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Abstract

:

To investigate the biomechanical properties of Camellia oleifera branches under two loading speeds within a specific diameter range, three-point bending tests were conducted using a universal material–testing machine. The tests were performed at loading speeds of 10 mm/min and 20 mm/min on branches with diameters ranging from 5 mm to 40 mm. This study aims to provide insights into the design of a manipulator gripper used in a vibrating harvester for Camellia oleifera fruit. Four main varieties of Camellia oleifera were tested to determine their elastic modulus. The nonlinear least squares method, based on the hyperbolic tangent function, was employed to fit the bending load–deflection curves of the branches. This process constructed multi-parameter transcendental equations involving elastic modulus, diameter, and loading speed. Results indicated that the branches of four Camellia oleifera varieties exhibited significant differences in their biomechanical properties, with their modulus of elasticity ranging from 459.01 MPa to 983.33 MPa. This suggests variability in the bending performance among different varieties. For instance, Huaxin branches demonstrated the highest rigidity, while Huashuo branches were softer in general. For the proposed empirical fitting equations, when the fitting parameter k is 168 ± 20 and the parameter c is 3.102 ± 0.421, the bending load–deflection relationship of the branches can be predicted more accurately. This study provides a theoretical basis for enhancing the efficiency of mechanized vibratory picking of Camellia oleifera and optimising the design of the gripper.
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1. Introduction


China is a leading nation in the cultivation of Camellia oleifera, a valuable woody oil crop with significant economic and ecological benefits [1]. It is extensively cultivated in the hilly and mountainous regions of southern China, particularly in Hunan, Jiangxi, and Guangxi, serving as a crucial pillar of the local agricultural economy. Camellia oleifera seed oil, rich in unsaturated fatty acids, is highly sought after in both domestic and international edible oil markets markets [2]. In 2023, China’s Camellia oleifera plantations covered 4.87 million hectares, yielding 0.8 million tons of oil [3]. In comparison, other woody oil crops such as olive (Olea europaea) and walnut (Juglans regia) have achieved significant advancements in mechanisation. According to estimates, global olive oil production in 2024 was approximately 3.27 million metric tons, with mechanised harvesting widely adopted in countries like Spain, Italy, and Greece [4]. Similarly, walnut cultivation in the United States has increasingly embraced mechanised techniques, particularly in California, which produces approximately 99% of the country’s walnuts [5]. These techniques, such as trunk shakers and automated collection systems, have significantly improved harvesting efficiency, reduced labour costs, and enhanced profitability. Despite the large scale of Camellia oleifera production, its mechanised harvesting rate remains below 1%, highlighting a significant gap compared to other woody oil crops [6]. This is primarily due to challenges such as the hilly terrain of southern China, the simultaneous growth of Camellia oleifera flowers and fruits, and the lack of specialized harvesting equipment. During mechanical harvesting, the bending strength and modulus of elasticity of the tree directly impact vibratory harvesting efficiency and probably result in mechanical damage [7]. Developing mechanized harvesting solutions tailored to these unique related characteristics will not only enhance productivity but also align with sustainable agricultural practices by reducing labour dependence and improving resource use efficiency.



Vibratory harvesting is an efficient, mechanized method of gathering forest fruits. It involves applying a force to the trunk or main branches, which transmits vibrations to the hanging fruits, causing them to detach [8]. The biomechanical properties of tree branches, such as bending strength and modulus of elasticity, play a vital role in the efficiency of mechanized harvesting. These properties directly influence how branches respond to external forces during the vibratory harvesting process, potentially affecting fruit detachment rates and minimizing mechanical damage. This method is widely used for harvesting various forest fruits like apples [9], walnuts [10], and olives [11], where studies on the biomechanical properties of these trees provide valuable insights into their response to vibratory forces. For instance, Mammoliti et al. [12] reported that the static elastic modulus of olive tree branches ranges from approximately 10,000 to 12,000 MPa, with bending strength varying by cultivar: “Sinopolese” branches exhibit a bending strength of about 110 MPa, while that of “Ottobratica” branches is measured around 100 MPa. Similarly, Najafian Ashrafi et al. [13] found that the elastic modulus of Iranian walnut branches ranges from 10,300 to 10,500 MPa, with bending strength between 93 and 95 MPa. In contrast, Bu et al. [14] observed that apple tree branches exhibit an axial elastic modulus of 181.69 ± 17.88 MPa, with a bending strength of 337.05 ± 66.52 MPa, as measured by three-point bending tests. These biomechanical characteristics highlight the structural variability between species and cultivars, underscoring the importance of tailored vibration parameters. However, despite its success in other crops, the application of vibratory harvesting to Camellia oleifera remains limited due to insufficient understanding of the tree’s biomechanical characteristics. The effectiveness of vibratory harvesting relies on matching excitation parameters with the dynamic response characteristics of the trees [15,16], but different fruit tree varieties have unique growth patterns and thus exhibit different dynamic responses [17].



In recent years, there has been some advancement in the research of mechanized vibration-type harvesting for Camellia oleifera [18,19,20,21]. However, manual harvesting remains the primary method for collecting Camellia oleifera fruits. Unlike other forest fruit cash crops (e.g., walnut, macadamia, etc.), the growth characteristics of Camellia oleifera, such as the simultaneous growth of flowers and fruits, and the lack of biophysical property data complicate and hinder mechanical harvesting [22]. Most studies have concentrated on optimising vibration parameters, excitation position, and the dynamics model of Camellia oleifera trees to enhance mechanized harvesting efficiency. For instance, Wang et al. [23] developed a mathematical model to predict the dynamic response of Camellia oleifera branches by examining their vibration modes and motion trajectories. Meanwhile, Wu et al. [24] optimised and field tested vibration parameters by studying the energy transfer characteristics within the tree. Furthermore, Wu et al. [25] investigated how the excitation position affects mechanized picking efficiency. They found that positioning the excitation point near the junction of the branches and the main trunk achieves the optimal fruit drop rate. Additionally, Du et al. [26] proposed an optimal canopy vibration method to determine the best combination of frequency and amplitude for harvesting Camellia oleifera fruits. Lastly, Wu et al. [27] analysed the acceleration and strain changes in branches and concluded that a picking vibration frequency of 25–30 Hz and an amplitude of 4–6 mm significantly improves harvesting efficiency. Wang et al. [28] used finite element explicit dynamics simulation and experimental analysis to study the shedding process of Camellia oleifera fruits that a specific combination of vibration frequency and amplitude could effectively simulate and optimise the dynamic process of fruit abscission. Meanwhile, Wei et al. [29] identified the mechanical parameters of fresh Camellia oleifera fruits to understand the shell-breaking mechanism. However, these studies mainly focus on fruit detachment mechanics, canopy vibration techniques, and dynamic models, while neglecting the fundamental biomechanical properties of branches that directly affect the vibratory harvesting process. Specifically, the biomechanical properties and bending resistance of branches with varying diameters and loading speeds remain underexplored. While studies like Wang et al. [23] and Wu et al. [24,25] have provided valuable insights into dynamic responses and energy transfer, they fail to address how branch structural properties, such as modulus of elasticity and bending resistance, influence mechanical harvesting efficiency. Moreover, most existing models emphasize fruit detachment parameters without incorporating branch flexural strength or considering how diameter and loading speed variations affect branch behaviour. This lack of understanding hinders the adaptation of harvesting equipment to the structural properties of Camellia oleifera trees in practical applications. Figure 1 shows the mechanical gripper designed by our team for the Camellia oleifera picking machine to grasp branches, but it will damage the branches during the experiment. The simultaneous growth of flowers and fruits increases the risk of fruit loss and damage to reproductive structures, as current vibratory systems lack the precision to selectively harvest mature fruits. Therefore, conducting an in-depth study of the biomechanical properties of Camellia oleifera branches is crucial. Such a study would not only fill the research gap regarding the effects of branch diameter and loading speed on bending resistance but also provide valuable insights for optimising the design and harvesting efficiency of mechanized branching vibration-type harvesting equipment. Adapting vibratory harvesting methods to Camellia oleifera presents unique challenges due to the tree’s biological and environmental characteristics.



Bending load–deflection curves are commonly used to describe the deformation properties and load distribution of structures like beams during bending tests [30]. Previous studies have highlighted the importance of these curves in understanding material behaviour under bending loads. For example, Yoshihara et al. [31] investigated the bending characteristics of spruce under various loading conditions and confirmed that the initial slope of the curve corresponds to the wood’s elastic modulus. Similarly, Van et al. [32] analysed the failure mechanism of branches under bending stresses, focusing on the impact of transverse stresses and fibre orientation of different tree species. These studies underscore the role of bending tests in characterizing mechanical properties and failure mechanisms, providing a basis for the present investigation. In this study, a three-point bending test was employed on Camellia oleifera branch specimens. The branches were supported at both ends, with the load applied at the midpoint. The resulting deflections followed the mechanical model of a simply supported beam, reflecting the branches’ linear deformation, nonlinear deformation, and fracture characteristics under bending. By integrating the insights from previous studies with experimental data, this study aims to better understand the biomechanical behaviour of Camellia oleifera branches and contribute to the optimisation of mechanical harvesting techniques.



The experimental method was used to systematically investigate the mechanical properties of branches from four Camellia oleifera varieties, considering a specific range of diameters and loading speeds. For each variety, the range of elastic modulus was determined experimentally. Accurate bending load–deflection fitting equations were established, and error analyses were conducted to reveal the mechanical response characteristics of the corresponding Camellia oleifera varieties.




2. Materials and Methods


2.1. Test Materials and Equipment


2.1.1. Test Material


The experimental materials for this study were collected from the Hunan Large-fruited Camellia oleifera Varieties Research Institute in Yangjiaping Village, Changsha City, Hunan Province, China. The samples were selected from the primary Camellia oleifera varieties cultivated in Hunan Province (Huashuo, Huajin, Huaxin, Xianglin). The four tested varieties (Huashuo, Huajin, Huaxin, and Xianglin) were selected because they are the primary cultivars grown in Hunan Province, China, which is the largest Camellia oleifera-producing region in the country. These varieties are widely cultivated due to their high oil yield and adaptability to local environmental conditions, making them representative of the species’ mechanical behaviour and suitable for biomechanical analysis. To ensure sample homogeneity and comparability, straight and knot-free branches with diameters of 5–40 mm were selected and tested immediately after detachment. The environmental conditions during the collection of the branches were recorded to ensure the uniformity of the samples. Specifically, during the sampling period in May 2024, the temperature ranged from approximately 14 °C to 33 °C, and the relative humidity was between 85% and 95%. These consistent environmental conditions helped minimise variability in the biomechanical properties of the branches.




2.1.2. Test Equipment


The following equipment was used: a universal material–testing machine (model: LD23.104, precision: 0.008 mm, brand: Lishi (Shanghai, China) Scientific Instrument Company), digital vernier callipers (model: DL91200, precision: 0.01 mm, brand: Deli group (Ningbo, China)), high-precision electronic scales (model: DL943419, precision: 0.01 g, brand: Deli group (Ningbo, China)), and a measuring cylinder (model: 100 mL, precision: 1 mL, brand: BKMAM Biotechnology (Changde, China)).





2.2. Test Methods


Three-point bending tests were conducted on the Camellia oleifera branches using a universal material–testing machine at loading speeds of 10 mm/min and 20 mm/min. The branch diameter ranges (5–10 mm, 10–20 mm, 20–30 mm, and 30–40 mm) were chosen to represent the typical sizes of branches targeted during the mechanical harvesting of Camellia oleifera. These sizes are commonly encountered in plantations, where branches within one range provide optimal conditions for fruit detachment and harvesting efficiency. For each diameter range and variety, the spanning distance was set to five times the branch diameter, following Li’s experimental method [33], which ensures consistent stress distribution and avoids localized failures during the three-point bending test. This ratio was specifically chosen in this study to align with the mechanical gripper width used in the experimental setup, simulating the gripping action of mechanical harvesters on branches. By maintaining this proportional relationship, the experiment minimises edge effects and ensures that the mechanical properties measured are representative of the branch material itself, rather than influenced by the test setup. The diameter of each branch specimen was measured at its midpoint using digital vernier callipers (precision: 0.01 mm), with three repeated measurements taken to calculate the average diameter. This midpoint was then marked as the loading point for the three-point bending test. For each branch diameter group, a total of 30 replicates were conducted to ensure statistical reliability and minimise variability in the results.




2.3. Test Procedure


Each branch specimen was supported at both ends in a three-point bending fixture on the universal material–testing machine. A bending load was applied at the marked midpoint until the branch fractured (Figure 2), and record the bending load–deflection curves.




2.4. Fitting Method


In this study, the hyperbolic tangent function (tanh) was used to model the bending load–deflection relationship of Camellia oleifera branches. Preliminary analyses included testing polynomial and logarithmic functions, but these models were unable to adequately capture the nonlinear mechanical response of the branches, especially at higher deflections. Polynomial models tended to overfit or produce unrealistic predictions outside the measured range, while logarithmic functions failed to accurately describe the gradual transition between the elastic and plastic deformation stages. In contrast, the hyperbolic tangent function provided a more accurate fit and better alignment with the physical characteristics of the branches.



The hyperbolic tangent function (tanh) is an S-shaped saturation curve that approaches ±1 as the independent variable changes (Figure 3). This nonlinear relationship is prevalent in diverse physical systems and is particularly apt for describing the nonlinear relationship between stress and strain [34].



The trends of the bending load–deflection curves of Camellia oleifera branches in three-point bending tests resemble tanh curves. Initially, the bending load–deflection curve increases rapidly and linearly, then gradually levels off, mirroring the trend of the tanh function. This characteristic has been extensively confirmed in tests on fibre-reinforced concrete and shape memory alloys [35,36].



Empirical equations for the bending load–deflection of branches were established using the tanh function as the basis, as shown in Equation (1). This equation captures the nonlinear effect of the bending load (F) on deflection (x), where x is the product of loading speed (v) and time (t). At low x values, the tanh function grows approximately linearly, while at high x values, it stabilizes at 1, indicating the maximum bending damage force.



To account for variations in the elastic modulus of branches and diameters corresponding to the maximum bending damage force, the nonlinear least squares method was employed to fit the dimensionless coefficients k, a, b, and c in the equation.


  F = k ⋅  E a  ⋅  d b  ⋅ tanh (    c ⋅ x  d   )  



(1)




where F is the bending load (N), E is the modulus of elasticity (Pa), d is the branch diameter (m), and x is the deflection (m).



After determining the fitting parameters (k, a, b, and c), a standard deviation (SD) error analysis was conducted to verify the reliability and accuracy of the empirical formula.



To evaluate the reliability of the fitting equations, the coefficient of determination (R2) was calculated for the bending load–deflection curves. R2 quantifies the proportion of variance in the dependent variable (bending load) explained by the independent variable (deflection) using the fitted model. An R2 value closer to 1 indicates a better fit of the model to the experimental data. It is defined as follows:


   R 2  = 1 −      ∑  i = 1  n     (  F i  −   F ^  i  )  2        ∑  i = 1  n     (  F i  −   F ¯  i  )  2        



(2)




where    F i    represents the experimental bending load,     F ^  i    represents the predicted bending load from the fitting equation,   F ¯   is the mean of the experimental bending loads, n is the number of data points.



The fitting method employs nonlinear least squares (NLS) to estimate the parameters of the hyperbolic tangent function. The fitting process minimises the sum of squared residuals between the experimental bending load–deflection data and the predicted values from the model. To evaluate the accuracy of the fitting process, standard deviation (SD) was calculated for the residuals across all data points. Specifically, the residuals were obtained as the difference between the experimental and fitted values at each deflection point. The SD was then computed as follows:


  S D =        ∑  i = 1  n     (  u i  −    u ^   i  )  2     n      



(3)




where    u i    represents the experimental data points,      u ^   i    denotes the corresponding predicted values, and n is the total number of data points. This analysis provides a quantitative measure of the dispersion of the residuals, indicating the goodness of fit. A lower SD suggests a better fit between the model and the experimental data.




2.5. Analysis Method


Data processing and analysis were performed using Excel 2016, while Origin 2019b and Matlab 2023 were used for graphing.





3. Results and Discussion


3.1. Bending Load–Deflection Variation Curve


Using the Huashuo variety of Camellia oleifera as an example, 10 test results were randomly chosen from 30 repeated tests within the diameter range of 20–30 mm at a loading speed of 10 mm/min. The bending load–deflection curves were then plotted (see (Figure 4)), with the vertical axis representing the bending load and the horizontal axis representing the deflection.



Initially, most test curves show an approximately linear relationship between bending load and deflection, indicating linear elastic behaviour at the start of loading. The varying initial slopes of the curves demonstrate the effect of specimen type and diameter on the test curves. As deflection increases, the curve’s slope decreases, entering a nonlinear deformation stage where the bending load’s rate of increase slows down. At this point, the specimen’s internal structure changes, with phenomena like microscopic crack formation and dislocation motion occurring, making the bending load–deflection relationship more complex [37]. As the deflection range continues to increase, the curve levels off, approaches saturation, and then drops suddenly, signifying that the branches have reached their flexural strength limit and fracture occurs.




3.2. Effect of Loading Speed on Fracture Deflection


In the three-point bending tests on Camellia oleifera branches, different loading speeds significantly affected the variation of their fracture deflection. Lower loading rates simulate the deformation behaviour of branches under gradually applied external forces, while higher loading rates mimic the response of branches to transient or impact loads. The data on fracture deflection variation are presented in Table 1.



The results of the experiment show that the species, diameter and loading speed all have a significant effect on the deflection at break. At a loading rate of 10 mm/min, the mean fracture deflection of branches from all four species increased with branch diameter. However, these deflections decreased when the loading speed was raised to 20 mm/min. For Camellia oleifera branches of the Huashuo variety, mean fracture deflections at 10 mm/min were 9.56 mm, 16.52 mm, 26.4 mm, and 34.27 mm. These values decreased to 9.46 mm, 12.34 mm, 25.29 mm, and 33.52 mm, respectively, at 20 mm/min. Similar trends were observed in Huaxin, Huajin, and Xianglin varieties, with Huaxin and Xianglin showing greater decreases at the higher loading rate. To explain these observations, higher strain rates, as seen at a loading speed of 20 mm/min, reduce the ability of the molecular structure within the branches to reorganize and accommodate external stresses. This limitation leads to decreased plastic deformation capacity and increased brittleness [38]. Additionally, at higher strain rates, the propagation of stress waves within the material and localized temperature increases due to energy dissipation exacerbate dynamic fracture processes [39,40]. These effects result in a significant reduction in fracture deflection, as observed across all varieties. This indicates that the plastic deformation capacity of Camellia oleifera branches is significantly reduced under high strain rate conditions.



In classical mechanics, a significant change in material properties results in an increase in strain rate. As the loading rate increases, so does the strain rate (  ε ˙  ) of the branches, causing their internal stress ( σ ) to rise rapidly. This increased stress makes branches more brittle, as their internal structure cannot absorb external energy through sufficient plastic deformation at high strain rates [38,41]. This phenomenon can be quantified using the following equation for strain rate versus stress:


  σ = K   ε ˙  m   



(4)




where  σ  is the stress in N/mm2,   ε ˙   is the strain rate (i.e., the rate of change of strain with time; s−1), K is a material constant (material type and temperature dependent), and m is the strain rate sensitivity index (generally less than 1, varying by material).



At higher strain rates, the stress ( σ ) rises nonlinearly with the strain rate (  ε ˙  ) due to the strain rate sensitivity factor (m) and the material constant (K). This relationship highlights the dynamic nature of material response under rapid loading, where higher m values indicate greater sensitivity to strain rate changes. For Camellia oleifera branches, this nonlinear stress–strain behaviour limits the redistribution of internal energy, causing stress to localize and cracks to propagate rapidly. Additionally, the inability of the internal structure to accommodate these stresses results in a reduction in fracture deflection and increased brittleness, as observed in the experimental data. These findings align with prior studies on biological materials, where high strain rates enhance stiffness but reduce energy absorption and ductility [42,43].



At high strain rates, the fibre structure of branches cannot adapt quickly enough to rapidly changing external loads, making them more susceptible to brittle fracture. The fracture toughness (   K  I C    ) of branches decreases as the strain rate increases, following the equation:


   K  I D   =  K  I C   − C ⋅ ln (  ε ˙  )  



(5)




where    K  I D     is the dynamic fracture toughness,    K  I C     is the quasi-static fracture toughness, and C is a constant.



As the strain rate (  ε ˙  ) increases, the fracture deflection (   δ f   ) of the branches decreases. This means the maximum deformation of the branches at fracture reduces, making them more brittle.


   δ f  (  ε ˙  ) =  δ f  ( 0 ) − D ⋅ ln (  ε ˙  )  



(6)




where    δ f  (  ε ˙  )   is the fracture deflection at strain rate (  ε ˙  );    δ f  ( 0 )   is the fracture deflection under quasi-static conditions, and D is a material parameter.



The energy of rupture (Gc) is a critical measure of the energy absorbed by a material during fracture. As the strain rate (  ε ˙  ) increases, Gc decreases, indicating that less energy is absorbed, and the material becomes more prone to brittle fracture. This variation can be described by the following equation:


   G c  (  ε ˙  ) =  G c  ( 0 ) ⋅ (   1  1 + b ⋅  ε ˙     )  



(7)




where    G c  (  ε ˙  )   is the fracture energy at strain rate (  ε ˙  );    G c  ( 0 )   is the fracture energy under static conditions, and b is a material constant.



In summary, as the loading rate increases, the strain rate of the branches increased significantly. This limits the ability of the internal molecular structure of the branches to adjust or reorganize, reducing the space for plastic deformation. Additionally, stress wave propagation, inertia effects, and local temperature increases at high loading rates may trigger complex dynamic fracture effects, further promoting premature fracture of the specimen [39,40].



This analysis addresses a key limitation in existing studies, which often focus solely on quasi-static loading conditions and overlook the dynamic effects induced by higher loading rates. By incorporating strain rate sensitivity into the discussion, this study provides a more comprehensive understanding of how mechanical harvesting forces affect branch dynamic response under varying loading conditions. This approach reduces the gap in knowledge regarding the role of dynamic fracture mechanisms, offering insights that can be applied to optimise harvesting equipment design and improve efficiency in field applications.




3.3. Calculation of Modulus of Elasticity of Camellia Oleifera Branches


In the three-point bending test, simplifying the specimen of branches to a beam structure, the deflection at the loading point in the elastic phase is expressed as follows [17]:


  δ =    F  L 3    48 E I     



(8)




where  δ  is the deflection at the loading point, in m; F is the applied load, in N; E is the modulus of elasticity of the branches, in MPa; L is the branch spacing (span), in m; I is the moment of inertia of the cross-section of the branches specimen, in m4.



For ease of calculation, assuming a circular cross-section at the loading point of the branches, I is as follows:


  I =    π  d 4    64     



(9)







Substituting Equation (3) into Equation (2) simplifies to:


  δ =    4 F  L 3    π E  d 4      



(10)







The slope of the linear phase of the curve (j) can be calculated by analyzing Figure 3:


  j =    Δ F   Δ x     



(11)




where   Δ F   is the change in bending load and   Δ x   is the corresponding change in deflection.



Let  δ  =   Δ x  , then the modulus of elasticity E of the branches is as follows:


  E =    4  L 3  j   π  d 4      



(12)







In this study, 10 groups of branch specimens with different diameters were selected from each of the four Camellia oleifera species, and the results for the modulus of elasticity are shown in Table 2. Figure 5 shows the variation in the elastic modulus of branches with the number of tests. The branches of each variety showed some fluctuation in different test groups, which may be related to the natural heterogeneity and diameter variation of the branches [44].



Table 2 displays the elastic modulus of various branches. Huashuo branches exhibited a relatively low elastic modulus, ranging from 459.01 MPa to 682.26 MPa, with an average of ~536 MPa. This indicates that Huashuo branches are structurally softer and less resistant to bending. In contrast, Huajin branches showed significant fluctuations in elastic modulus, from 553.73 MPa to 789.62 MPa, averaging about 678 MPa. The Huajin branches exhibited a higher modulus of elasticity than Huashuo, suggesting that it is generally tougher than Huashuo branches. The highest elastic modulus values were observed in four varieties of Huaxin branches, ranging from 609.95 MPa to 983.33 MPa, with an average of about 808 MPa. This indicates high rigidity and resistance to deformation. Xianglin branches had an elastic modulus ranging from 529.08 MPa to 748.03 MPa, averaging about 658 MPa. While Xianglin’s elastic modulus showed notable volatility, it was generally higher than that of Huashuo and Huajin branches but lower than Huaxin branches.



Wang et al. [28] reported the elastic modulus of Camellia oleifera branches within the range found in this study, although they did not specify the particular species. Differences in elastic modulus among species may be attributed to variations in growth environment, internal structure, wood fibre arrangement, density, and cell wall thickness [45]. Branches with a high elastic modulus may possess denser fibres and thicker cell walls, making them less prone to deformation under stress. Conversely, branches with a low elastic modulus may have a sparser fibre structure, leading to increased susceptibility to buckling under stress [46]. The observed variations in the modulus of elasticity (E) and fit errors among the four Camellia oleifera varieties have significant implications for the design of mechanical harvesting devices. For instance, branches with higher elastic modulus values, such as those from the Huaxin variety, exhibit greater rigidity, requiring harvesting systems to apply higher vibration frequencies to achieve sufficient deflection for fruit detachment. In contrast, the varieties with lower modulus values, like Huashuo, are more flexible and may require adjustments to avoid overloading or causing mechanical damage.




3.4. Fitting of Empirical Equations


Nonlinear Least Squares (NLS) is a statistical method used for data fitting. It finds the best estimates of model parameters by minimizing the sum of squares of the errors between observed data and model predictions [47]. Given experimental data (xi, yi) and a model f(x, p), where p is the model parameter vector, the goal is to find the parameter p that minimises the Residual Sum of Squares (RSS).


  R S S =     ∑  i = 1  n   (  y i  − f (  x i  ,  p  ) )    2   



(13)







According to Equation (1), a set of experimental data (xi, di, Fi) is assumed where i = 1, 2, …, n. The objective is to fit the parameters k, a, b, and c so that the model predictions     F ^  i    are closest to the experimental values Fi. Thus, the model function can thus be rewritten as:


    F ^  i  = k ⋅  E a  ⋅  d i b  ⋅ tanh (    c ⋅  x i     d i     )  



(14)







The residual function was defined as the difference between the test values and the model predictions:


   r i  =  F i  −   F ^  i   



(15)







For all data points, the residual sum of squares (RSS) can be expressed as:


  R S S =   ∑  i = 1  n    r i 2    =   ∑  i = 1  n     (  F i  − k ⋅  E a  ⋅  d i b  ⋅ tanh (   c ⋅  x i     d i    ) )  2     



(16)







At the RSS minimum for parameters k, a, b, and c, Equation (5) can be rewritten as:


    min   k , a , b , c     ∑  i = 1  n     (  F i  − k ⋅  E a  ⋅  d i b  ⋅ tanh (   c ⋅  x i     d i    ) )  2     



(17)







Gradient Descent (GD) is an optimisation algorithm used to minimise the objective function by iteratively updating the model parameters [48,49]. It is particularly effective for complex optimisation problems that cannot be solved analytically. The gradient descent method minimises the objective function by calculating the gradient (the first-order derivative) of the objective function with respect to the parameters. It then updates the parameters in the opposite direction of the gradient. In this study, the gradient descent method is employed to optimise the parameters:


       k  n e w   = k − α    ∂ R S S   ∂ k         a  n e w   = a − α    ∂ R S S   ∂ a         b  n e w   = b − α    ∂ R S S   ∂ b         c  n e w   = c − α    ∂ R S S   ∂ c         



(18)




where  α  denotes the learning rate, which determines the step size of each update.



The partial derivative of RSS with respect to k is as follows:


       ∂ R S S   ∂ k    =   ∂  ∂ k      ∑  i = 1  n     (  F i  −   F ^  i  )  2    = − 2   ∑  i = 1  n   (  F i  −   F ^  i  )      ∂   F ^  i    ∂ k        = − 2   ∑  i = 1  n   (  F i  − k ⋅  E a  ⋅  d i b  ⋅ tanh (   c ⋅  x i     d i    )   ) ⋅ (  E a  ⋅  d i b  ⋅ tanh (    c ⋅  x i     d i     ) )    



(19)







The partial derivative of RSS with respect to a is as follows:


       ∂ R S S   ∂ a    =   ∂  ∂ a      ∑  i = 1  n     (  F i  −   F ^  i  )  2    = − 2   ∑  i = 1  n     (  F i  −   F ^  i  )  2       ∂   F ^  i    ∂ a        = − 2   ∑  i = 1  n   (  F i  − k ⋅  E a  ⋅  d i b  ⋅ tanh (   c ⋅  x i     d i    )   ) ⋅ ( k ⋅  d i b  ⋅ tanh (    c ⋅  x i     d i     ) ⋅  E a  ln ( E ) )    



(20)







The partial derivative of RSS with respect to b is as follows:


       ∂ R S S   ∂ b    =   ∂  ∂ b      ∑  i = 1  n     (  F i  −   F ^  i  )  2    = − 2   ∑  i = 1  n     (  F i  −   F ^  i  )  2       ∂   F ^  i    ∂ b        = − 2   ∑  i = 1  n   (  F i  − k ⋅  E a  ⋅  d i b  ⋅ tanh (   c ⋅  x i     d i    )   ) ⋅ ( k ⋅  E a  ⋅  d i b  ln (  d i  ) ⋅ tanh (    c ⋅  x i     d i     ) )    



(21)







The partial derivative of RSS with respect to c is as follows:


       ∂ R S S   ∂ c    =   ∂  ∂ c      ∑  i = 1  n     (  F i  −   F ^  i  )  2    = − 2   ∑  i = 1  n   (  F i  −   F ^  i  )      ∂   F ^  i    ∂ c        = − 2   ∑  i = 1  n   (  F i  − k ⋅  E a  ⋅  d i b  ⋅ tanh (   c ⋅  x i     d i    )   ) ⋅ ( k ⋅  E a  ⋅  d i b  ⋅     x i     d i     ( 1 −  tanh 2  (    c ⋅  x i     d i     ) ) )    



(22)







The values of each parameter are obtained by the iterative updating of parameters k, a, b, and c using the gradient descent method until convergence is achieved. By the substitution of the modulus of elasticity of branches from different species, the following empirical equations are derived:


      F = 174 ⋅  E  huashuo   0.5   ⋅  d 2  ⋅ tanh (    2.938 ⋅ x  d   )     F = 188 ⋅  E  huajin   0.5   ⋅  d 2  ⋅ tanh (    2.681 ⋅ x  d   )     F = 161 ⋅  E  huaxin   0.5   ⋅  d 2  ⋅ tanh (    2.800 ⋅ x  d   )     F = 148 ⋅  E  xianglin   0.5   ⋅  d 2  ⋅ tanh (    3.523 ⋅ x  d   )      



(23)








3.5. Values of Estimated Parameters and Their Physical Significance


According to a related study [50], the wave velocity v in a material is described by Equation (22). The effect of the elastic modulus E and density ρ of the material on the wave’s propagation velocity is reflected.


  v =     E ρ      



(24)







A square root relationship is exhibited between the wave velocity and the material’s modulus of elasticity E and density ρ. As the modulus of elasticity is increased, the wave is propagated more quickly. As the density is increased, the wave is propagated more slowly.



Equation (21) demonstrates the bending load–deflection relationship for different species of branches in a three-point bending test. In all equations, the bending load F is related proportionally to the square root of the branch’s modulus of elasticity E. This relationship can be further explained by the    E    wave velocity equation. In a three-point bending test, when a branch is subjected to a bending load, the process of elastic deformation is essentially achieved by the propagation of mechanical fluctuations (including stress and deformation waves) through the branch. In Equation (22), the effect of material stiffness on the velocity of force propagation is represented. In Equation (21), E0.5 exhibits a similar physical phenomenon in that greater bending resistance is displayed by the branch when the modulus of elasticity (E) is greater. However, since the effect is transmitted through the square root, a nonlinear increase in bending load is suggested. The ability to carry bending loads is enhanced as the branch stiffness is increased, but this enhancement is slightly weaker than in the linear deformation phase.



A higher modulus of elasticity allows a branch to endure greater bending loads under the same bending deflection, making the branch more rigid. The hyperbolic tangent function is crucial in describing this relationship. It models the nonlinear increase in bending load (F) with increased deflection (x). As deflection increases, the bending load approaches a limiting value. This behaviour mirrors real-world measurements, where initial deformation is linear (elastic phase) but becomes nonlinear (plastic deformation) under higher stress.



The bending load (F) is proportional to the square of the branch diameter (d). This aligns with classical beam bending theory and highlights the significance of diameter in branch mechanics [51]. Larger diameters result in larger moments of inertia, enabling branches to withstand greater bending loads under the same deformation [52,53]. This has been confirmed in practical settings, such as thicker branches performing better under wind loads [54].



The density (ρ) is typically relevant in dynamic problems (e.g., wave propagation, vibration, or shock) and influences the acceleration and motion of the system. However, in a three-point bending test—a quasi-static process focusing on deformation under external forces—density does not significantly affect the bending load (F). For Camellia oleifera branches, density was determined using the water immersion method. The mass and volume of specimens were measured using high-precision electronic scales and measuring cylinders, respectively. The calculated density values are shown in Table 3, with ρ simplified to 1 g/cm3 for calculations. The calculated density values are listed in Table 3, where the average density for the four varieties—Huashuo, Huajin, Huaxin, and Xianglin—was consistently around 1 g/cm3, with minimal variation between varieties. This consistency suggests that density does not substantially influence the biomechanical properties observed in this study. In Equation (23), the effect of density is inherently captured by the    E    term, which allows for simplification by removing the explicit density parameter. This adjustment reflects the mechanical response of the branches more accurately and aligns with the results of the fitting process.



The classical formula (21) has a similar form, but differences in the modulus of elasticity (E), the coefficient (k), and the parameter (c) result in significant variations in the mechanical properties of branches among different species. The coefficient k showed ranges of 168 ± 20, while the parameter c had ranges of 3.102 ± 0.421. For Xianglin branches, the parameter c of the hyperbolic tangent function in the empirical equations is 3.523, indicating a faster growth of the F with increasing deflection (x). In contrast, for Huajin branches, the hyperbolic tangent parameter c is 2.681, indicating a slower growth of the bending load.




3.6. Validation and Discussion of the Fitted Equations


To verify the accuracy and applicability of the fitted equations, a standard deviation (SD) error analysis was used. This analysis quantifies the effectiveness of the model fit by calculating the deviation between experimental data and fitted curves, providing a quantitative basis for model evaluation [55].



The standard deviation error (SD) is calculated as:


  S D =     1  n − 1      ∑  i = 1  n     (  F  exp , i   −  F  fit , i   )  2       



(25)




where n is the number of samples, the number of test data points;    F  exp , i     is the bending load value of the ith test data point;    F  fit , i     is the value of the ith bending load calculated from the fitted equation.



The calculated standard deviation (SD) represents the average deviation between the test data and the fitted curve, indicating the model’s fit accuracy to the actual data. For comparison, the standard deviation was converted to a relative error percentage, known as the standard deviation error percentage (%SD):


  % S D = (    S D     F ¯   exp      ) × 100 %  



(26)







    F ¯   exp     is the average bending load value of the test data:


    F ¯   exp   =   1 n     ∑  i = 1  n    F  exp , i      



(27)







With the above equation, the error in the fitted equation was quantified as a percentage of the relative mean of the experimental data. This facilitated the assessment of the model’s performance at different loading rates and on different species of branches.



In order to investigate the adaptability of Equation (21) to the bending mechanical properties of branches of various species, specimens were randomly selected within a range of diameters. The error between the measured values of the test load and the predicted values from Equation (21) was examined for branches of different species and loading speeds. The results are shown in Figure 6.



At a 10 mm/min loading rate (Figure 6a), the errors between the test and predicted values for each species of branches ranged from 1.12% to 11.49%. The error between predicted and test values gradually decreased with the increase in diameter range. This indicates that specimens with larger diameters showed better consistency in mechanical performance. Furthermore, at a loading speed of 20 mm/min (Figure 6b), the error range of the test and predicted values for each species of branches was 0.25% to 12.84%. The results showed that the agreement between predicted and test forces improved with the increase in loading speed.



The observed increase in discrepancies between experimental and predicted values for larger diameter branches, as shown in Figure 6, can be attributed to several factors:



Structural Defects: Larger-diameter branches are more likely to contain knots, cracks, or other structural irregularities that affect their mechanical behaviour. These defects introduce localized stress concentrations, which are not accounted for in the fitting model, leading to deviations from predicted values.



Material Heterogeneity: With increasing diameter, variations in fibre density, cell wall thickness, and vessel distribution become more pronounced. These material heterogeneities can significantly influence the bending response, particularly in nonlinear deformation stages. The hyperbolic tangent function used in the fitting model, while effective for smaller-diameter branches, may not fully capture these complex behaviours in larger samples.



Scaling Effects: Larger branches exhibit more pronounced nonlinearities due to their increased cross-sectional area and moment of inertia, which may not be perfectly modelled by the empirical equation. This highlights a potential limitation of the current model in predicting mechanical responses across all diameter ranges.



To address these issues, future work could incorporate additional parameters, such as defect distribution or microstructural variability, into the fitting model. Advanced imaging techniques, such as X-ray tomography, could also be employed to better characterize the internal structure of larger branches and improve the accuracy of the proposed fitting model.



The results of a single test are affected by individual samples, leading to large error fluctuations. To reduce the impact of individual differences on the test error, 30 samples of different diameters were randomly selected from four varieties of branches. The average percentage error between the test force and the predicted force was calculated, and the results are shown in Table 4.



From Table 4, it can be seen that when the loading speed was 10 mm/min, the standard deviation error percentages of each species of branches were as follows: 7.12% for Huashuo, 7.92% for Huajin, 6.20% for Huaxin, and 6.71% for Xianglin. This result shows that the errors in the fitted equations for Huaxin and Xianglin branches are smaller at lower loading speeds, indicating that the resulting Equation (21) can better describe the bending load–deflection relationship of branches at this loading speed. Contrastingly, the fitted equations showed slightly higher errors for the Huashuo and Huajin branches, possibly due to the greater bending process variability of the branches of these species or the nonlinear characteristics of their mechanical properties at low loading speeds.



At a loading speed of 20 mm/min, the standard deviation error percentages for each type of branch were 8.19% for Huashuo, 7.11% for Huajin, 6.28% for Huaxin, and 4.77% for Xianglin. Xianglin branches maintained low errors at higher loading speeds, demonstrating their stable mechanical properties and satisfactory equation fitting at different loading speeds. Conversely, Huashuo and Huaxin branches showed increased errors at higher loading speeds. This suggests that changes in material properties, such as viscoelasticity, strain rate sensitivity, and internal molecular structure, may have reduced the applicability of the fitted equations for these species [56,57]. In contrast, the error for Huajin twigs decreased, indicating that their fitting equations are adaptable to different loading speeds. The fit errors, though minimal, provide critical insights into the precision needed for vibration parameters. Small discrepancies in the model predictions highlight the importance of fine-tuning device specifications, such as gripper pressure and vibration amplitude, to accommodate branch variability while minimizing damage. These findings suggest that harvesting systems should feature adjustable vibration frequencies and amplitudes to optimise performance across different cultivars and branch diameters.



Overall, the standard deviation errors for all branch varieties remained within acceptable limits. This indicates that the fitted equations effectively describe the bending load studies and deflection variations of branches. The varying errors among species also highlight the complexity of branch mechanical properties. The error analysis provides quantitative verification of the fitted empirical equations and offers a reference for further model optimisation and modification. Considering the effects of different environmental conditions and test parameters on the mechanical properties of tree branches in future studies will enhance the model’s predictive ability and applicability. Additionally, these analysis results can guide the selection of branch diameters and the structural design of robotic jaws for practical applications.




3.7. Analysis of the Effect of Bending Load–Deflection Curve Fitting


Figure 7 displays the results of three-point bending tests conducted on four randomly selected specimens with diameter ranges of 5–10 mm, 10–20 mm, 20–30 mm, and 30–40 mm. The tests were performed at a loading speed of 10 mm/min. The resulting bending load–deflection curves were compared with the predicted bending load curves derived from empirical equations. In the figure, dotted lines represent the predicted bending load curves, while the solid line represents the experimentally determined bending load.



Upon analysis, Figure 7a shows a high fit between predicted and experimental values. The test bending value of the branch specimen with a diameter of 34.57 mm is slightly lower than the predicted value. The test curve exhibits a decreasing trend in bending load during the middle and late stages, while the predicted curve continues to rise. This discrepancy may be attributed to the fracture of the branch. The high degree of curve fit for the other three branch specimens indicates that the empirical Equation (21) is more accurate for branches in the 5–30 mm diameter range. For Figure 7a, the R2 values for branch diameters of 9.62 mm, 18.73 mm, 23.64 mm, and 34.57 mm were 0.9443, 0.9888, 0.9958, and 0.9749, respectively, showing high reliability across all tested diameters.



In contrast, Figure 7b shows a relatively poor fit between predicted and experimental values. During the three-point bending process, the predicted value for the branch with a diameter of 38.69 mm was consistently higher than the experimental value up to fracture. This suggests that the empirical equations need to be parameterized in this range to improve accuracy. Although, the curve fit for the remaining specimens was better, there was a decreasing trend in the mid and late test values for branches with diameters of 14.58 mm and 22.35 mm, similar to Huashuo. For Figure 7b, the R2 values for branch diameters of 9.29 mm, 14.58 mm, 22.35 mm, and 38.69 mm were 0.9690, 0.9826, 0.9851, and 0.9067, respectively, indicating good reliability, though slightly reduced for the largest diameter.



In Figure 7c, the predicted values for branches with diameters of 8.47 mm and 36.66 mm aligned well with the experimental values. Similarly, branches with a diameter of 28.63 mm exhibited a trend of decreasing test values in the middle and late stages, although their early-stage test values exceeded the predicted values. This suggests that the empirical equations require further optimisation and validation for this specific diameter range. Conversely, the late-stage test force for the sample with a diameter of 17.88 mm was slightly higher than the predicted force. For Figure 7c, the R2 values for branch diameters of 8.47 mm, 17.88 mm, 28.63 mm, and 36.66 mm were 0.9293, 0.9790, 0.9621, and 0.9915, respectively, demonstrating strong reliability except for some variability in smaller diameters.



In Figure 7d, the predicted values for branches with diameters of 22.34 mm and 33.92 mm matched the experimental values closely. However, branches with a diameter of 14.54 mm showed higher predicted values than experimental values, indicating that the predictive model may not fully capture the mechanical properties of Xianglin varieties within the 10–20 mm diameter range. In contrast, branches with a diameter of 9.27 mm showed a better fit to the experimental data. For Figure 7d, the R2 values for branch diameters of 9.27 mm, 14.54 mm, 22.34 mm, and 33.92 mm were 0.9961, 0.9199, 0.9839, and 0.9968, showing excellent reliability across most diameters, with a slight dip for medium-sized branches.



Figure 8a compares the experimental and predicted bending loads for branches of the Huashuo variety at a loading rate of 20 mm/min. For the branch with a 33.27 mm diameter, predicted values exceeded experimental ones throughout the test. This suggests that the empirical equations may overestimated the bending strength of branches in this diameter range. Conversely, for the branch with a 28.9 mm diameter, experimental values were higher than predicted ones during loading. This indicates that the actual flexural strength of Huashuo branches may be greater in the 20–30 mm diameter range. The prediction model may need parameter adjustments in this range to improve accuracy. For the branch with a 16.84 mm diameter, the test results aligned more closely with predicted values, showing better consistency during loading. This indicates that the empirical equations are more reliable in this diameter range and better reflect the mechanical properties of the branches. The experimental values for branches with a 7.82 mm diameter closely matched predicted values, indicating that the empirical equations have high prediction accuracy in the 5–20 mm diameter range and can accurately describe the mechanical behaviour of branches. For Figure 8a, the R2 values for branch diameters of 8.42 mm, 16.37 mm, 28.97 mm, and 33.27 mm were 0.9463, 0.9475, 0.9466, and 0.9025, indicating good reliability, particularly for smaller diameters.



Figure 8b compares the experimental and predicted bending load values for branches of the Huajin variety at a loading rate of 20 mm/min. For branches with a diameter of 38.69 mm, the predicted values were consistently higher than the experimental values, similar to the trend observed for the 33.27 mm diameter branches of the Huashuo variety. This suggests that the empirical equations may overestimate the actual bending strength of Huajin variety branches in the 30 to 40 mm diameter range. For the 22.35 mm diameter branches, the fit between experimental and predicted values was relatively good in the middle and late stages, although experimental values were slightly higher in the initial stage. Similarly, the 14.58 mm diameter branch showed slightly higher experimental values than predicted ones during the initial bending process. The 9.29 mm diameter branch showed close agreement between experimental and predicted values, indicating that the empirical equation has good prediction accuracy in the 5–10 mm diameter range. For Figure 8b, the R2 values for branch diameters of 9.03 mm, 15.67 mm, 24.32 mm, and 39.12 mm were 0.9501, 0.9332, 0.9456, and 0.9087, with high reliability except for the largest diameter.



Figure 8c compares the experimental and predicted bending load values for branches of the Huaxin variety at a loading rate of 20 mm/min. For the 33.32 mm diameter branch, the predicted values were consistently lower than the experimental values, suggesting that the empirical equations may underestimate the actual bending strength of Huaxin variety branches in the 30 to 40 mm diameter range. For the 28.8 mm diameter branches, the fit between experimental and predicted values was better, with close agreement at the beginning of loading. However, experimental values were slightly higher in the middle and late stages. The experimental and predicted values for branches with diameters of 15.84 mm and 9.32 mm showed good agreement, indicating that the empirical equations have good prediction accuracy in the 5–30 mm diameter range. For Figure 8c, the R2 values for branch diameters of 9.19 mm, 17.02 mm, 26.83 mm, and 33.48 mm were 0.9397, 0.9261, 0.9514, and 0.9142, showing strong reliability across all tested diameters.



Figure 8d compares the experimental and predicted bending load values for branches of the Xianglin species at a loading rate of 20 mm/min. For the branch with a diameter of 39.34 mm, the test and predicted values aligned closely throughout the loading process. Although the branch with a diameter of 29.85 mm fit the predicted values well, the test values were slightly higher in the middle and late stages of loading. The branch with a diameter of 16.08 mm showed test values slightly higher than predicted in the early and middle stages of loading. Finally, the branch with a diameter of 8.16 mm showed good agreement with the predicted values. For Figure 8d, the R2 values for branch diameters of 8.78 mm, 15.93 mm, 22.98 mm, and 34.89 mm were 0.9555, 0.9377, 0.9628, and 0.9126, indicating consistently high reliability across all tested branches.



The variations in the curve trends of three-point bending tests at different loading speeds can be attributed to several factors. As illustrated in Figure 9, the structural complexity within the tree increases with the diameter of the Camellia oleifera branches. This is particularly notable in larger cross-sections, where inhomogeneity and microscopic defects like knots and cavities are more prominent [58,59,60]. These factors causethe empirical equations for predicted forces to diverge from the test forces in the larger diameter range. In contrast, branches with diameters ranging from 10 to 30 mm exhibit more stable elastic modulus and plastic deformation behaviour [61], leading to better agreement between experimental and predicted values. In contrast, smaller diameter branches typically have a more homogeneous material structure with fewer microscopic defects [62], resulting in higher accuracy of prediction models in this range. Overall, these factors collectively influence the mechanical behaviour of branches of different diameters under various loading conditions, contributing to the discrepancy between experimental and predicted values. At higher loading rates, the transient stress response of branches may differ from that at slower rates. Higher loading rates can lead to internal stress concentrations and faster fracture tendencies due to more dramatic internal energy distribution [63]. Zhang et al. [64] discovered that higher loading rates might suppress the plastic deformation process in pine, causing it to fracture at lower stresses. Conversely, at slower loading rates, branches have more time for stress relaxation and plastic deformation, exhibiting different mechanical properties. This phenomenon may also explain the discrepancy between model predictions and experimental results. The mechanical behaviour of Camellia oleifera branches, including their stiffness and Young’s modulus, can be influenced by seasonal variables such as temperature, humidity, and sap content. Seasonal temperature fluctuations may alter the viscoelastic properties of the branch material, as lower temperatures generally increase stiffness, while higher temperatures may reduce it due to the softening of cell wall components. Similarly, changes in relative humidity can affect the moisture content of branches, influencing their flexibility and resistance to bending. Higher humidity levels, typically observed during the rainy season, can increase water absorption in the cell walls, reducing stiffness and Young’s modulus. In contrast, lower humidity levels during dry seasons may result in stiffer branches due to reduced moisture content [65,66]. Sap content, which varies with the growth cycle of Camellia oleifera, is another critical factor. During active growth phases, higher sap content may increase branch flexibility, while dormant phases with lower sap content could lead to stiffer branches [67,68]. These seasonal effects highlight the importance of considering environmental and physiological conditions when analyzing mechanical properties. Future studies could incorporate controlled experiments across different seasons to quantify these effects and refine the empirical models used in this study.



The empirical equations demonstrated good predictive accuracy for branches with diameters between 5 and 30 mm, aligning well with experimental data. However, for branches with diameters exceeding 30 mm, such as 38.69 mm, the model showed larger deviations, indicating that it may not fully capture the biomechanical behaviour of larger branches. This discrepancy could be attributed to the increased structural complexity of larger branches, such as varying density distributions, heterogeneity in material properties, or nonlinear effects under loading. Such factors are less pronounced in smaller branches but become significant as diameter increases.



Similarly, while the fitted equations worked well for Xianglin branches, larger errors were observed for Huashuo and Huajin branches, particularly at lower loading speeds. This suggests that the model’s parameters and assumptions may not fully account for the mechanical property differences among species. Variations in wood density, microstructure, or fibre orientation could contribute to these discrepancies, as these factors influence the branches’ bending resistance under different loading speeds and species-specific conditions.



To improve the model’s applicability across both diameter ranges and species, it may be necessary to introduce diameter-dependent correction terms and species-specific parameters. For instance, incorporating variables that capture material anisotropy, geometric characteristics, or distinct mechanical properties could enhance predictive accuracy. Expanding the dataset to include more branches with larger diameters, additional species, and a broader range of loading speeds would provide a stronger basis for model refinement. Furthermore, advanced approaches, such as machine learning-based regression models, could help capture the complex, nonlinear interactions between branch characteristics, species differences, and loading conditions.



The hyperbolic tangent function used in this study provides a robust empirical model for describing the load–flexion nonlinearity of Camellia oleifera branches. Although this function has not been widely applied in previous studies on wood mechanics, nonlinear models, such as elastic-plastic and anisotropic viscoelastic models, have been successfully employed to capture the complex mechanical behaviour of wood. For instance, Eslami et al. [69] developed a three-dimensional anisotropic material model based on Hoffman’s yield criterion and associated flow rule to simulate the plastic behaviour of timber under compressive loading. The model demonstrated high accuracy in predicting timber failure under complex stress conditions. Similarly, Vidal-Sallé and Chassagne [70] proposed an orthotropic viscoelastic constitutive model using a generalized Maxwell framework to analyse the nonlinear creep behaviour of wood under varying moisture content. These studies underscore the effectiveness of nonlinear models in characterizing wood’s mechanical response under complex loading conditions. While these prior studies focus on different aspects of wood mechanics, the hyperbolic tangent function offers a distinct advantage in describing the gradual transition between elastic and plastic deformation stages observed in Camellia oleifera branches. This study demonstrates the function’s suitability for modeling branch behaviour and provides a foundation for future work to validate its applicability to other wood species and broader loading conditions.




3.8. Three-Dimensional Mechanical Response Analysis of Tree Branches of Different Species


Figure 10 presents the three-dimensional diagrams of the mechanical response of bending load–deflection for branches of four varieties of Camellia oleifera trees. In Figure 10a, the bending load (F) of the Huashuo variety exhibits a clear nonlinear increase with deflection (x). At a deflection of ~0.03 m, the bending load reached about 8000 N. For smaller deflections, such as 0.01 m, the load is ~4000 N and increases more gradually, indicating that the Huashuo variety has lower flexural strength during initial bending. In contrast, at larger deflections, the load growth rate increases significantly, demonstrating greater reaction forces and progressively higher bending resistance. As the branch diameter (d) increases, the bending load that the Huashuo branch can withstand increases significantly. For instance, a diameter of 0.04 m can support a bending load of up to ~12,000 N, showing that bending strength improves with an increase in diameter. Figure 10b illustrates that Huajin species support significantly higher bending loads at larger diameters and deflections. At a deflection of 0.03 m and a diameter of 0.04 m, the load reached ~14,000 N. Even at smaller deflections (0.01 m), Huajin branches exhibited high strength with loads up to 6000 N. The bending load (F) increased more rapidly with the diameter (d). Figure 10c presents the mechanical response of the Huaxin variety. At smaller deflections (e.g., 0.01 m), the bending load of Huaxin branches quickly reached about 5000 N, indicating high initial strength. As deflection increased to 0.03 m, the rate of load increase slowed but still showed nonlinear growth, with a final load of ~12,000 N. Compared to Huajin, the Huaxin twigs exhibited relatively smaller load values at larger deflections. Figure 10d shows that Xianglin twigs have a lower maximum bending load under identical deflection and diameter conditions. At a deflection of 0.03 m and a diameter of 0.04 m, the bending load was ~9000 N.



Figure 10 illustrates that the primary cause of the nonlinear increase in bending load with deflection is nonlinear elastic and plastic deformation In the region of larger deflections, stresses in the branch accumulate gradually, leading to a significant increase in the reaction force. This reflects the branch’s gradually increasing bending capacity. An increase in the cross-sectional area, resulting from a larger diameter (d), significantly enhanced the bending stiffness of the branches. This observation aligns with the basic principle in the mechanics of materials: a larger cross-sectional area usually enhances a material’s bending stiffness [71,72]. The significant differences in bending loads that different branch species can endure under identical deflection and diameter conditions indicates that different species may possess distinct microstructural properties.





4. Conclusions


This study investigated the bending loads on branches of four varieties of Camellia oleifera trees. The findings revealed significant differences in the bending load–deflection relationship among the different varieties. Three key conclusions were drawn:




	
The impact of different loading speeds on the fracture deflection of Camellia oleifera twigs was examined. High strain rates were found to suppress the plastic deformability of the twigs, causing their fracture deflection to decrease as loading speed increased. The elastic modulus of the branches of four varieties—Huashuo, Huajin, Huaxin, and Xianglin—was determined. Huaxin branches had the highest elastic modulus, indicating greater rigidity, while Huashuo had a relatively low elastic modulus, suggesting a softer structure.



	
Using the hyperbolic tangent function (tanh), empirical equations for the bending load–deflection of the branches were established in this study via the nonlinear least squares method. The coefficient k had a range of 169 ± 20, and the parameter c had a range of 3.102 ± 0.421. These equations provided a more accurate description of the mechanical behaviours of the tree branches across different diameters. Random sampling error analysis results confirmed the high accuracy and reliability of the fitted equations. These empirical equations offer a theoretical basis for predicting the bending performance of Camellia oleifera branches.



	
This study randomly selected four varieties of branches for three-point bending tests, with diameters range of 5–40 mm. The results were compared with empirical equations. The findings indicate that the empirical equations accurately predict the bending loads of tree branches, particularly for smaller diameters. To analyse the differences in bending loads among tree species under identical deflection and diameter conditions, three-dimensional diagrams of the mechanical responses of branches from four varieties of Camellia oleifera trees were established. The results revealed that the Huajin Camellia oleifera species exhibited the most significant load variations, demonstrating high strength and stiffness. In contrast, the Xianglin species showed superior toughness and stability.



	
While the empirical equations performed well for smaller branch diameters (5–30 mm), larger errors were observed for branches with the diameters exceeding 30 mm, such as 38.69 mm. This highlights the need for further refinement of the proposed equations to account for biomechanical behaviour of larger branches. Variability in predictive accuracy was also observed across species, particularly for Huashuo and Huajin branches, indicating the importance of incorporating species-specific parameters or tailored models. Future research will expand the dataset to include a broader range of branch diameters, additional species, and various loading conditions. Advanced modeling techniques, such as incorporating anisotropic material properties or leveraging machine learning algorithms, are recommended to enhance the model’s accuracy and applicability.
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Figure 1. Mechanical gripper jaw gripping test of our team. 
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Figure 2. Three-point bending test of Camellia oleifera branch. 
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Figure 3. Hyperbolic tangent function curve. 
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Figure 4. Camellia oleifera branches Bend load–deflection curve. 
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Figure 5. The elastic modulus of four varieties of Camellia oleifera branches. 
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Figure 6. Four varieties of Camellia oleifera branches test and prediction values random sampling error, they should be listed as follows: The loading speed of (a) is 10 mm/min, and the loading speed of (b) is 20 mm/min. 
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Figure 7. Curve-fitting effect of test and prediction values of four varieties of Camellia oleifera branches (The loading speed is 10 mm/min), they should be listed as follows: (a). Huashuo, (b). Huajin, (c). Huaxin, (d). Xianglin. 
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Figure 8. Curve-fitting effect of test and prediction values of four varieties of Camellia oleifera branches (The loading speed is 20 mm/min), they should be listed as follows: (a). Huashuo, (b). Huajin, (c). Huaxin, (d). Xianglin. 
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Figure 9. Non-uniform cross-section of Camellia oleifera branches. 
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Figure 10. Three-dimensional graph of the mechanical response of bending load–deflection of four varieties of Camellia oleifera branches, they should be listed as follows: (a). Huashuo, (b). Huajin, (c). Huaxin, (d). Xianglin. 






Figure 10. Three-dimensional graph of the mechanical response of bending load–deflection of four varieties of Camellia oleifera branches, they should be listed as follows: (a). Huashuo, (b). Huajin, (c). Huaxin, (d). Xianglin.



[image: Agriculture 14 02220 g010]







 





Table 1. Effects of different loading speeds on the fracture deflection of four varieties of branches.
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Loading Speed/(mm·min−1)

	
Diameter Range/mm

	
Deflection/mm




	
Huashuo

	
Huajin

	
Huaxin

	
Xianglin






	
10

	
5~10

	
9.56 ± 1.38 Adβ

	
6.36 ± 1.17 Abβ

	
9.81 ± 1.68 Acβ

	
9.84 ± 1.27 Aaβ




	
10~20

	
16.52 ± 3.77 Bdβ

	
12.94 ± 1.30 Bbβ

	
14.32 ± 2.22 Bcβ

	
13.94 ± 1.31 Baβ




	
20~30

	
26.40 ± 3.28 Cdβ

	
21.73 ± 3.23 Cbβ

	
24.82 ± 2.81 Ccβ

	
17.54 ± 2.35 Caβ




	
30~40

	
34.27 ± 5.89 Ddβ

	
30.58 ± 5.40 Dbβ

	
27.67 ± 3.98 Dcβ

	
27.53 ± 3.06 Daβ




	
20

	
5~10

	
9.46 ± 1.81 Adλ

	
6.20 ± 1.19 Abλ

	
6.56 ± 1.30 Acλ

	
6.39 ± 1.41 Aaλ




	
10~20

	
12.34 ± 2.68 Bdλ

	
12.88 ± 1.54 Bbλ

	
13.60 ± 2.36 Bcλ

	
11.77 ± 1.84 Baλ




	
20~30

	
25.29 ± 2.29 Cdλ

	
21.38 ± 1.45 Cbλ

	
20.53 ± 2.31 Ccλ

	
16.04 ± 5.13 Caλ




	
30~40

	
33.52 ± 2.47 Ddλ

	
28.71 ± 4.10 Dbλ

	
27.01 ± 3.91 Dcλ

	
24.38 ± 2.44 Daλ








Note: A–D indicating significant effects of diameter, a–d indicating significant effects of variety, and β, λ indicating significant effects of loading speed (p ≤ 0.05).













 





Table 2. Elastic modulus of branches of four varieties of Camellia oleifera.
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	Groups
	Ehuashuo (MPa)
	Ehuajin (MPa)
	Ehuaxin (MPa)
	Exianglin (MPa)





	1
	563.98
	789.62
	897.47
	723.44



	2
	520.81
	709.04
	647.98
	748.03



	3
	502.38
	648.00
	609.95
	721.16



	4
	459.01
	553.73
	777.94
	569.62



	5
	562.38
	690.39
	794.53
	548.85



	6
	619.92
	708.17
	703.37
	734.22



	7
	475.18
	770.31
	889.92
	529.08



	8
	493.21
	604.19
	983.33
	627.39



	9
	682.26
	715.52
	889.49
	709.27



	10
	477.65
	592.45
	883.29
	666.91



	Standard Deviation (MPa)
	10.00
	9.02
	7.64
	15.28










 





Table 3. The average density of four varieties of Camellia oleifera branches.
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	Varieties
	Huashuo
	Huajin
	Huaxin
	Xianglin





	Average density/g·cm−3
	1.004
	1.020
	1.038
	1.005










 





Table 4. Random sampling test and prediction values error of Camellia oleifera branches at different loading speeds.
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Loading Speed

(mm/min)

	
Varieties




	
Huashuo

	
Huajin

	
Huaxin

	
Xianglin






	
10

	
7.12%

	
7.92%

	
6.20%

	
6.71%




	
20

	
8.19%

	
7.11%

	
6.28%

	
4.77%
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