permanent magnets fixed on the rotor, which is unique to
PMSMs and can be caused by various factors. Electrical faults usually occur due to damage
to the stator windings, and the main fault types include open-circuit winding faults, ITSC
faults, phase-to-phase short-circuit faults, and winding ground faults. Due to the limited
installation space and the high power density requirements of PMSMs in agricultural ma-
chinery, the winding design becomes highly compact, which poses significant challenges
for the heat dissipation of the motor windings. Furthermore, the operating environment
of agricultural machinery is particularly harsh and variable, including exposure to dust,
high temperatures, high humidity, complex modal vibrations, as well as frequent instanta-
neous overloads and fluctuating loads [8]. These factors make ITSC faults one of the most
common failures in PMSMs [9]. The occurrence of these faults generates significant fault
currents within the short windings, which not only affects the distribution of the air gap’s
magnetic field and exacerbates motor vibrations but also causes excessive heat generation
in the affected windings. If these issues are not detected and addressed in time, it can lead
to a rapid increase in the stator winding temperature, damaging the insulation of nearby
windings and further worsening the fault condition [10]. This may even result in a loss of
control over the motor and agricultural machinery, leading to catastrophic accidents and
significant economic losses. Therefore, it is crucial to diagnose and address ITSC faults in
their early stage.

Traditional fault diagnosis methods that rely heavily on regular maintenance and
experience not only fail to provide early warnings but also are inefficient and costly [11].
Thanks to the advancements in computer technology and sensor technology, intelligent
fault diagnosis methods have received widespread attention and application in recent
years [12,13]. Jiang et al. implemented fault diagnosis for the rolling bearings of a combine
harvester using an improved variational modal decomposition (VMD) and machine learn-
ing method, with experimental results demonstrating the superiority of this approach [14].
Parvin proposed a transformer neural network (TNN) model for diagnosing the severity of
ITSC faults [15]. By employing a multihead attention mechanism, this algorithm enables
the model to concentrate on specific aspects of the input signals, achieving an experimental
accuracy exceeding 96%. Li et al. used the correlation coefficient of permutation entropy as
an evaluation index, combining random forest algorithms with support vector machines
to identify the engine state of a tractor [16]. Their experiments show that this algorithm
has good recognition accuracy under small sample conditions. Fan et al. implemented
a sparse classification framework for the composite fault diagnosis of tractor bearings,
utilizing adaptive feature dictionary learning to automatically extract fault features, which
improved the accuracy of fault state identification under heavy noise conditions [17]. Lee
et al. proposed an ITSC fault diagnosis model by combining an attention mechanism with a
recurrent neural network (RNN) to realize the fault severity estimation [18]. Xu et al. used
Time Generative Adversarial Networks (Time GANSs) for data augmentation to overcome
the issue of limited fault samples and combined it with transformers to perform fault
diagnosis of tractor transmission systems [19].

Despite significant achievements in research on fault diagnosis using machine learning
algorithms, there has been limited study on early fault diagnosis, let alone the early
diagnosis of ITSC faults [20]. In ITSC faults, early fault diagnosis is crucial, as overcurrent
and overheating can lead to more severe issues. The existing ITSC fault models inadequately
consider the impact of the coil structure within the winding on the fault model, failing
to accurately reflect the relationship between winding parameters and fault severity [21].
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Moreover, the three-phase current signals utilized are generally lengthy one-dimensional
signals that are highly susceptible to electromagnetic interference and can change with
varying operating conditions [22]. Consequently, accurately diagnosing ITSC faults requires
the extraction of more profound and higher-dimensional features from the collected current
signals, particularly when dealing with signals under dynamic operating conditions. This
necessitates that the deep learning models employed have sufficient network depth and
complexity [23]. However, tests indicate that when the depth of the model increases
to a certain extent, its performance tends to saturate and then rapidly decline, which is
different from overfitting [24]. Therefore, as the network depth increases, some performance
degradation issues will arise. Additionally, the automatic tuning of hyperparameters
for the network model is another pressing problem that needs to be addressed. The
hyperparameters for the network architecture and training in the aforementioned studies
largely rely on manual tuning based on experience, which can consume a significant
amount of time and computational resources, even for those with considerable experience.

To address the aforementioned issues, a novel Bayesian optimization-based improve-
ment algorithm was proposed for the enhancement of the ITSC fault diagnosis model. The
primary improvements of this paper are outlined as follows:

(1) By conducting a mechanism analysis of PMSMs, this study investigates the rela-
tionship between the parameters of different winding components and the severity
of ITSC faults. It proposes a fault model for ITSCs that considers the winding coil
structure, as well as indicators that can be used to guide the setting of the severity of
ITSC faults.

(2) A well-crafted deep learning network is proposed, which incorporates residual struc-
tures, multi-scale structures, and channel attention mechanisms. This network utilizes
dilated convolutions for signal feature extraction, employs residual structures to en-
hance learning efficiency, and leverages multi-scale structures to enrich the scale of
extracted features. Finally, the channel attention mechanism is used to adjust the
weight of effective features in fault recognition, thereby improving the accuracy of
fault severity identification.

(8) The Bayesian optimization algorithm is employed to address the tuning of hyperpa-
rameters for the fault diagnosis, enabling the automatic optimization of the model’s
hyperparameters. Building upon the automatic optimization of model training hyper-
parameters using Bayesian optimization, the network’s feature extraction layers are
divided into a three-layer architecture, integrating three improved CNN structures to
achieve automatic optimization of the model architecture hyperparameters.

(4) The effectiveness of the proposed fault diagnosis method was evaluated through
simulated ITSC fault tests conducted under both constant and dynamic operating con-
ditions. By comparing it with five other fault diagnosis models of different structures,
the advantages of the proposed method were validated.

The remainder of this paper is structured as follows: Section 2 presents the ITSC
model that considers the winding coil structure and derives an index that can be used to
set ITSC fault parameters. Section 3 introduces the proposed algorithm model along with
the structure and components of each part. Section 4 describes the experimental equipment
used and the settings required for simulating fault tests, as well as detailing the generated
dataset. In Section 5, the fault diagnosis model proposed in this paper is compared with
five other models of different structures, with experimental results demonstrating the
effectiveness and superiority of the proposed algorithm. Finally, Section 6 summarizes the
work presented in this paper and discusses future improvements.

2. ITSC Fault in PMSMs

The estimation of ITSC faults is critically important for two main reasons. On one
hand, these faults are very difficult to detect in their early stages [25]. On the other hand, an
ITSC fault can lead to overcurrent and overheating, which can cause more severe issues [26].
In previous research, no index is particularly suitable for the estimation of an early-stage
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ITSC fault. In this paper, an equivalent circuit model is proposed, and an index is derived
to guide the setting of the ITSC fault severity in experiments.

Currently, the winding structure of a PMSM mostly uses distributed winding arrange-
ments. The coils are wound into appropriate shapes and distributed across two stator slots
with a specific pitch. When an ITSC fault occurs in a few turns of the coil within a particular
slot, the wires within the corresponding slot will also be shorted, as shown in Figure 1a.
Figure 1a is a cross-sectional view of a PMSM with 8 poles and 36 slots. Every turn of
the wire within the slot is labeled as Pc-t. For example, A1-3 denotes the 3rd turn wire of
the first coil within winding phase A. The red section of the stator winding in the figure
indicates the location where the ITSC fault happens, and the corresponding enlarged view
shows the labels of the wires involved in the short circuit. Assuming an ITSC fault occurs
in the first coil of winding phase A, the schematic diagram of the equivalent circuit model
is shown in Figure 1b. From the figure, it can be seen that after the fault occurs, the faulty
phase winding will be divided into two parts. One part is the shorted section, and the other
is the remaining healthy section. Additionally, the winding of the shorted section will form
anew closed loop at the point of the shorted wires. When the current of phase A winding
flows through the newly formed closed loop, it divides into the current ir passing through
the fault resistance Ry and the current (i,—if) passing through the shorted winding. Let N¢
be the number of coils in each phase winding, N; be the number of turns per coil, and N;
be the number of turns shorted in the case of an ITSC fault. The degree of winding shorted
can be expressed as:

— NS
Y

where y indicates the proportion of shorted turns in the fault phase winding relative to the
total number of turns in that phase winding. Based on the above analysis, the description
of the equivalent circuit model is as follows:

1)

d
Vaven = RapefLaper + E(Lubcflahcf) + €apcf 2)
where
T
Viben = [ an Opn Ven 0 ]
Ron + Raf Raf
R
Rabcf = b R,
Ryf Ryf + Ry
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In the formula, Ry, Ry, and Ry represent the resistance of the remaining healthy
portion, the resistance of the shorted portion, and the fault resistance at the shorted point in
fault phase winding A, respectively. i, ip, and i, represent the current flowing through phase
winding A, phase winding B, and phase winding C, respectively. v, vy, and v, represent
the voltages of the three-phase windings with respect to the neutral point. if represents
the current flowing through the fault resistance. L, and Ly, denote the self-inductance
of phase windings B and C, respectively. L, and L, denote the self-inductance of the
remaining healthy portion and the shorted portion of fault phase winding A, respectively.
My, indicates the mutual inductance between phase windings B and C. M indicates the
mutual inductance between the two portions of fault phase winding A. My, and Mgy,
represent the mutual inductance between the two portions of fault phase winding A and
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phase winding B, respectively. M. and M, denote the mutual inductance between the
two portions of fault phase winding A and phase winding C, respectively. g, and egy
represent the induced electromotive forces generated by the permanent magnet in the
shorted part and the remaining healthy part of phase winding A, respectively. e, and ef
represent the induced electromotive forces generated by the permanent magnet in phase
winding B and phase winding C, respectively. ¥, and ¥, represent the flux linkage of the
healthy portion and the shorted portion of fault phase winding A, respectively, associated
with the permanent magnet. ¥, and ¥, represent the flux linkage of phase winding B and
phase winding C induced by the permanent magnet, respectively.

Fault
winding

Pet  P:Phase of A, B,or C
c: Coil numbering
t: Turn numbering

(a)
R, ;
iq Lan Ran  Can Lar Ry Car
WL P )
\ N M ;— ; T s 4
\ 4 N ah-a, L P /
-@ZQI i \\f’;z\ = mbb §§// .R”bn Ceb
4 7 | N

\ | M. /

Mo N !
3—phase . TN, b L J My, R. ec

VST - e —-MN——

Figure 1. (a) Schematic representation of a motor cross-section with an ITSC fault. (b) Equivalent
circuit diagram of the motor with an ITSC fault.

Determining the parameters in the fault model is a crucial step for modeling and
studying different fault states of the motor. The resistances of the healthy portion and the
shorted portion are proportional to the contribution of each part to the total number of
turns in the faulted phase winding. The expressions are as follows:

Raf = R,

Ry = (1— )R, ®)

where R, stands for the resistance of phase winding A when there is no ITSC fault.
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The flux linkage of the permanent magnet in the winding is proportional to the number
of turns of the winding. The flux linkages of the healthy portion and the shorted portion of
the fault phase winding are represented as follows:

Frap = 1y @)
Yean = (1 — ) ¥

where ¥y stands for the flux linkage of the permanent magnet in phase winding A when
there is no ITSC fault.

In the fault model of ITSCs in PMSMs, determining the parameters for the stator
winding’s self-inductance and mutual inductance is the most complex part. This complexity
arises from the changes in the magnetic field caused by the presence of the ITSC fault. The
stator winding of a motor is typically composed of multiple coils, as shown in Figure 2.
For each coil within a given phase winding, it is necessary to separately discuss the coil’s
self-inductance, the mutual inductance between this coil and other coils within the same
phase winding, and the mutual inductance between this coil and different coils in the rest
of the phase windings.

Mo
/'Mlo .......... .
M,
Lyop Ly Ly Lios
1 2 o p
\ )
|
p

Figure 2. Schematic diagram of the coil composition within the phase winding and the mutual
inductance relationships between the coils.

When studying the relationship between the mutual inductance of a coil within a
given phase winding and another phase winding, and if the fault occurs only within a
single coil, the mutual inductances between the two portions of the fault coil with another
phase winding are described by the following equations:

Ne
M = '21 Mip = Mafp + Mahp
1=
Mafp = 77M1p 6)
Ne
Mahp = (1 - U)Mlp + ‘22 Mz’p
1=

where M stands for the mutual inductance between the given phase winding and another
phase winding. M;, stands for the mutual inductance between the i-th coil within the
given phase winding and another phase winding. M, represents the mutual inductance
between the shorted wires within the fault coil and another phase winding, while M,
represents the mutual inductance between the remaining unshortened wires of the fault
phase winding and another phase winding.

When the fault occurs in more than one coil, assuming that the ITSC fault occurs in the
first n coils, where n > 2, and the first n — 1 coils are also shorted, the mutual inductances
between the two portions of coils within the fault phase winding with another phase
winding are described by Equation (6), The meanings of the parameters are consistent with
those described earlier.
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Ne
M= ‘21 My = Mypp + Mgy
1=
n—1
Mysp = 421 M, + (uNe — 1+ 1) My (6)
1=

Nc
Mahp = (” - .uNc)an + ) )y Mip
i=n+1

When studying the self-inductance and mutual inductance relationships between coils
in a phase winding, since each phase winding is composed of multiple coils connected in
series, and assuming a symmetrical distribution of stator winding coils, the self-inductance
of each coil is essentially consistent. However, the mutual inductance between coils is
related to their relative positions. Let Ly,, denote the self-inductance of a single coil in
the phase winding, and M;; denote the mutual inductance between two coils in the same
winding, which depends on their relative positions, as described by Expression (7).

Mij = Mj; & Mij = My, ifli—j| = [k=l|or|i—j| = [k =1 —n|or|i—j| = [k — 1 +n] @)
i,j,k,1€Z,1<1i,jkl <N &i#jk#I

Here, i, j, k, and [ represent the positions of each coil in the A-phase winding.
Based on the above analysis, the inductance of each coil can be described as:

Nc.—1

L= Ne(Lpop + ), M) (8)
i-1

Ne-1
where )  M;; represents the mutual inductance between the chosen coil and the remaining
i=1
coils in the same winding. L denotes the self-inductance of the phase winding. Assuming an
ITSC fault occurs on the first coil of phase winding A under the condition of no distinction
and neglecting the leakage inductance between the wires within the coil, the inductance

between the coils in the fault phase winding satisfies the following relationship:

Lyobs = 7*Lyop = (4Ne)Liop

Lyoph = (1= 17)*Lyop = (1 — Nept)*Lop )
Myopgn = 1(1 — 1) Lyop = Nept(1 — Nept) Lyop

Lyob +2Mpopfn + Liobn = L

where Ly represents the self-inductance of the shorted wires within the fault coil. Ly,
represents the self-inductance of the unshortened wires within the fault coil. M stands
for the mutual inductance between the shorted wires and unshortened wires within the
fault coil. The mutual inductances between the two portions of the fault coil and the other
remaining coils within the fault winding satisfies the relationship:

Ne—1 Ne—1
Mypopr =1 L Mij = Nep ¥, M
i=1 Ne—1 i=1 Ne—1 (10)
Mpopn = (1 —1) '21 M;j = (1= Nep) '21 Mij
i= i=
where My, represents the mutual inductance between the shorted wires within the fault
coil and the other remaining coils within the fault winding. My, represents the mutual
inductance between the unshortened wires within the fault coil and the other remaining
coils within the fault winding.
Based on the above analysis, the inductance of each portion in the fault winding can
be described as:
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Las = (4Ne)*Lyop
2 N¢—2 N:.—1
Lan = (1 — Nept)"Lyop + (np — 1) (Lpop + El Mij) +2(1 = Nep) '21 M;;
=

1=

(11)
N.—1
Magn = Nept (1 — Nept) Lpop + Nept '21 M;;
1=
Substituting Equations (3)~(11) into Equation (2), the resistance, inductance, and back

electromotive force in the voltage balance voltage equation under ITSC fault conditions
can be described as:

R, uR,
R
Rabcf = b R,
uR, uR, +R g
Ly, Mgy Mg Luf + Mahf (12)
L. . — Map Ly, My #Map
abef Mg My, Lee UM

Ly + Mans VMubT.uMﬂC Loy .
e = [ era e ere err | =G Yo ¥ Yre H¥pa ]

The eg, represents the induced electromotive forces generated by the permanent magnet
in phase winding A. ¥, represents the flux linkage of phase winding A induced by the
permanent magnet.

Since the analyzed stator winding is Y-connected, it follows, from Kirchhoff’s Current
Law, that:

ig+ip+ic=0 (13)

From Equations (2), (12), and (13), the expression for the fault current can be derived as:

p
o Pt (#(Lag + Mang) — Lag) 5t
f uR, + Rf — 12R,

(14)

Let dy = yRy + Ry — 4?Ry, da = p(Log + Mgpy) — Lyg, and gy = 05 — 0p; then, the above
equation can be rewritten as:

dlf 1 . 1

i —z(dlzf) — d—zy(vu — Uy) (15)
Since the focus of the study is on the early stage of ITSC faults, the amplitude of

voltage v, is much smaller than that of v,, so v, ~ v; — v,,. Assuming v, = V; sin (wt), the

analytical solution of Equation (15) can be described as:

dqt uVaw N 1V, (w cos(wt) + dl%z(wf)) "
2 2
dz(w2+zl?) dz(werZ]?)

At the early stage of an ITSC fault, the fault usually occurs in a single coil, there are
fewer shorted turns of wires, and the fault resistance at the shorted point is relatively
large. Therefore, d1 >0,d, <0,and | d1| >> | dy|. As aresult, d; /d, tends towards —oo,
and d, /d; tends towards 0. Thus, from Equation (16), the approximate expression for the
current amplitude can be obtained:

Ir ~ 1V
f UR; + Ry — p?R,

(17)
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According to reference [27], it is known that the amplitude of the three-phase voltage
in the stator winding of the PMSM is positively correlated with the motor speed. Therefore,
Equation (17) can be rewritten as:

~ Hewr

I ~K 18
S " UR, + Ry — 2R, (18)

where w, represents the mechanical speed of the PMSM. K represents a known coefficient.
By analyzing the above equation, it can be seen that the resistance of fault phase winding
R, can be regarded as a known quantity in the equation, and the remaining parameters y,
Rf, and w, can directly affect the amplitude of the fault current 1f However, among these
parameters, i and Ry are related to the severity of the ITSC fault, while w; is not. If w; is
excluded from Equation (18), an expression related only to the shorted degree i and the
fault resistance Ry will be derived:

LAPO) SR
wr KyRﬁRf—;ﬂRﬂ =Fl (19)

where FI stands for the severity index of the ITSC fault. When the tested motor is in a
healthy state, this index is 0. When the winding of a certain phase of the motor is completely
shorted and the fault resistance is 0, this index becomes infinite.

In the early stages of an ITSC fault, this index is essentially unaffected by speed and
increases as the fault resistance Ry decreases or the degree of shorted turns y increases,
and vice versa. Each fault severity can be considered as a combination of different Rrand
u values. Of course, in actual motor operation, it is difficult to directly detect the fault
resistance Ry and the degree of shorted turns y, so this severity index is not suitable for
estimating the severity of an ITSC fault. However, it can be used as an index for fault
severity in experiments to guide the setting of ITSC fault severity.

3. Proposed Algorithm
3.1. Convolutional Neural Networks

A CNN is an evolved form of artificial neural networks, currently widely used in
image processing and fault diagnosis. A typical convolutional neural network structure
is generally a multi-layer feedforward neural network composed of an input layer, con-
volutional layer, and output layer [2]. The convolutional layer typically needs to be used
in conjunction with various functional layers, such as pooling layers, activation layers,
normalization layers, and dropout layers, to enhance the performance of the convolutional
module [28]. A deep convolutional network structure is formed by stacking multiple
convolutional modules, with its complete structure shown in Figure 3. Compared to tradi-
tional artificial neural networks, the convolutional layer of a CNN has the characteristics of
weight sharing and local connections, which significantly reduces the number of model
parameters and lowers the difficulty of training the model. A CNN model with multiple
hidden layers can automatically extract multiple features from the input signal, where
the lower hidden layers learn the generalized features of the input signal, and the higher
hidden layers can obtain more abstract, high-dimensional features through the abstraction
and extraction of lower-level features, enabling more precise classification tasks.

In this research, the dilated CNN is adopted due to its ability to enlarge the receptive
field while minimizing the loss of resolution, which is an important quality for forming a
deep network architecture [29]. The process of dilated convolution can be expressed as:

k-1
F(x) = (x4 f)(x) = gf(i) *Sx-di (20)

where S stands for the 1-dimensional series data of the input signal and S € R”, f represents
the convolutional kernel and f: {0, 1,..., k — 1} = R, d denotes the size of dilation, k stands
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for the convolutional kernel size, and x-d-i represents the elements of segment x undergoing
the i-th iteration of the operation. Conventional convolution is a special case where the
dilation factor d = 1. As the network depth increases, the dilation factor also grows, and the
receptive field of the final output layer expands accordingly.

Convolutional module
- o o ° o g
([ ] o @ %
AN ssmlelm /ol / .
ol .\.\ [ ] o o 0 O\ °
e e e[ © e ‘Llo| ® ®® @y °
ol —el\ |0 e bt o |f® Of Stacking . > -
: : e ® e P o . multiple ('> \.
o o ° 0 ® ® P ~ - | convolutional _ °
OO0 o\ \|o 4 = . O
o . ol \\le °) ® ©] 2] N o) 5 modules o
o 0 O ° — ’
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Figure 3. Schematic diagram of a conventional CNN model structure.

3.2. Improvement Measures for Network Architecture

In the early stages of CNN development, scholars generally believed that increasing the
width and depth of the network could enhance the model’s fitting ability. Therefore, when
designing models, they aimed to improve the performance by continuously expanding the
width and depth of the network. However, as the complexity of models increased, several
common issues in deep learning began to emerge, such as overfitting, gradient explosion or
vanishing problems, and network degradation [30]. To address these issues, improvement
measures such as residual network structures, multi-scale network structures, and attention
mechanisms have gained increasing attention in the design of deep learning models.

3.2.1. Residual Neural Network

Residual neural networks (Resnets) are mainly used to solve issues such as gradient
vanishing or explosion and network degradation during the training process of deep
learning models [28]. Theoretically, due to the convolution operation, as the number of
network layers increases, the feature information extracted by the model is progressively
compressed layer by layer. If the network depth becomes too large, the extracted features
will be overly compressed, which will affect the final recognition accuracy, leading to the
network degradation problem [24]. In theory, if the newly added layers simply repeat the
features from the previous layer without learning new features (called identity mapping),
the model’s performance will neither improve nor decline. Inspired by this, He et al.
introduced identity mapping between branches of different depths in the network, ensuring
that the subsequent layers contain more enriched feature information than the previous
ones, thereby addressing the degradation issue caused by an increasing network depth [31].

For a residual network structure, let the input be x, and after passing through the
residual branch, the learned feature representation is F(x). By directly connecting x and
F(x) through identity mapping and integrating them, y represents the total output of the
residual network structure. This process can be expressed as:

y=x+F(x) (21)

A schematic diagram of the residual network structure module is shown in Figure 4.
This module consists of ReLU activation layers, batch normalization layers, dilated convo-
lution layers, and dropout layers. In a standard residual network structure, the input x is
directly added to the features extracted by the residual branch, F(x), as shown in Figure 4a.
However, if there is a dimensional inconsistency between the two, a 1 x 1 convolution is
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required in the residual branch to match their dimensions, followed by feature addition,
as shown in Figure 4b. If the feature information after the residual branch is not zero, the
model’s performance can be enhanced by adding more layers. Conversely, if the feature
information after the residual branch is zero, the model’s performance will neither improve
nor degrade. Therefore, increasing the network depth through residual structures can
avoid the network degradation problem.

§0=0, ... 5)

Residual learning block  y,_; v Residual learning block (%, d)
(k=3, d=1) ® : :

—— Convolution kernel

___ Identity Map
(or 1x1 Convolution)

FED=ED | 50Dy |

(a) (b)

Figure 4. (a) An example of a residual neural network. The black line represents the convolutional
kernel in the Resnet, and the green line represents the identity mapping in the Resnet. (b) Residual
neural network. When the input and output of the Resnet have different dimensions, a 1 x 1
convolution is added.

3.2.2. Multi-Scale Kernel Network

The core of the multi-scale kernel network is the Inception module. Before its introduc-
tion, most CNN models could only enhance their performance by increasing the number of
convolution kernels or the depth of convolutional layers. However, this not only leads to a
significant increase in the computational burden but may also cause overfitting or even
network degradation [32]. To address this issue, the Inception module was proposed, with
its structure shown in Figure 5. As illustrated, when data flow into the Inception module,
convolution operations are performed simultaneously in multiple convolution kernels of
various sizes in parallel branches, extracting features at different scales from the input
data [33]. These features are then adjusted to a consistent dimension for concatenation
and integration. Thanks to this characteristic, the network structure enhances the model’s
perceptive ability while also using 1 x 1 convolution kernels to reduce the number model’s
parameters and overall computational burden.

There are a total of four parallel branches in the Inception module. The orange boxes
represent the dilated CNN modules, with the convolution kernel sizes from right to left
being1 x 5,d=5;1 x 3,d=3;and 1 x 3,d = 1. The other boxes represent conventional
CNN modules, with convolution kernel sizes of 1 X 5,1 x 3, and 1 X 1, respectively.
Since the features extracted by the dilated CNN are discontinuous, the introduction of
conventional CNNs in each branch can supplement the types of extracted features. After
the input data pass through convolution kernels of different sizes and types, features at
various scales can be extracted. Let X represent the input information to this module, and
then the expressions of the feature vectors extracted at different scales by the three branches
are as follows:

X1 =X*Cyx1*%Dfy
XZZX*Clxl*C1><3*Df:3 (22)
X3 = X% C1><1 * C1X5 * Df:5
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Here, X1, X5, and X3 represent the feature vectors extracted by different branches, the
symbol * denotes the convolution operation, C; 1, C1x3, and C; 5 represent conventional
convolutions, and Df-1, D=3, and Dy_s5 represent dilated convolutions.

In this parallel branch structure, features at different scales are fused through stacking,
so the feature vector output by this module can be expressed as:

Y = {X+ X1, X+ X1 + Xp, X + X1 + X2 4+ X3} (23)

Here, the symbol + represents the element-wise addition of corresponding elements in the
feature vectors, and the symbol - represents the concatenation operation of feature vectors
from different branches.

® Element-wise addition

(® Channel splicing
1

Conv
Ix1
Conv
1x5
Conv
1x5

Figure 5. Schematic diagram of a multi-scale network structure.

From the structure of the Inception module, it can be seen that the residual network can
serve as a branch of the multi-scale parallel structure connected to this module. Therefore,
after the input information passes through this module, the output feature vector not only
contains features extracted by dilated convolutions with different kernel sizes and dilation
factors but also includes features extracted by conventional convolutions with different
kernel sizes. This gives the model a richer ability to represent multi-scale features.

3.2.3. The Attention Mechanism

Recent research has shown that in addition to network structure parameters and
training parameters, another factor affecting the performance of deep learning models,
the attention mechanism, has also been receiving increasing attention [34]. The essence of
the attention mechanism is to guide the model toward the task objective by adjusting the
weights, thereby filtering out information irrelevant to the task and focusing the model’s
“attention” on the feature information that is more useful for achieving the task objective.

Commonly used attention mechanisms in CNN models mainly include channel atten-
tion, spatial attention, and mixed attention. In this paper, the channel attention mechanism
is adopted to enhance the performance of the ITSC fault diagnosis model. By adjusting the
weights of the input features from different channels, the model’s attention is redistributed,
thereby adjusting the contribution of different feature channels to the model and improving
its recognition accuracy.

Figure 6 shows a schematic diagram of a typical network structure for the channel
attention mechanism. This network structure consists of three main steps: squeezing,
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excitation, and scaling. The squeezing and excitation steps are the core parts of the module,
which is why this module is called SENet (Squeeze and Excitation Net) [35]. During model
training, SENet continuously adjusts the weight distribution of different feature channels
through its internal squeeze and excitation modules. By increasing the weights of important
feature channels, SENet highlights their contribution and suppresses the contribution of
irrelevant and redundant feature channels.

Fo ()
F,¢ I —— 0 .
X U / Ix1xC Ix1xC \ X
a— 7 M

F, Fie's)
B H’ _— H
w’ w

C’ C C

H

w

Figure 6. Schematic diagram of the channel attention mechanism.

In the channel attention mechanism, the squeezing operation is performed first. This
involves compressing the feature information of the channels to adjust the weight relation-
ships between channels. In this process, the input feature information with dimensions
W x H x Cis converted into 1 x 1 x C features through global average pooling, trans-
forming the entire spatial feature of all channels into C global features. This process can be
expressed as:

1 EE
ZC - qu(uc) - mzl Euc(l,]> (24:)
i=1j=

Here, Z. represents the feature output by the squeezing operation, Fs; represents the
squeezing operation, and u, represents the input features. After obtaining global features
through the squeezing operation, the next step is excitation to capture the relationships
between different channels. In the excitation operation, the compressed global feature
information is delivered to a fully connected layer, with the dimension of the fully connected
layer being C <+ r x C, where r is the scaling factor of a channel, being mainly used to reduce
the number of channels. As a result, the parameters and computational complexity of the
entire module are correspondingly reduced. The output information of this fully connected
layer is passed through a ReLU activation layer and then into a second fully connected
layer, where the number of feature channels reduced in the previous fully connected layer
is restored in this layer. Throughout this process, the two fully connected layers mainly
function to organize the feature information obtained using different feature channels, and
the Sigmoid activation layer maps the input feature information of each channel into the
range of (0, 1), obtaining the weights corresponding to each channel, thus completing the
weight adjustment of the channel attention. This process can be expressed as:

s = Fox(ze, W;) = 6(Woo (Wrz¢)) (25)

where F,, represents the excitation operation, o represents the ReLU activation function,
W1 and W, represent the first and second fully connected layers, respectively, J represents
the Sigmoid activation function, and s represents the weights of each channel.

Once the excitation operation is completed and the weights corresponding to each
channel are obtained, the scaling operation is performed on the features of each channel.
The features within the channel are multiplied element wise by the corresponding channel
weights obtained in the previous excitation operation, thereby completing the recalibration
of the original features in the channel dimension and achieving the readjustment of attention
across all channel features. The entire scaling process can be expressed as:

;C = Fscale(uwsc) =S¢ Uc (26)
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where x. represents the features after channel attention adjustment, and Fy,, represents
the scaling operation.

3.3. Bayesian Optimization Algorithm

The CNN-based ITSC fault diagnosis model has a flexible structure and numerous
hyperparameters. The impact of varying these hyperparameters on the model’s conver-
gence speed and validation accuracy is difficult to predict, which increases the complexity
of model design and parameter tuning. To achieve a high-performance diagnosis model,
it is necessary to optimize the combination of hyperparameters. Common optimization
algorithms include grid search, random search, and Bayesian optimization. Grid search
and random search are exhaustive methods that not only require significant computational
resources but also can waste resources on ineffective hyperparameter combinations, espe-
cially when computational resources are limited. In contrast, Bayesian optimization is an
efficient global optimization algorithm, named due to the use of the well-known Bayes’
theorem in its optimization framework [36]. It can adjust the optimization strategy based
on prior knowledge of existing data, making it more efficient. Therefore, this study uses
Bayesian optimization to fine-tune the hyperparameters of the inter-turn short-circuit fault
diagnosis model. The expression of Bayes’ theorem is shown in Equation (27). The way
Bayesian optimization is applied to the hyperparameter optimization of the ITSC fault
diagnosis model is achieved by approximating the posterior distribution of the objective
function based on Bayes’ theorem. By constructing a mapping relationship between the
observed values in the set and the maximum value of the objective function, it searches for
the hyperparameter combination that maximizes the objective function.

p(f | Diy) = ’W @7)

Here, f stands for the unknown objective function, and in the hyperparameter optimization
of the ITSC fault diagnosis model, it refers to the performance metric of the model. Dy
represents the set of observed points, where the number of observed points in the set is t.
p(f 1 D) and p(f) denote the posterior and prior probability distributions of f, respectively.
p(D | f) represents the likelihood distribution of the observed points in the set, and p(D)
represents the marginal likelihood distribution of f.

The core of the Bayesian optimization algorithm mainly consists of two parts: the
acquisition function and the surrogate model [37]. The surrogate model aims to model the
distribution of the unknown objective function using a prior model, thereby finding the
optimal parameter combination within the given search space. The acquisition function
selects the next observation point to evaluate based on the results obtained from the
surrogate model. The framework of the entire Bayesian optimization algorithm is shown in
Algorithm 1.

Algorithm 1. Bayesian optimization algorithm framework process.

Input: Surrogate model £, acquisition function «, and two values, f and k.
Output: The optimal combination in the hyperparameter vector X.
1: Initialize Dy;
2:fori=1,2,...,kdo / /Iterative search;
3:  Update the initial surrogate model Surg;
4:  Maximize the acquisition function to select a new evaluation point:
Xt41 = arg maxyeyx a(x | Surg, D1y);
5. Evaluate the sample point y¢,1 = f(x¢41) + €1
6:  Update the dataset D;.1 = Dy U {x¢41, yt+1}, and update the surrogate model;
7: end for.
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First, it is necessary to choose the type of surrogate model and acquisition function,
determine the maximum number of iterations k for the entire optimization process, and
generate t initial sample points as the initialization samples for the Bayesian optimization
algorithm. Then, the iterative search process of Bayesian optimization begins. The surrogate
model is updated based on the existing sample set D;, and the potential point x;,; of the
next optimal value is calculated based on the optimized acquisition function. The objective
function is evaluated at the sample point to obtain new observations, and the surrogate
model is updated based on the new observations. This iterative process is repeated until
the maximum number of iterations k is reached, at which point the optimal hyperparameter
combination is output, completing the entire Bayesian optimization process.

3.4. Bayesian Optimization-Based Improvement Algorithm for CNN Models

The performance of the deep learning models used for fault diagnosis is greatly
influenced by the model architecture hyperparameters and training hyperparameters. The
process of building and training the model involves tuning different combinations of
hyperparameters. Selecting the right combination of hyperparameters for model building
and training can enhance its performance and improve the accuracy of fault diagnosis
identification. However, there are numerous types and quantities of hyperparameters in
the model. The architecture hyperparameters of the model include the depth of the CNN
mode, the number of convolutional kernels in each layer, the size of the convolutional
kernels, and the dropout probability for each dropout layer, among others. Additionally,
the type of different layers and the connection methods between different layers will also
have a significant impact on the fault diagnosis model. The training hyperparameters
of the model include key factors such as the initial learning rate, the decay strategy of
learning rate and decay factor, the type of optimizer used, the L2 regularization coefficient,
and the size of the mini-batch, among others. In deep learning models, due to the large
search space, numerous parameters, and the difficulty in representing the connections
between layers, architecture hyperparameters are typically set based on experience and
are rarely optimized using optimization algorithms, which will increase the uncertainty
of the model. In contrast, training hyperparameters are typically determined based on
experience to define the optimization range and then optimized using hyperparameter
optimization methods.

In this study, to improve the efficiency of hyperparameter tuning and enhance the
model’s performance, Bayesian optimization is utilized to optimize the architecture hyper-
parameters and training hyperparameters of the model. To facilitate the optimization of
architecture hyperparameters, the model’s feature extraction layers are divided into a three-
stage architecture based on the characteristics of the features extracted by convolutional
networks. The number of convolutional blocks within each structure is an adjustable pa-
rameter, and each convolutional block employs the same number of convolutional kernels,
which is also an optimizable parameter. The number of layers within each convolutional
block is fixed. The optimization range for each architecture hyperparameter is determined
by the experience, the characteristics of the model, and the available computer hardware
resources. The maximum number of layers for the model is set as d and the maximum
allowed width for each layer as w. The maximum number of layers for each stage of the
three-stage structure is denoted as dy, d», and d3, with the maximum allowed width for
each structure also being w. The number of combinations for training hyperparameter
optimization is #n. The comparison of computational complexity between the two archi-
tectures is shown in Figure 7. It can be observed that the number of hyperparameters has
been reduced from (d + 1) dimensions to six dimensions, comparing the parameter amount
of a conventional model with the three-stage structure with that of a conventional model
structure, which makes the automated hyperparameter optimization possible for the model.
In addition, the three-stage structure ensures that the model possesses sufficient flexibility
and the ability to represent fault features.
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Figure 7. Comparison of the complexity of hyperparameters to be optimized under two architectures.

To achieve time efficiency while ensuring model performance, the previously men-
tioned Bayesian optimization algorithm with global optimization capabilities is used for
automated hyperparameter tuning. The structural diagram of tuning the model’s hyperpa-
rameters using the Bayesian optimization algorithm is shown in Figure 8, which is the core
part of the Bayesian optimization-based improvement algorithm for CNN models. From
the figure, it can be seen that the whole process is divided into two parts: one is the Bayesian
optimization part (indicated by the blue box) and the other is the training part of the ITSC
fault diagnosis model (indicated by the red box). The entire Bayesian optimization process
involves the iterative exploration of different hyperparameter combinations until the set
stopping condition is met. At that point, the optimization process concludes, selecting the
optimal combination of hyperparameters, which corresponds to the best model for ITSC
fault diagnosis under the current conditions.

Fault

Pc-t  P: Phase of A, B,or C
¢: Coil numbering
t: Turn numbering

Figure 8. Schematic diagram of hyperparameter tuning for fault diagnosis models based on Bayesian
optimization algorithms.

The Bayesian optimization section primarily focuses on two aspects: the initializa-
tion of hyperparameter combinations and the updating of model parameters based on
the training results feedback from the ITSC fault diagnosis model. The hyperparameter
combinations that need to be optimized include architecture hyperparameters and training
hyperparameters. Architecture hyperparameters include the depth of convolution blocks
in each stage (d1, dy, and d3), the width of convolution blocks in each stage (wy, wy, and ws),
and the dropout layer probability (P). Training hyperparameters include the initial learning
rate (Lj,;), regularization coefficient (L,r), and gradient optimization coefficient (G1).
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The tasks required for training the ITSC fault diagnosis model include constructing

a CNN model according to the architecture hyperparameters provided by Bayesian opti-
mization and training the model based on the given training hyperparameters and dataset.
Once the model training is completed, the training results are fed back into the Bayesian
optimization algorithm, which then uses the newly obtained hyperparameter combinations
to reconstruct and retrain the model. This process of Bayesian optimization and model
training continues to iterate until the set termination conditions are met.

The flowchart of the Bayesian optimization-based improvement algorithm for CNN

models is shown in Figure 9. The entire process can be divided into five steps:

@

@)

®)

@)

©)

Data preparation: Set different combinations of fault resistance and shorted ratios to
simulate varying severities of faults. Conduct different operating conditions for each
fault severity and collect the three-phase currents during the experiment.

Building of dataset: Perform preprocessing operations such as filtering, downsam-
pling, normalization, segmentation, and label classification. Then, divide all data seg-
ments into two non-overlapping datasets, namely the training set and the testing set.
Initialization: Determine the structure of the CNN blocks, the combinations of hyper-
parameters to be optimized, and the search ranges for each parameter. Use Bayesian
optimization to select the initialization parameters for the model and construct the net-
work structure of the fault diagnosis model according to the specified parameter set.
Model training and optimization: Train the fault diagnosis model based on the given
training hyperparameters, and then test the model’s performance using the testing
dataset. Record the results obtained along with the corresponding hyperparameter
combinations and feed the testing results back into the Bayesian optimization algo-
rithm to update the model’s hyperparameters. Repeat the process until the stopping
criteria are triggered.

Output result: When the maximum optimization iterations are met, select the best
testing accuracy of the ITSC fault diagnosis model and its relevant hyperparameter
combination as the results and output them.
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Figure 9. The flowchart of the Bayesian optimization-based improvement algorithm for CNN models.
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4. Experimental Setup and Data Description

In order to verify the validity of the proposed Bayesian optimization-based improve-
ment algorithm for the ITSC fault diagnosis model. Experiments are carried out on a PMSM.
The setup consists of a simulated fault motor and its controller, an auxiliary test motor
and its controller, data acquisition equipment, etc., as shown in Figure 10. The fault motor
is an 8-pole, 36-slot PMSM, with the windings configured in a star connection, featuring
108 turns of wire per phase. The specific parameters of the faulty motor are shown in
Table 1. The fault motor simulates different severities of ITSC faults by combining different
fault resistances and shorted ratios. To prevent damage to the fault resistor, a cooling device
is required for heat dissipation during the experiment. Temperature monitoring of the
entire setup is conducted during the experiment to prevent overheating and damage. The
fault resistor and its cooling device are shown in Figure 10c, the fault motor and its shorted
winding point terminals are shown in Figure 10b, and the temperature measurement device
is shown in Figure 10d.

Torque
Data recorder condne

B

—
LabVIWE
data acquisition

> )

DC power Current
supply ) NELCRIO-9068 sensors

Figure 10. Composition diagram of equipment for ITSC simulation test bench. (a) Test bench and
its testing equipment. (b) The faulty motor. (c) The fault resistance and its heat dissipation device.
(d) The temperature measurement device.

Table 1. Specifications of the tested PMSM.

Parameters Values Parameters Values
Rated power 23 kW Line-line resistance 1.10
Rated torque 15 Nm Line-line inductance 4.45 mH
Rated current 9.5 A Number of turns per phase 108
Rated speed 1500 rpm Number of coils per phase 12

Pole pairs 4 Voltage constant 114 V /1000 r/min

A fault motor simulation test was conducted using a test bench to replicate 17 different
fault states of a PMSM exhibiting ITSC faults. This includes one healthy state and sixteen
distinct fault conditions. The severity of the ITSC faults is determined by combinations
of shorted degrees and fault resistances. The shorted degrees are defined as 5 turns,
9 turns, 11 turns, and 15 turns, totaling four categories. The fault resistances are set
at50,10,05Q, and 0.1 ), also totaling four categories, resulting in 16 fault levels.
Considering the healthy state of the motor as having a fault level of 0, the experimental data
encompass a total of 17 fault severities. To simulate the motor’s operating conditions during
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agricultural machinery acceleration, deceleration, and constant speed driving, 8 constant
speed scenarios and 2 variable speed scenarios were established during the bench test, as
detailed in Table 2.

Table 2. Operating conditions of the tested PMSM.

Constant Dynamic
Case
8 2
Speed (rpm) 150 450 900 1350 850~1550~850
Torque (Nm) 3.0/7.5 3.0/7.5 3.0/7.5 3.0/7.5 3.0/7.5

It can be seen from Table 2 that there are 10 different operating conditions in the
test process, each generated by combinations of five speeds and two torques. The two
load torques are both constant, while among the five speeds, four are constant and one
represents an acceleration and deceleration condition. The dynamic speed variation ranges
from 850 rpm to 1550 rpm and then back to 850 rpm, as shown in Figure 11. For each distinct
fault condition of the motor, ITSC fault tests are conducted under the aforementioned 10
conditions. The Yokogawa DL850EA oscilloscope is used to record the three-phase current,
with a sampling frequency of 1 MHz. The data sampling duration for the fault motor
under each operating condition is 10 s. The entire data collection process employs a field-
oriented control (FOC) strategy using the VFD037C23A inverter, operating at the switching
frequency of 15 kHz, with the auxiliary test motor using speed closed-loop control and the
tested motor using current closed-loop control.
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Figure 11. Schematic diagram of speed variation under variable operating conditions.

During the experiment, due to the absence of hardware filtering, a relatively high
sampling frequency of 1 MHz was chosen to avoid signal aliasing caused by interference
and other factors during data acquisition. If the raw data were directly used for dataset
construction, it would impose a significant challenge on computer hardware resources
and severely impact the training speed. The goal of this study is to use deep learning
models to extract low-frequency features from the acquired experimental data that are
useful for classifying the severity of ITSC faults. Therefore, during data preprocessing, the
acquired data are first filtered and then down-sampled to retain low-frequency features
while reducing the memory usage of the dataset. A zero-phase low-pass filter is applied
to the data, and the down-sampled sampling frequency is set to 15 kHz, matching the
switching frequency of the controller. To facilitate the comparison of data under different
fault severities and operating conditions and to accelerate the convergence of the deep
learning model, the acquired data are normalized to the range of [—1, 1]. To aid in training
the deep learning model, the down-sampled three-phase current data are divided into
equal-length data slices, each containing sufficient feature information. The length of each
data slice is set to 3000 sampling points, which ensures that, at the lowest operating speed,
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the three-phase current signal collected over one cycle of the motor’s rotation is captured
in each slice.

The labels of the data slices correspond to their fault severity, as shown in Table 3. In
the labels, “HL” denotes the data collected under healthy motor conditions, while “A*R*”
stands for the data collected under different combinations of fault resistors and shorted
ratios. “A2”, “A4”, “A5”, and “A6” represent shorted turns of 5,9, 11, and 15, respectively.
“R5”, “R1”, “R0.5”, and “R0.1” indicate fault resistances of 5 (), 1 03, 0.5 ), and 0.1 ),
respectively. The fault severities in Table 3 are arranged in ascending order based on the
severity calculated using Equation (18). The sampled data were organized into datasets
according to different fault severities, ensuring that the amount of data for each condition
under a specific fault severity was equal and the quantities of data corresponding to each
fault severity were also equal. For each fault level, the number of data samples is set at
1200, with 360 samples randomly selected for testing, leaving 840 samples for training,
resulting in a ratio of 3:7. Ultimately, all training samples form the training set, while all
testing samples comprise the validation set.

Table 3. Dataset description.

Fault Setting Sample Size

Label Fault Resistance () Shorted Turn Ratio (%) Training Testing Total
HL Inf 0 840 360 1200
A2R5 5 4.6 840 360 1200
A4R5 5 8.3 840 360 1200
A5R5 5 10.2 840 360 1200
A6R5 5 13.8 840 360 1200
A2R1 1 4.6 840 360 1200
A4R1 1 8.3 840 360 1200
A2R0.5 0.5 4.6 840 360 1200
A5R1 1 10.2 840 360 1200
A6R1 1 13.8 840 360 1200
A4R0.5 0.5 8.3 840 360 1200
A5R0.5 0.5 10.2 840 360 1200
A6R0.5 0.5 13.8 840 360 1200
A2R0.1 0.1 4.6 840 360 1200
A4R0.1 0.1 8.3 840 360 1200
A5R0.1 0.1 10.2 840 360 1200
A6R0.1 0.1 13.8 840 360 1200

The comparison of the data before and after preprocessing is shown in Figure 12. In
each figure, the left side displays the original three-phase current signal, while the right
side shows the three-phase current after data preprocessing. Figure 12a illustrates the
three-phase current under healthy conditions at a speed of 150 rpm and a torque of 3.0 Nm.
Figure 12b depicts the three-phase current of a faulty motor with the fault label “A5R0.1”,
collected under dynamic speed conditions at a torque of 3.0 Nm.
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(b) Original three-phase current Preprocessed three-phase current
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Figure 12. Comparison of three-phase current signals before and after data preprocessing. The left
side of the figure shows the original signal, while the right side shows the preprocessed signal. (a) The
three-phase current signals are collected under constant operating conditions. (b) The three-phase
current signals are collected under dynamic operating conditions.

5. Results and Comparisons

After completing the data preprocessing and dataset construction, the proposed
Bayesian optimization-based ITSC fault diagnosis model is used to analyze the three-
phase current signals. The whole procedure is carried out offline. The hyperparameter
combinations to be optimized and their search space are shown in Table 4.

Table 4. Hyperparameters to be optimized.

Hyperparameters Search Intervals Data Types Transform Best Result

Linit [1x10721] real log 1.6227 x 1074
Gy [0.51] real log 0.8747
Lar [1x107101 x1072] real log 7.4777 x 10~8
dq [2 8] integer none 5

dy [4 16] integer none 9

ds [2 8] integer none 6

w1 [2 60] integer none 18

Wy [40 160] integer none 66

w3 [2 60] integer none 38

P [1x10751] real log 5.1585 x 10~*

Among them, L;,;; represents the initial learning rate of the entire model, G1 repre-
sents the gradient optimization coefficient of the Adam optimizer, Lor represents the L2
regularization coefficient, P represents the probability of dropout, and the data type for the
above hyperparameters is all real numbers. The depths of the three convolutional layers
are denoted by dy, dy, and d3, and the numbers of convolutional kernels for each layer are
represented by wq, wy, and w3. Both the number of convolutional kernels and the depth of
the convolutional layers are integer types. The size of the convolutional kernels is set to a
fixed value of 1 x 3, the dilation rate is set to 2, the learning rate decay step size is set to
20, and the decay factor is set to 0.1. “Transform” indicates whether the hyperparameters
are searched on a logarithmic scale during the search process in the set space. Based
on experience, the maximum number of iterations for Bayesian optimization is set to 60,
with 40 training epochs per iteration. The values of the hyperparameters for the optimal
combination obtained are shown in Table 4, and the corresponding schematic diagram of
the optimal model architecture is presented in Figure 13.

To verify the advantages of the proposed improved CNN architecture and to compare
the performance improvements brought by different combinations of enhancements, several
models are constructed: a conventional CNN model without any architecture enhancement
(CNN); a conventional CNN model with the residual network structure (Res); a CNN
model that shares both residual and multi-scale networks (MK-Res); and a CNN model that
shares both residual and attention mechanisms (SE-Res). The architecture hyperparameters
of the feature layers for these four models are set consistently with the proposed improved
CNN model. The training hyperparameters for the four models were obtained through
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hyperparameter tuning using Bayesian optimization. The error loss and validation accuracy
of the five models throughout the training process were recorded as they varied with the
number of training epochs, and the results are compared in Figure 14.
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Figure 14. Comparison diagram of ITSC fault diagnosis results of the five models. (a) Overall testing
accuracy trends of the five algorithms. (b) The trend of loss function changes in each algorithm.

Figure 14a and Table 5 compare the test accuracy trends of the five models as training
epochs progress. It can be seen that, compared to the CNN model, all four improved
models exhibit varying extends of enhancement in the final test accuracy. The final test
accuracy of the CNN model is 96.16%. The final test accuracy of the Res model is 97.35%,
which represents an improvement of 1.19% over the CNN model. The MK-Res model
achieves a final test accuracy of 98.06%, improving by 1.90% compared to the CNN model.
The SE-Res model has a final test accuracy of 97.47%, an increase of 1.31% over the CNN
model. The proposed model reaches a final validation accuracy of 98.25%, marking an
improvement of 2.09% compared to the CNN model.

Table 5. Result comparison of different methods.

Method

Test Accuracy Loss
CNN 96.16% 0.1333
Res 97.35% 0.1125
MK-Res 98.06% 0.0854
SE-Res 97.47% 0.0847
Proposed 98.25% 0.0799

It is equally important to note that the feature extraction layers of all five models are
consistent, with the differences between the models lying in the use of various improved
architectures within the feature extraction layers. From the final results, it is evident that
the residual network structure, multi-scale network structure, and channel attention mecha-
nism all contribute to varying degrees of performance improvement, with the combination
of all three achieving the most significant enhancement. Based on the principles of these
improved architectures, the channel attention mechanism is able to discard irrelevant
parameters during training, thus not only improving the model’s performance but also
accelerating the overall convergence speed. The residual network structure helps the
model train more effectively and improves recognition accuracy. The multi-scale network
architecture enriches the scale of the extracted fault features, enhancing the diversity of the
fault feature space, which, in turn, boosts the model’s final recognition accuracy. From the
final results, it can be seen that for complex tasks such as ITSC fault severity recognition,
the multi-scale architecture has the greatest impact on the model’s performance, followed
by the channel attention mechanism, with the combined use of all three yielding the best
results. Figure 14b and Table 5 show the comparison of the loss trends of the five models as
training epochs progress. From the figure, it is evident that the final error losses of the four
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improved models are all better than those of the CNN model. Among them, the proposed
model has the smallest error loss and exhibits the best generalization capability, followed
by the MK-Res and SE-Res models. The Res model has the highest error loss among the
four improved models.

To accurately assess the performance of the proposed model in different severity
labels, three metrics are introduced for comprehensive evaluation: recall (r), precision (p),
and F1 score. In large datasets, there exists a tradeoff between recall and precision. The
F1 score takes into account both recall and precision, thereby providing a more holistic
representation of the algorithm’s performance. The specific definitions of these evaluation
metrics are presented in Equation (28):

_ _TP
pP= TELFP
L5 )
F1= p+r

To comprehensively compare the performance of the proposed model with the four
other models, the confusion matrices of the five models on the test dataset are compared.
The confusion matrices for the five models are shown in Figures 15-19. The leftmost
labels of the confusion matrix represent the actual severity of ITSC faults contained in
the test dataset, categorized into 17 types, arranged in ascending order according to the
fault severity calculated using Equation (18). According to the definitions of precision and
recall, the precision for each label is derived from the ratio of the number of samples in the
diagonal to the total number of samples in that column, as shown in the row vector at the
bottom of the confusion matrix. The recall for each label is determined by the ratio of the
number of samples in the diagonal to the total number of samples in that row, as indicated
by the column vector on the right side of the confusion matrix. The classification accuracy
of the models is calculated as the ratio of the number of correctly classified samples on the
diagonal to the total number of samples in the test dataset.
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Figure 15. The confusion matrix of the CNN model.

From the figures, it can be observed that, compared to the confusion matrix of the
CNN model, the four improved ITSC fault diagnosis models show a significant reduction
in the number of misclassified samples. All four improved models exhibit varying degrees
of improvement in terms of “false alarms” and “missed detections”, although there remains
room for further enhancement.

To further compare the performance of the five models across different fault severity
labels, the F1 scores and overall test accuracy for each model based on the precision and
recall from the confusion matrices in the test dataset are calculated. The comparison results
are shown in Table 6. From the table, it can be seen that while the four improved ITSC
fault diagnosis models show varying degrees of improvement in the overall test accuracy



Agriculture 2024, 14, 2214

25 of 30

compared to the CNN model, the F1 scores for different fault severity labels reveal mixed
performances among the five models. The four improved models exhibit clear advantages
in labels associated with lighter fault degrees, showing significant increases in F1 scores.
Among the 17 different fault classifications, the proposed models achieved the highest
scores in 12 of the fault categories, demonstrating the best performance.
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Figure 16. The confusion matrix of the Res model.
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Figure 17. The confusion matrix of the MK-Res model.
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Figure 18. The confusion matrix of the SE-Res model.
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Figure 19. The confusion matrix of the proposed model.
Table 6. F1 score comparison of five methods under different fault labels.
Label CNN (%) Res (%) MK-Res (%) SE-Res (%)  Proposed (%)
Acc 96.16 97.35 98.06 97.47 98.25
HL 83.05 86.81 90.94 91.18 91.38
A2R5 96.16 97.95 97.82 97.54 97.69
A4R5 95.38 97.14 98.35 96.10 97.67
ABR5 98.07 98.61 99.31 98.76 99.31
A6R5 95.74 95.45 98.06 96.68 97.22
A2R1 95.00 97.37 97.67 97.77 99.31
A4R1 95.69 97.19 97.21 97.22 98.61
A2R0.5 97.66 98.06 98.89 97.48 98.75
ABR1 96.41 98.47 98.32 97.63 98.74
A6R1 97.37 98.89 99.31 99.30 99.44
A4R0.5 94.68 96.73 96.68 96.22 97.91
ABRO0.5 96.45 97.78 98.76 97.81 99.17
A6R0.5 97.90 98.20 99.45 98.60 99.58
A2R0.1 97.37 98.18 98.33 97.94 98.04
A4RO0.1 98.07 99.30 98.76 99.03 99.44
ABRO.1 99.03 98.62 99.03 98.34 98.62
A6R0.1 100 99.58 98.06 99.03 99.44

To reduce the impact of randomness, the diagnostic results from five repeated ex-
periments were averaged, and the standard deviation of the results for each experiment
was calculated. Additionally, the time taken by the model to recognize the test set in each
experiment was recorded, and the average recognition time per data slice was computed,
as shown in Table 7. From Table 7, it can be seen that the proposed model not only achieves
the highest average accuracy of 98.20% but also has the smallest standard deviation of
0.105%, indicating both good accuracy and stability. The complexity of the deep learning
model is represented by the total number of adjustable parameters, including weights and
biases, as shown in Table 7. It is evident from the table that each improvement measure
added to the model increases its complexity. The proposed model, incorporating the most
improvements, has the highest complexity. The average recognition time of the model
reflects its data processing speed. From the table, it can be seen that the proposed model
has the longest average recognition time, reaching 1.14 ms, but this is still much smaller
than the 0.2 s sampling time per data slice, meaning the model can meet the required time
for data processing.
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Table 7. Stability comparison of different methods and the average computation time for each slice of
test data.

Average Accuracy Average
Method (%) Computation Time Model Complexity
(ms)

CNN 96.19 + 0.133 0.946 + 0.0195 5,552,359
Res 97.19 + 0.137 0.652 £+ 0.0039 5,952,918
MK-Res 9791 £0.112 0.852 + 0.0693 24,510,130
SE-Res 97.59 + 0.147 0.689 + 0.0431 5,954,419
Proposed 98.20 £ 0.105 1.140 + 0.0052 24,689,824

Through a comprehensive analysis of the five ITSC fault diagnosis models, it is evident
that the proposed model exhibits the best performance in terms of the final test accuracy
and stability. In the F1 scores across 17 different fault severity labels, the proposed model
demonstrates overall superior performance, making it the best-performing model among
the five. To validate the feature learning capability of the proposed model, the t-distribution
stochastic neighbor-embedding algorithm (T-SNE) was used to visualize the features from
the final output layer of the ITSC fault diagnosis model, and the results were compared
with the other four models. The two-dimensional visualization results are shown in
Figure 20. From the figure, it can be observed that the feature map contains 17 colors,
each corresponding to a specific fault severity label, with each point representing a data
sample. Figure 20a shows the feature distribution of the input layers of each model. It is
apparent that the feature distribution of the input data is chaotic, with significant overlap
among samples of different colors, making it difficult to discern the fault severity of the
corresponding samples in the dataset based solely on the input data. Figure 20b—f display
the feature distribution maps of the classification layers for the CNN model, Res model,
MK-Res model, SE-Res model, and the proposed model, respectively. From these figures, it
can be seen that after feature extraction by the model, the samples within the same ITSC
fault severity labels exhibit good intra-class clustering characteristics. The proposed ITSC
fault diagnosis model has the fewest misclassified sample points compared to the other
four models. Additionally, the boundaries between different ITSC fault labels are clear and
more distant, resulting in better separation characteristics among different categories. Thus,
the proposed model demonstrates superior feature learning and discrimination capabilities.
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Figure 20. Comparison of visualized features extracted by different algorithms. (a) Feature map of
the input data. (b) Feature map of the CNN model. (c) Feature map of the Res model. (d) Feature map
of the MK-Res model. (e) Feature map of the SE-Res model. (f) Feature map of the proposed model.

6. Conclusions

In this research, a novel Bayesian optimization-based improvement algorithm was
proposed for the enhancement of an ITSC fault diagnosis model. The results indicate
that the proposed method is applicable under both dynamic and steady-state operating
conditions. Firstly, a fault model was proposed for the analysis of ITSC faults, and a severity
index was derived for the guiding of ITSC fault severity settings. Secondly, a residual
network, multi-scale network, and attention mechanism were applied to prevent network
functionality degradation, increase the richness of the extracted features, and enhance the
proportion of useful features in the model, ultimately enhancing the network’s performance.
Then, to facilitate the optimization of architecture hyperparameters, the model’s feature
extraction layers were divided into a three-stage architecture based on the characteristics of
the features extracted by convolutional networks. Furthermore, the ITSC fault motor test
was carried out with the fault severity set to 17 different levels. The proposed algorithm
was conducted to analyze the three-phase current signals that were collected in the motor
test. Conventional CNN, Res, MK-Res, and SE-Res models were also employed in the
same dataset for comparison. The results illustrated that the proposed algorithm not only
achieved the best final test accuracy but also provided the best feature extraction capability.

This study aims to improve the accuracy of ITSC fault diagnosis using deep learning
methods. The approach relies on supervised training with a sufficient and balanced
sample size. However, in practical applications, challenges such as an insufficient sample
size, imbalanced sample distribution, or lack of labeled samples often arise. Under these
conditions, the application of the proposed method would be significantly limited. Future
research will focus on addressing these challenges and improving the accuracy of ITSC
fault diagnosis under such adverse conditions.
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