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Abstract: Keeping the epidermis of apple rootstock cuttings moist is important for maintaining
physiological activities. It is necessary to monitor the epidermis moisture in real time during the
growth process of apple rootstock cuttings. A machine vision-based discrimination model for the
moisture degree of cuttings’ epidermis was designed. This model optimizes the structure of the
semantic segmentation model U-Net. The model takes the Saturation channel and Value channel
information of the cutting images in the HSV color space as the characteristics of the cuttings’ moisture,
so that the model has good performance in the blue-purple supplementary light environment. The
average accuracy of the improved model is 95.07% for dry and wet cuttings without supplementary
light, and 84.83% with supplementary light. The humidification system implanted in the model
can control the atomizer to complete the task of moisturizing the cuttings’ epidermis. The average
moisture retention rate of the humidification system for cuttings was 92.5%. Compared with the
original model, the moisturizing effect of the humidification system increased by 26.87%. The
experimental results show that the improved U-Net model has good generalization and high accuracy,
which provides a method for the design of an accurate humidification system.

Keywords: epidermis moisture; semantic segmentation; U-Net; HSV; humidification system

1. Introduction

The cutting propagation of apple rootstock can provide superior germplasm for
molecular-assisted breeding with the advantage of a short cycle and the preservation of
the mother plant’s excellent traits. It is of great significance in the mining of important
trait genes as well as for improving the efficiency of breeding programs [1,2]. The moisture
level of the apple rootstock cutting epidermis is an external manifestation of its water
content. Achieving precise monitoring of the cutting’s epidermal moisture is an essential
prerequisite for transpiration assessment, phenotypic trait analysis, and appropriate water
supplementation [3]. The evaluation of the moisture level of apple rootstock cuttings’
epidermis mainly relies on manual observation at present, which is a labor-intensive and
inefficient method.

As a substitute for manual vision, machine vision can observe micrometer-scale targets
without contact. The model trained by a neural network can capture required features
rapidly from images which can accomplish the production task and improve production
efficiency [4,5]. The RGB images are often regarded as input data for neural network
training models [6], with the advantage of being convenient to collect and economically
inexpensive. But they are prone to the influence of lighting [7]. During cutting trials in a
plant incubator, blue-purple supplemental lighting is utilized for the fill light to promote
photosynthesis in the cuttings’ certain period. But the blue-purple light interferes with the
expression of information in the RGB images. So it is necessary for the neural network
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model to improve the resistance of light interference. The HSV images represent strong
resistance to light noise in the target detection. Yao et al. [8] converted the input RGB data to
HSV data, endowing the input data with the ability to resist light noise interference, which
enhances the model’s detection accuracy under complex lighting conditions. Li et al. [9]
used the saturation and value information in HSV color space to quickly segment rice plant
pixels and extract vegetation coverage in a complex field environment, reducing the impact
of light changes on target detection to a certain extent. The above-mentioned method
provides a solution approach for the difficulty in collecting target features under poor
lighting conditions by selecting HSV color space. The classification of cutting epidermal
wettability is a distinction of pixel-level optical characteristics, where the neural network
model needs to effectively recognize and classify the pixel features of the images.

Image segmentation technology can assign semantic labels to every pixel in the im-
age [10]. For pixel-level image classification and recognition, achieving end-to-end pixel-
level segmentation provides a solution for the classification problem of cutting epidermal
moisture [11]. With the rapid development of computer theory and hardware devices,
image segmentation has become a research hotspot in the field of machine vision [12].
The PSP-Net network utilizes a featured pyramid structure, generating feature maps with
different receptive fields through pooling layers of varying scales, and then aggregates
these feature maps to obtain excellent global information perception capabilities [13].
Li et al. [14] improved the PSP-Net semantic segmentation model by integrating the tree
skeletal information of the kiwifruit tree, which allows for efficient monitoring of the growth
data of the kiwifruit tree canopy. The Deeplab network achieved accurate classification
of every pixel in the image with the adoption of different techniques, involving multiple
convolutional layers and dilated convolution techniques, which can perform well in dense
dataset prediction tasks [15]. Cao et al. [16] put forward that the DeepLabV3+ neural
network is improved by integrating channels and spatial attention mechanism module.
This improvement can enhance the model’s focus on particularly important features. The
improved model achieved the segmentation of rice and weeds in complex backgrounds.
U-Net is a convolutional neural network with a U-shaped architecture. This U-shaped
neural network is often applied into image segmentation tasks in the medical field [17].
Liu et al. [18] trained a straw coverage detection model by way of U-Net. They employed
the cross-entropy loss function as the loss function to improve the model’s predictive
performance. U-Net has shown excellent performance in various image segmentation tasks.
Its effective feature extraction and fusion mechanisms enable it to perform well on small
datasets [19]. Due to the scarcity of apple rootstock cutting epidermis image data, which
constitutes a small dataset segmentation task, this study improved the U-Net to obtain the
U-DSE-AG-Net model for the classification of cutting epidermis wetness. During the classi-
fication process of cutting epidermis wetness, it is challenging to capture the differences in
pixel color channels due to varying degrees of wetness. Utilizing attention mechanisms to
optimize the neural network structure can enhance the model’s performance.

The attention mechanism is playing a crucial role in the field of deep learning [20,21].
The model is able to selectively pay attention to the key parts of input data by simulating
the attention mechanism of the human visual system, which can process input data more
efficiently [22,23]. The channel attention mechanism module focuses on the importance
of different feature channels. By modeling the interdependency between channels, it
automatically learns the significance of each feature channel and assigns different weight
coefficients to each, thereby enhancing important features and suppressing unimportant
ones [24]. Zhang et al. [25] introduced a channel attention mechanism that integrates
low-resolution feature maps with strong semantic information from higher layers at the
channel level, improving the detection effect of wheatear on the pyramid network model.
Huo et al. [26] utilized the SE attention mechanism module to improve YOLOv5s’ ability to
identify obstacles, which can enhance the working efficiency of sugarcane harvesters.

To improve the classification performance of the model and reduce the impact of
light changes on the outcomes, this study utilizes the HSV color space to obtain the
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cutting images’ information from the Saturation channel and the Value channel, which
are more resistant to light noise interference. This can enhance the expressive effect of the
moisture channel information in the cutting images and accomplish the preprocessing of
input data. The U-DSE-AG-Net integrates the DSE module and the AG module into the
skip connection layers of the U-Net. The DSE module was obtained by improving the
SE attention mechanism module. In response to the requirements of the classification task
of the epidermal wettability of apple cuttings, the loss function Lch was designed, which can
improve the segmentation accuracy and generalization ability of the neural network model.
U-DSE-AG-Net is able to accurately segment cutting images in the condition of complex
light noise interference and achieve the classification of cutting epidermal wettability.

2. Materials and Methods
2.1. Acquisition of Datasets

The apple rootstock cutting images data were obtained from the plant incubator in
the Agricultural Intelligent Equipment and Information Laboratory at the Agricultural
University of Hebei, Baoding, China, as shown in Figure 1. To ensure the correctness
of the experiment conclusions, the designed dataset meets two requirements. It must
include photos with different lighting conditions and epidermal wettability. RGB images
of the cuttings were captured using a 1080P resolution camera with a shooting angle α of
15◦, a vertical height h of 20 cm, and a horizontal distance d of 30 cm from the cell tray.
A schematic diagram of the image data collection system is shown in Figure 2.
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Figure 2. Schematic diagram of the cuttings image collection system 1: Camera bracket; 2: Camera
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During the cutting period of 0–20 days, apple rootstock cuttings require blue-purple
light supplementary lighting to meet their growth and development needs. Due to the
transpiration of the cuttings and the evaporation from the environment, the exchange
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rate of moisture in the epidermal cells of the cuttings is relatively fast. It is necessary to
monitor the moisture level of the cuttings’ epidermis in real time during this stage and to
maintain the cuttings’ epidermis wetness to sustain their normal physiological activities.
Images in this period were selected to create the dataset, with typical sample examples
shown in Figure 3. Cuttings are divided into epidermis-dried cuttings and epidermis-wet
cuttings. Epidermis-dried cuttings means that, after undergoing sufficient evaporation
and the physiological activities of the cuttings, the cuttings’ epidermis has no water film;
epidermis-wet cuttings refer to how, after full atomization and humidification, the cuttings’
epidermis adheres to a layer of water film. The thickness of the water film is about
0.01 mm. During the whole process of image collection, cutting images were divided by
type of light source and epidermal wettability. Eventually, 1200 original RGB cutting images
were obtained, including 300 images of epidermis-dried cuttings without supplementary
lighting, 300 images of epidermis-moist cuttings without supplementary lighting, 300 images
of epidermis-dried cuttings with supplementary lighting, and 300 images of epidermis-
moist cuttings with supplementary lighting. The size of the cropped images was set to
512 × 512 pixels. When the cutting images were collected, the environment parameters
were specified, such as air temperature at 24 ◦C, air humidity at 85%, substrate temperature
at 26 ◦C, and substrate moisture at 60%.
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2.2. Data Enhancement and Expansion

Dosovitskiy et al. [27] demonstrated the value of data augmentation in learning
invariance for neural networks in feature learning. Data augmentation can improve the
model’s generalization and robustness, reduce overfitting, enhance the accuracy of model
predictions, and save on data collection costs [28]. In order to achieve precise prediction of
the moisture level of cutting epidermis by the model, this study increases the number of
images in the existing dataset through random rotation geometric transformations. The
rotation angle of the images is 180◦. The initial 1200 photos were expanded to 2400 by using
this method. Labelme was used to note the cutting images, which were divided into four
main categories, including Wet cutting and Dry cutting in the environment without fill light
and blue-purple fill light. The dataset was divided into training, testing, and validation
sets in an 8:1:1 ratio to support model training.

2.3. Selection of Color Space

Selecting the appropriate color space is fundamental for neural networks to perform
image segmentation for the image data input to the neural network [29]. Currently, common
color spaces mainly include RGB, HSV, and so on [30,31]. The RGB image uses changes in
the red (R), blue (B), and green (G) color channels and their superposition of one another to
conduct feature description on the images [32]. According to Figure 3, the image is divided
into four types, including the epidermis-dried image without supplementary lighting (a), the
epidermis-wet image without supplementary lighting (b), the epidermis-dried image with
supplementary lighting (c), and the epidermis-wet image with supplementary lighting (d).
Visual processing was performed on the cutting images of the same genotype from Figure 3,
resulting in Figure 4, which shows the histograms of the R, G, and B color channels of the
cutting images. Each color channel is treated as an independent array, and the pixel counts
for the corresponding channels are calculated to obtain (a), (b), (c), and (d). In Figure 4,
comparisons between (a) and (c), and between (b) and (d), respectively, indicate that the
number of pixels in the R channel of the cutting images increases dramatically after the
addition of supplementary lighting, while the pixel counts in the G and B channels are
approximately zero. This suggests that the supplementary lighting has a significant impact
on the distribution of the RGB color channel histograms of the cutting images. From the
comparisons between (a) and (b), and between (c) and (d), we found that the histograms
of the corresponding color channels before and after humidification of the cutting show a
small difference in area and an inconspicuous change in peak shape. Figure 4 illustrates
that the RGB color channel information of the cutting epidermis differs slightly before and
after humidification. Therefore, taking RGB images directly as the dataset for training the
model is not conducive to classifying the surface moisture level of the cutting.
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As depicted in Figure 5, the water film adhering to the cutting’s epidermis absorbs
and refracts a portion of the light in actual production. The water film alters the path of
light transmission and reduces the reflectivity of the cutting’s epidermis. This leads to a
decrease in the value of the cutting images. The scattering effect of the water film on light
makes the color components of the cutting’s epidermis more salient and the saturation
more diverse.
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The HSV color space separates the image into three components: Hue, Saturation, and
Value [33,34]. The conversion process of the RGB color space to the HSV color space is as
follows: The process of normalizing the values of the three channels of an RGB image from
the range [0, 255] to [0, 1] is given by Equation (1):

R′ = R
255

G′ = G
255

B′ = B
255

(1)

R′, G′, B′ represent the normalized results of the R, G, and B color channels. Value
is the maximum value among RGB, showing the value of color. Its calculation process is
given by Equation (2):

V = max(R′, G′, B′) (2)

The calculation of Saturation is given by Equation (3):

S =

{
V−min(R′ ,G′ ,B′)

V
0

V ̸= 0
V = 0

(3)

Hue depends on the maximum Value channel of RGB. Suppose M = max(R′,G′,B′),
m = min(R′,G′,B′), so the calculation of Hue is given by Equation (4):

H =


60◦ × G′−B′

M−m M = R′

60◦ × (2 + B′−R′
M−m ) M = G′

60◦ × (4 + R′−G′
M−m ) M = B′

0 M = m

(4)

Figure 6 represents the histograms of the H, S, and V channels of the cutting images,
obtained (a), (b), (c), (d) after normalization treatment.
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epidermis with supplementary light cuttings images; (d) HSV channel histograms of wet epidermis
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With the comparison of (a) and (b), (c) and (d) in Figure 6, the variation range of the
tonal value of the images is small after humidifying the dried cuttings. This proved that
the Hue channel had a poor effect on the wetness of the cuttings, which was not suitable
for classifying the wetness of the cuttings. The information of the images in the HSV color
space can be characterized by Equation (5).
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Pij is the ith color channel of the jth pixel of the image, and N is the number of pixels.
φi reflects the average value of each color channel. ψi defines the dispersion degree of pixel
values within the color channel. Equation (5) can reflect the information characteristics of
the histogram of the image in the HSV color space. These characteristics are the main basis
for the model to classify the moisture degree of cuttings’ epidermis.

The pixel distribution range of the Saturation channel in the inserted spike image (b)
increased from [0.04, 1.00] to [0.02, 1.00] compared to the image (a) in Figure 6. And the
pixel distribution range of the Saturation channel in the inserted spike image (d) increased
from [0.61, 1.0] to [0.05, 1.0] compared to the image (c) in Figure 6. The saturation value of
cuttings with wet epidermis was higher than that of cuttings with dry epidermis, proving
that the images of the cuttings with wet epidermis showed more saturation with more
vivid and saturated color. The pixel distribution range of the Value channel in the inserted
spike image (b) increased from [0.33, 1.00] to [0.08, 1.00] compared to the image (a) in
Figure 6. And the pixel distribution range of the Value channel in the inserted spike
image (d) increased from [0.41, 1.0] to [0.15, 1.0] compared to the image (c) in Figure 6. The
Value of cuttings with moist epidermis is lower than that of cuttings with dry epidermis,
indicating that cuttings with moist epidermis have lower Value and darker images. After
the cuttings were humidified, the water film covered on the surface changed the light
characteristics. The number of low Value pixels increased significantly, resulting in a
decrease in the overall Value of the image, which was consistent with the actual performance
of the cuttings before or after humidification. The number of pixels of HSV channels in
cuttings images still conforms to this rule in the environment with supplementary light.
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Therefore, converting the RGB image of cuttings into HSV color space is conducive to the
understanding and recognition of the wetness of the epidermis of cuttings in the subsequent
image segmentation process. The neural network can complete the wetness classification
of cuttings by learning the information from the Saturation channel and Value channel of
the images.

2.4. U-DSE-AG-Net Neural Network
2.4.1. Neural Network Backbone Structure and Improvement

U-DSE-AG-Net is based on the improvement of U-Net. U-Net is a kind of encoder–
decoder segmentation network proposed by Ronneberger et al. [35], which preserves the
low-level details of the encoder and the high-level semantic information of the decoder
through hopping connection layer. As shown in Figure 7, the U-Net network architecture
consists of a contraction path (left) and an expansion path (right). The shrink path is a typical
convolutional network architecture, while the 3 × 3 convolutional kernel is repeatedly applied
for two convolutional operations. After each convolution operation, the ReLU activation
function is used for data operation, making data with nonlinear characteristics, and then
2 × 2 maximum pooling is carried out to realize a down-sampling operation with step length
of 2. In each down-sampling step, the number of feature channels is doubled compared to the
previous layer, the number of channels in f1 feature layer is 64, and the number of channels
in f5

′ feature layer is 512 after three operations. When the expansion path returns from the
f5
′ layer to the f1

′ layer, skip connection was used to connect corresponding contraction paths
of the same layer. The feature layers of the two paths are stacked to achieve fusion. After the
fusion, the feature layer is performed twice with the convolution kernel of 3 × 3, and then the
2 × 2 convolution check data are used to carry out the “transposed convolution” operation
layer by layer to realize the upward transmission of data. Finally, the feature layer with the
same size as the input image is obtained.
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the encoder contraction path; f1–5

′: Number of decoder extension path layers 1–5.

As shown in Figure 8, in order to improve the attention of U-Net to important features,
the Double Squeeze and Excitation (DSE) networks and the Attention Gate (AG) were
embedded in the skip connection layers between the encoder and the decoder of U-Net
structure, which results in U-DSE-AG-Net. U-DSE-AG-Net architecture can effectively
improve the performance of the model when performing the task of cutting epidermis
wetness classification, benefiting from these two modules.
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The DSE attention mechanism module is based on the improvement of the SE attention
mechanism module, which classifies tasks according to the wetness of cuttings’ epidermis.
The SE module (Squeeze-and-Excitation networks) is the channel attention mechanism
module [36]. By focusing on the characteristics of the saturation and channel value informa-
tion of the cuttings, the neural network can learn better, so that the neural network can pay
more attention to the channel information of the image. The Attention Gate (AG) module
is inspired by the additive attention model [37], and the gating unit is introduced to realize
dynamic selection and weighting of input features, and the attention coefficient determines
the importance of input features, so that the model can focus on the information that is
more critical to that task. The specific operation process of the model on the data is shown
in Table 1. The arrow in Table 1 indicates the direction of data transmission.

In this study, the model is expected to pay more attention to the important features
of epidermis wetness in the cuttings under the condition of blue-purple supplementary
light. In the case of chaotic background together with blue and purple light as interference
noise, more characteristic information of cuttings epidermis wetness should be obtained
during model training. Non-target information such as the background information in the
plant incubator should not play an important role in the epidermis wetness classification
of cuttings. The classification task is mainly based on the feature information of the
saturation and value of the cuttings’ images, so the model should pay attention to the
channel information of the feature layer rather than the spatial information.

Compared with the Convolutional Block Attention Module (CBAM), the SE and ECA
Efficient Channel Attention (ECA) modules only take the channel dimension into account
without capturing features in the spatial dimension to save computational costs. Compared
with the ECA module, the SE module is more suitable for the scene with a large number
of channels. By learning the correlation between channels, the SE module can filter out
channel-specific information and enhance the expression ability of the model. With enough
resources, the SE module is a better choice [38].

In the process shown in Figure 9, the SE module network structure is divided into two
steps, including Squeeze and Excitation. The SE attention mechanism module performs
convolution in the input feature layer X to obtain the feature mapping U of dimension
H × W × C. The feature mapping U is compressed by Fsq(.). When compressed, the spatial
dimension of U is compressed to 1 × 1, and the number of channels remains unchanged.
Each channel obtains a path descriptor, and this descriptor function generates a feature
vector containing global information about the channel. This 1 × 1 × C vector is the output
of the compression operation, which will be the input data for the subsequent excitation
operation. The excitation operation Fex adopts a self-selection transfer mechanism, which
takes 1 × 1 × C eigenvector as input and outputs the weights of each channel. Fscale is
a cumulative operation. By multiplying channels by channels, the weights generated by
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excitation operations are applied to the original feature graph to adjust the importance of
different channels, and the generated outputs are used for subsequent layers of the network.

Table 1. Parameter calculation flowchart of U-DSE-AG-Net. ↓: Data transmission to the lower
network; ↑: Data transmission to upper network; →: Data transmission to the right network.

Encoder Skip Connection Layer Decoder

Input (512, 512, 3)
↓
f1 Conv2d filters = 64 (512, 512, 64)

Conv2d filters = 64 (512, 512, 64) → DSE (512, 512, 64) → AG (512, 512, 128) → Conv2d filters = 64 (512, 512, 64)
Conv2d filters = 64 (512, 512, 64) ↑ Concatenate (512, 512, 192)
Maxpoolings = 2 (256, 256, 64) UpSampling2D (512, 512, 128) f1

′

↓
f2 UpSampling2D (512, 512, 128)

Conv2d filters = 128 (256, 256, 128)

Conv2d filters = 128 (256, 256, 128) → DSE (256, 256, 128) → AG (256, 256, 256)
→ Conv2d filters = 128 (256, 256, 128)

Conv2d filters = 128 (256, 256, 128) ↑ Concatenate (256, 256, 384)
Maxpoolings = 2 (128, 128, 128) UpSampling2D (256, 256, 256) f2

′

↓
f3 UpSampling2D (256, 256, 256)

Conv2d filters = 256 (128, 128, 256) Conv2d filters = 256 (128, 128, 256)

Conv2d filters = 256 (128, 128, 256) → DSE (128, 128, 256) → AG (128, 128, 512)
→ Conv2d filters = 256 (128, 128, 256)

Conv2d filters = 256 (128, 128, 256) ↑ Concatenate (128, 128, 768)
Maxpoolings = 2 (64, 64, 256) UpSampling2D (128, 128, 512) f3

′

↓
f4 UpSampling2D (128, 128, 512)

Conv2d filters = 512 (64, 64, 512) Conv2d filters = 512 (64, 64, 512)
Conv2d filters = 512 (64, 64, 512) → DSE (64, 64,512) → AG (64, 64, 512) → Conv2d filters = 512 (64, 64, 512)
Conv2d filters = 512 (64, 64, 512) ↑ Concatenate (64, 64, 1024)

Maxpoolings = 2 (32, 32, 512) UpSampling2D (64, 64, 512) f4
′

↓
f5

Conv2d filters = 512 (32, 32, 512) UpSampling2D (64, 64, 512)
Conv2d filters = 512 (32, 32, 512) ↑
Conv2d filters = 512 (32, 32, 512) → f5

′
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(1) Squeeze

The input feature map is average pooled at the global level, and the spatial dimension
(i.e., width and height) information is compressed into a channel descriptor at that level,
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which is represented as a direct summation of the spatial dimensions. Equation (6) describes
the extruded eigenvector on the c channel. Channels are average pooled at the global level
and the entire spatial information input to this level is squeezed into a channel descriptor,
which is expressed as a direct summation over and division by the spatial dimensions.

Fsq(uc) =
1

H × W

H

∑
a=1

W

∑
b=1

uc(a, b) (6)

Fsq represents the compression operation, H × W is the number of channels in the input
feature map, and uc represents the feature mapping of the input feature map in (a, b) space.

(2) Excitation

The excitation operation calculates the weight of the input feature map to make the
network adaptively learn the activation difficulty of each channel, which highlights the useful
features and improves the accuracy of the network. The process is shown in Equation (7).

sc = σ(W2δ(W1uc)) (7)

When the input vector uc enters the excitation stage, it passes through two fully
connected layers, where W1 and W2 are the weights of the first fully connected layer and
the second fully connected layer, respectively. σ and δ, respectively, represent Sigmoid
function and ReLU activation function. After the excitation operation, a vector sc of
1 × 1 × C is obtained, where each element corresponds to the weights of the corresponding
channels in the original feature graph, and these weights are applied to the feature graph
U for Fscale operation, as shown in Equation (8).

(3) Scale Operation

Xc = Fscale(Uc, sc) = Uc·sc (8)

Fscale(Uc,sc) represents the multiplication of the vector sc and the feature graph
Uc. Xc represents the final output feature map of the SE attention mechanism module.
Figure 10 shows the operation flow of image data in the SE network.
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In order to improve the attention mechanism module’s attention degree to channels, a
Squeeze path Fsq2 is added to the original SE module to obtain the DSE attention mechanism
module (Double Squeeze and Excitation networks), as shown in Figure 11. The compression
paths Fsq1 and Fsq2 globally average pool the feature layers U, calculate the feature layers
u1 and u2 with the number of channels C/2, and sum u1 and u2 point to point to obtain
the feature vector sqc = 1 × 1 × C before excitation. In the two compression processes, the
channel information of feature mapping sqc with key features is preserved, which improves
the probability of key features appearing. The feature mapping sqc performs excitation
again and outputs the feature vector sc.
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The DSE attention mechanism module is embedded in the skip connection layer after
the encoder convolution, and while contributing weight to the feature channel of the input
image, it learns the features of different categories in the image to improve the classification
accuracy. Compared with the output layer embedded in the network, placing the DSE
module in the skip connection layer will enrich the image channel features in the encoder
unit, and the extracted high-level semantic information can be more effectively fused with
the decoder information, so that the model can better obtain segmentation performance.

Attention gating mechanism module (Attention Gate, AG) is a deep learning-enhanced
model. The network structure before and after improvement is shown in Figure 12, and the
input information is Xc and X′.
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The data dimension input by the AG module is determined by the output data of the
DSE module of each skip connection layer. At the same time, it obtains parameters from the
neural network UpSampling2D data of the deep layer. The dimensions of these two input
data are consistent. The data dimension relationship can be reflected in Figure 8 and Table 1.
Xc(HXc × WXc × CXc) is the data after the DSE attention mechanism module, including
the information of the Saturation channel and Value channel of the feature map; X′ comes
from the data uploaded by the decoder one layer deeper than the DSE attention mechanism
module. Because the depth is deeper than the feature layer Xc, it contains more semantic
information and can more accurately guide the model to learn the key information in the
feature layer Xc. The number of channels in the feature layer CX ′= 2CXc, so the feature
layer X′ is down-sampled, and the feature layer X′ and Xc are, respectively, convolved
by 1 × 1 convolution to ensure that the dimensions of the output feature layer EX′ and



Agriculture 2024, 14, 2223 13 of 24

EXc are consistent. EX ′ ⊕ EXc means that the two feature layers are added point by point
to calculate the middle feature layer Xl. The ReLU function is used to carry out nonlinear
operation on the feature layer Xl and output the feature layer Xl ′ , and the 1 × 1 convolution
kernel is used to carry out convolution operation, and the output feature layer Xm realizes
the fusion of the two feature layers. The AG attention gating mechanism module uses
Sigmoid function to obtain the attention coefficient vector matrix D for the fused feature
layer. The Resampler module restores the dimensions of the attention coefficient vector
matrix D, and the restored vector matrix D′ and the feature graph Xc weighted operation
“⊗” output the subsequent feature layer Xc ′ .

Since both ends of the Sigmoid function are close to saturation when the values are
0 or 1, the gradient in these regions is almost 0. This local gradient and the weighted
operation result of the channel data corresponding to the feature graph Xc are 0, resulting
in the loss of important features. Therefore, in order to improve the performance of the
AG module, the Sigmoid function is replaced by Softmax function to calculate the feature
attention coefficient. The Softmax function is defined as Equation (9):

S(xij) =
exij

∑n
k=1 exk

(k = 1, 2, . . . , n) (9)

“e” is the base of the natural logarithm, xij is the value of the (i, j) element in the feature
layer Xm, n is the total number of categories, and S(xi) is the feature attention coefficient
of element xi. The Softmax function uses an exponential function whose output D′ is a
non-singular matrix. The matrix D′ element corresponds to the value of [0, 1], and the
weighted operation result of the channel data corresponding to the feature graph Xc is not
0, so as to avoid the loss of important features.

2.4.2. Loss Function Selection and Improvement

When training a neural network model, the loss function is a key indicator to evaluate
the difference between the predicted value and the actual value of the model. The dice loss
function is applicable to class-unbalanced segmentation tasks, while the cross-entropy loss
function is applicable to class-balanced segmentation tasks.

In the testing process of the apple rootstock cuttings’ epidermis wetness classification
model, the pixels of cuttings and background images need to be divided on the Hue
channel, with about a 1:9 ratio between cuttings and background pixels. This classification
task is an imbalance segmentation task. When there is a significant class imbalance in
the dataset, the dice loss function focuses directly on the overlap between the predicted
results (cuttings vs. background) and the true labels, making the model more focused on
the segmentation effect on the minority category (cuttings). In the task of segmentation
of cuttings and background images, the dice loss function adopts continuous probability
value, which is defined as Equation (10):

LDi(p, t) = 1 −
2 ∑ pijtij + ε

∑ pij + ∑ tij + ε
(10)

“p” represents the probability value predicted by the model, “t” represents the binary
value (0 or 1) of the true label of the cuttings image, “0” represents the cuttings with
epidermis wetness, and “1” represents the cuttings with dry epidermis. pij and tij represent
the predicted and true value of the (i, j) pixel, ε is a small smoothing term that should be
avoided with a denominator of zero. The dice loss function improves the segmentation
accuracy of cuttings and background by maximizing the overlap between model prediction
results and real labels.

After dividing the pixels of the cuttings, the model needs to distinguish the wetness
degree of the cuttings’ epidermis. The number of all kinds of cutting images should be the
same, and the environmental parameters should be consistent when collecting images. And
the category distribution of the images of cuttings with wet epidermis and dry epidermis
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should be balanced. Therefore, each pixel of the two kinds of images should be carefully
compared to realize the classification of the wetness degree of the cuttings. When the
class distribution of the dataset is relatively balanced, the cross-entropy loss function will
calculate the loss of each pixel independently, which is conducive to the model capturing
the details of the image. And the cross-entropy loss function is suitable for the scene of fine
segmentation boundary. In the binary classification problem of cuttings with wet and dry
epidermis, the cross-entropy loss function is defined as Equation (11):

LJ(y, ŷ) = − 1
HW ∑H

i=1 ∑W
j=1 [yij log(ŷij) + (1 − yij) log(1 − ŷij)] (11)

This function directly measures the difference between the probability distribution
predicted by the model and the true label. HW is the total number of pixels in the cuttings
image. ŷ is the prediction probability of the (i, j) pixel sample that the model considers it
belongs to the class 1, while y is the true label of the (i, j) pixel of the cuttings image. The
model predicts the pixels of the cuttings with wet epidermis and those with dry epidermis
simultaneously. The sum of the predicted probabilities of the two categories is 1.

To improve the performance of the classification model, the dice loss function is
designed as Equation (12), combining the advantages of the dice loss with the cross-entropy
loss function.

Lch = αL(p, t) + βL(y, ŷ) +
λ

2 ∑
i

∑
j

ω2
ij + η (12)

α, β represents the weight of dice loss (the segmentation loss of cuttings and back-
ground image) and cross-entropy loss function (cuttings represent wetness classification
loss), as well as the segmentation of cuttings and background image, identifying the tonal
channel information. The wetness classification of cuttings is based on the calculation of
two channel data, saturation and value. Considering the reasonable distribution of comput-
ing power, the setting is the weight of loss function β > α and α + β = 1. In order to prevent
overfitting and improve the generalization ability of the model, the L2 regularization term
λ
2 ∑i ∑j ω2

ij should be introduced into the reconstruction loss function. ωij is the weight
vector of the element of (i, j), while λ is a hyperparameter that controls the regularization
intensity.

In practical application, it should be ensured that the humidification system can
humidify the cuttings’ epidermis as much as possible, so that most of the cuttings’ epidermis
can remain wet. Therefore, when classifying the wetness of cuttings’ epidermis, it is
necessary to predict the wet cuttings image as dry, which is less harmful than the probability
of predicting the dry cuttings image as wet. So the required model has a certain deviation
between the predicted value and the actual value. It is necessary to increase the bias
parameter η (η > 0) of the loss function Lch to meet this demand, so as to increase the number
of pixels predicted by the model with a pixel category of 1, improving the probability of
the cuttings being predicted to be dry, as well as enhancing the practicability of the model.

2.5. Surface Humidification System for Cuttings
2.5.1. Design for Humidification System

To achieve the goal of moisturizing the epidermis of the cuttings, a 0.01 mm thick
water film is attached to the epidermis of the cuttings. As shown in Figure 13, this study
designed an automatic humidification control system for the epidermis of the cuttings.
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As shown in Figure 13a, the humidifying control system for inserting ears consists
of a camera, module, relay, fan, and atomizer. Figure 13b shows the software design of
the humidification control system for cuttings in this study. The camera collects images
of the inserted cutting epidermis image every minute, and the image data are input into
the neural network model of the module for prediction. The prediction results of the
insertion epidermis image serve as the basis for the operation of the fan and atomizer. In
the prediction results, the proportion of dry inserted epidermis image pixels to the total
number of inserted cuttings pixels is greater than 50%. When the atomized and humidified
insertion epidermis image pixels account for more than 90% of the total number of pixels,
the fan and atomizer will stop running.

2.5.2. Test of Humidification System

This study aims to validate the performance of the neural network model by conduct-
ing experiments on the automatic humidification system of the cuttings’ epidermis, as
shown in Figure 14.
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The rated power of the blue-purple light is 50 W, and the wavelength adjustment
range of the light source spans from 400 nm to 475 nm. The power of the light source under
the light environment of the non-blue-purple lamp is also set to 50 W. The relative humidity
of the experimental environment is 95%. The temperature of the experimental environment
is 22 ◦C. The observation angle set by the camera aligns with the image acquisition system
depicted in Figure 13, ensuring that the number of cuttings observed within the camera’s
field of view meets the prediction requirements of the model. The controller consists of
Nvidia Jetson Xavier nx modules, with 16 GB of RAM and the ability to run the neural
network model. The fog droplet generation device is an ultrasonic atomizer that utilizes
electronic high-frequency oscillation at a frequency of 1.7 MHz to generate water mist by
breaking up the structure of liquid water molecules through high-frequency resonance of
ceramic atomization plates. The negative pressure fan at the droplet outlet transports the
water mist to the surface of the cuttings at a speed of 3.2 m/s, where the droplets deposit
to form a water film for moisture retention. A total of 300 cuttings of apple rootstocks
were subjected to hardwood cutting experiments to serve as test subjects for evaluating the
efficiency of the humidification system.

3. Results
3.1. Configuration of Model Training Environment Parameters

Parameters for model U-DSE-AG-Net training workstation: Intel Xeon E5-2630×2 pro-
cessor that was made by Intel which is located in Santa Clara, CA, USA, 64 GB memory,
disk storage space 4 TB. The type of graphics card is RTX 3090 Ti, with 24 GB storage
space. The workstation is maded by Dell (Xiamen, China) company. The construction
of the training environment is based on Pytorch, selecting Adam optimizer and setting
the training cycle epoch 200 times. For each epoch, it will save the weight once, with a
maximum learning rate of 0.1 as well as a minimum learning rate of 0.0001. α = 0.356,
β = 0.644, λ = 0.5, η = 0.005.

3.1.1. Evaluation Index and Result Based on Loss Value

In the process of model training, Loss and Val_Loss can be used as the basis for
selecting the best model [39,40]. Loss and Val_Loss continue to decrease during the training
process, while the performance of the model on the validation set is gradually improved.
When Val_Loss shows an upward trend and Loss indicates a downward trend, the model
begins to overfit. When both Loss and Val_Loss continue to decline, however, Val_Loss
is always higher than Loss, and the model begins to underfit. In order to verify the
performance of the U-DSE-AG-Net neural network model, it is necessary to compare it
with the control group composed of the DeepLabV3+ neutral network and the PSPNet
neural network model. The model of the U-SE-Net neural network can be constructed by
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embedding the SE module into the skip connection layer of the U-Net neural network, and
then the ablation study can be carried out. All neural network models are trained on the
same set of cuttings’ image data. The two types of loss value change processes recording
the training process of the neural network model are shown in Figure 15.
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In the comparison experiment, the decrease rate of loss value as well as the final value
of the DeepLabV3+ and PSPNet neural networks in the control group is lower than that
of U-Net, which proves that the skip connection layer of U-Net fuses deep-level features
with shallow features. It improves the efficiency and accuracy of image segmentation. Both
Loss and Val_loss of the four neural network models (U-Net, U-SE-Net, U-DSE-Net, and
U-DSE-AG-Net) in the ablation group shows a downward trend while the performance
of the models gradually improves. There is no significant increase in outliers during
the decline in loss value. The regularization term of the loss function Lch improves the
generalization ability of the model, which avoids overfitting the model. When Epoch
reaches 200, it is shown in Figure 15a. The Loss of the six neural network models is 0.221,
0.183, 0.088, 0.074, 0.053, and 0.033. As is shown in Figure 15b, the Val_Loss of the six
neural network models is 0.076, 0.111, 0.090, 0.078, 0.058, and 0.037.

As indicated in Figure 15, in the ablation test, the decrease rate of the loss value of
U-SE-Net is faster than that of U-Net, which proves that the SE module makes the neural
network pay more attention to the information of Hue channel and Saturation channel
of the cuttings’ characteristic images, reducing the capture of spatial information and
accelerating the gradient decline. U-DSE-Net’s decrease rate in Loss value is slower than
that of U-Net and U-SE-Net, but the final value of the two types of loss values is smaller
than U-Net as well as U-SE-Net. As is indicated, under the effect of the new module DSE,
the extended Squeeze phase increases the number of parameters of the neural network
operation, resulting in an increase in the time of a single iteration of the model weight.
Therefore, the decrease rate in Loss value is relatively low, while the model accuracy
improves with the increase in channel information. The decrease rate in loss value of the
neural network U-DSE-AG-Net is only faster than that of U-DSE-Net. Compared with all
other neural networks, the final value of the two types of loss values is the smallest and
the decline curve is stable, which proves that the generalization of the model is the best
while the prediction result is more accurate. This shows that module DSE-AG combines
the characteristic information of the deep layer of the network, allocating the weight of the
characteristics transmitted by the skip connection layer according to the significance, as
well as reducing the interference of background light noise.
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3.1.2. Evaluation Indices and Results Based on Confusion Matrix

The confusion matrix represents the relationship between the predicted results of the
model in the test dataset as well as the true label, which includes TP, TN, FP, and FN. Taking
the wetness of cuttings in the study as an example, TP indicates that the actual category of
cuttings is epidermal dryness, while the predicted category is also epidermal dryness. TN
indicates that the actual category of cuttings is epidermal wet, and the predicted category
is also epidermal wet. FP indicates that the actual category of cuttings is epidermal wet,
while the predicted category is epidermal dryness. FN indicates that the actual category
of cuttings is epidermal dryness, while the predicted category is epidermal wet. In binary
classification, the conclusion matrix is used to obtain the above four results (Figure 16).
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The evaluation indices based on the confusion matrix include Precision, Recall,
F1-Score, and Accuracy. As shown in Equation (13), precision represents the proportion of
the TP in the sample for which the model predicts a positive example.

P =
TP

TP + FP
× 100% (13)

As shown in Equation (14), recall represents the proportion of TP predicted by the
model to all positive examples.

R =
TP

TP + FN
× 100% (14)

F1-Score is the harmonic mean of the accuracy rate of model prediction and recall rate.
The computation formula is Equation (15).

F1 =
2PR

P + R
× 100% (15)

As is shown in Figure 17, in order to save the computing resource, each of the five
Epochs is one group, which assesses the F1-Score of the neural network model once. The
F1-Score of the six neural networks is on the rise. The F1-Score of the U-DSE-AG-Net neural
network model is greater than that of other neural network models with the final value of
0.948. This proves that the accuracy rate P and recall rate R of the U-DSE-AG-Net neural
network model are high. It will be more precise than other neural network models when
identifying the significant sample.
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Accuracy represents the proportion of samples in which the model predicts the correct
degree of epidermal wetness from the total sample. It can be seen in Equation (16).

A =
TP + TN

TP + FP + FN + TN
× 100% (16)

In order to verify the accuracy rate of each neural network model in classifying the
degree of wetness of cuttings, a segmentation test should be conducted on the four types of
images, as seen in Figure 3. In order to ensure the scientific prediction of the model, the
cuttings’ genotypes used in the experiment are different from those in Figure 3. In this study,
the cutting images of three genotypes were selected for the experiment. Each genotype has
100 rootstock pictures. A total of 300 images were randomly selected from each type of
images. Each input image is 512 × 512 pixels. Figure 18 shows the comparison between
the segmentation effect of each neural network and manual annotation. The red split
information represents dry epidermis pixels of the cuttings. The green split information
represents wet epidermis pixels of the cuttings.
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The accuracy rate of each neural network model for image segmentation results is
shown in Table 2.
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Table 2. Segmentation results of four kinds of cuttings by neural network models.

Neural Network

Accuracy Rating (A)/%
No Supplementary Lighting Supplementary Lighting

Wet Epidermis Dry Epidermis Wet Epidermis Dry Epidermis
N40 N59 G935 N40 N59 G935 N40 N59 G935 N40 N59 G935

DeeplabV3+ 79.03 78.55 89.63 69.02 67.77 89.54 23.99 34.15 37.84 32.57 35.09 35.12
PSPNet 44.23 55.21 65.03 33.38 37.46 63.21 20.11 10.56 27.49 24.16 23.33 27.47
U-Net 87.22 85.69 90.04 85.23 86.52 90.42 31.28 29.55 42.75 35.26 45.07 49.06

U-SE-Net 90.89 90.11 92.15 89.33 88.29 92.64 69.24 79.02 78.58 71.59 65.22 78.84
U-DSE-Net 92.11 90.01 93.14 90.31 91.28 93.47 79.62 81.18 83.35 82.32 80.58 84.93

U-DSE-AG-Net 95.01 94.99 95.25 94.73 95.05 95.44 85.62 88.44 88.16 89.09 88.97 89.68

N40, N59, and G935 in Table 1 represent the varieties of cuttings. N40 refers to Xinjiang
wild apple 40. N59 refers to Xinjiang wild apple 59. G935 is a rootstock variety with good
stress resistance. The accuracy rate of rootstock cutting recognition of these three genotypes
by the statistical model reflects the generalization of the model.

As shown in Figure 19, the average accuracy of the model segmentation in different
scenes was compared in this study. Figure 19a shows the average segmentation accuracy of
the models for the cutting images of three genotypes without a blue-purple supplementary
light environment. Figure 19b shows the average segmentation accuracy of the models for
the cutting images of three genotypes in the blue-purple supplemental light environment.
The average recognition accuracy of the U-DSE-AG-Net model in identifying cuttings with
wet epidermis and dry epidermis without blue-purple supplemental light was 95.07% and
95.07%, respectively. The average recognition accuracy of the U-DSE-AG-Net model in
identifying cuttings in blue-purple supplemental light was 87.41% and 89.24%, respectively.
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From Figure 18 and Table 2, the accuracy of all neural network models without
supplementary lighting in classifying the degree of wetness of cuttings is higher than
that in the case of supplementary lighting, which proves that fill light has exerted a
bigger influence on the classification of model. When the U-DSE-AG-Net model has no
supplementary lighting, the accuracy of classification of wetness of cuttings with wet
epidermis and dry epidermis is 95.25% and 95.44%. When it has supplementary lighting,
the accuracy of classification of wetness of cuttings with wet epidermis and dry epidermis
is 88.16% and 89.68%. The U-DSE-AG-Net model, for the classification of four types
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of cuttings images, is more accurate than other neural networks for the classification of
cuttings’ epidermis wetness, and the prediction effect is the best. When comparing the
U-DSE-AG-Net model with the U-Net model, the classification accuracy of the cuttings
with wet epidermis and dry epidermis increases by 5.21% and 5.02%, respectively, under
the condition of no supplementary lighting, as well as increases by 45.41% and 40.62% with
blue-purple supplementary lighting. The U-DSE-AG-Net model has a strong ability to
resist light noise interference.

As seen in Tables 2 and 3, and Figure 19, the Loss function of the ablation experimental
groups U-Net, U-SE-Net, U-DSE-Net, and U-DSE-AG-Net neural network is the function
Lch. Compared with the control group DeepLabV3+ and PSPNet neural network, on the
condition of no supplementary lighting, the accuracy of classification of cuttings’ epidermis
wetness in the ablation experimental group is higher than that in the control group, which
proves that the loss function Lch combines the advantages of cross-entropy loss function
and dice loss. It can also accurately segment the cuttings’ image pixels from the background
image pixels, which realizes the accurate classification of the wetness of cuttings’ pixels.
The accuracy of the model in predicting the dry epidermis of cuttings in the ablation test
group is higher than that of the wet epidermal image, which proves that the bias parameter
η in the loss function Lch biases the prediction results more in favor of the dry epidermis.
The predicted results are favorable for the moisturizing of cuttings.

Table 3. Performance parameter statistics of humidification system.

Neural Network Number of
Images

Average Detection
Time (ms)

Number of Converted
Frames (Fps)

Moisture Retention Rate of Cuttings (%)
No Supplementary

Lighting
Supplementary

Lighting

DeeplabV3+ 300 85.86 34.93 85.43 32.04
PSPNet 300 164.07 18.28 61.31 23.46
U-Net 300 78.99 37.98 90.22 41.04

U-SE-Net 300 75.53 40.80 90.62 73.53
U-DSE-Net 300 77.16 38.88 92.37 83.66

U-DSE-AG-Net 300 78.03 38.45 95.14 89.87

4. Discussion

1. In this study, the classification of epidermis wetness of the cuttings included wet and
dry categories. The classification of the epidermis wetness of the cuttings needs to
be further divided into more detailed grading according to the actual requirements
of production. The factors affecting the epidermis wetness of the cuttings include
not only the interaction with the external environment, but also the consumption
and generation of water by the physiological activities of the cuttings themselves
(transpiration consumes water, while photosynthesis produces water). Therefore, the
epidermis wetness of the cuttings is a dynamic process, which requires not only the
observation of the changes in the external environment, but also the physiological
activities of the cuttings themselves. Spectroscopy technology can accurately reflect
the content of chlorophyll as well as carotene in vegetation cells. It can also indirectly
reflect the intensity of photosynthesis in epidermal cells of cuttings. Microscopy
imaging technology is used to observe the degree of stomatal opening and closing
of cuttings’ epidermal cells, which could also be used to monitor the intensity of
transpiration of cuttings’ epidermal cells. Therefore, in order to establish a model
of the change in the epidermis wetness of the cuttings, the image segmentation
technology is combined with spectral technology as well as microscope imaging
technology to fully explore the dynamic communication relationship between the
cuttings and the external environment, constructing a dynamic classification model of
the change in the wetness of the epidermis of the cuttings.

2. In the process of applying machine vision technology to the monitoring of the moisture
of the epidermis of cuttings, the intensity and color of the fill light have a direct
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impact on the imaging results. Therefore, when constructing the cuttings model of
the epidermal wetness of cuttings, it is necessary to further explore the relationship
between the spectral information, transmission mode, transmission path of external
light, and the imaging of epidermal wetness of cuttings. The physical characteristics
of the epidermis of cuttings of different genotypes are diverse, such as roughness,
fluff, or not. It not only leads to the difference in the adhesion state of the water film,
but also changes the transmission of the fill light line as well as influences the effect
on the expression of the epidermis of the cuttings in the color space, so it is necessary
to explore the influence mechanism of the physical properties of the epidermis of
the cuttings and the influence of light source on the wetness of the epidermis of the
cuttings. In order to further improve the understanding of the wetness information
of cuttings by the neural network model, the advantages of multiple color spaces,
such as RGB, HSV, LAB, HIS, and so on, can be combined in the future to obtain the
features of the epidermal wetness of cutting images more efficiently.

3. With regard to classifying the epidermal wetness of cuttings, aiming at further improv-
ing the model transferability of the neural network model, it is necessary to change
the supervised training method in this study to the unsupervised training method
in the future, so that the neural network can independently divide the level of the
epidermis wetness of the cuttings, improving the classification effect of the neural
network on the epidermis wetness of the cuttings. In order to better embed the mobile
terminal to provide data for the humidification system, the U-DSE-AG-Net model is
needed for lightweight design in the future.

5. Conclusions

The neural network of image segmentation is used to design a classification model for
the epidermal wetness of cuttings. This model is designed to detect accuracy and efficiency
of the epidermal wettability during the growth process for apple rootstock cuttings, and to
realize the moisture retention of cuttings.

1. This study converted RGB images of the cuttings into the HSV color space, achieving
the effective expression of the wetness information of the cutting epidermis. The Hue
channel and the Saturation channel information can be used as the basis for classifying
the wetness of the epidermis of cuttings in the environment of supplemental lighting,
improving the classification ability of the model in complex light environments.

2. The module DSE strengthens the model’s ability to capture Hue channel and Satu-
ration channel information based on the module SE. The module DSE is integrated
with the improved module AG, assigning non-negative weights to important features,
which reduces the error of prediction. The skip connection layers of the U-Net embed-
ded module DSE and module AG result in U-DSE-AG-Net. This network structure
can weaken the lighting noise interference in the skipping connection layer. The com-
parative test and ablation test show that the U-DSE-AG-Net neural network model
has the best performance. Loss and Val_Loss are the smallest; that is, 0.033 and 0.037,
respectively. The F1-Score is improved by 3.2% compared to U-Net. The accuracy of
the model in predicting the wetness and dryness of the cuttings epidermis is increased
by 45.41% and 40.62% in the supplementary blue-purple light environment. The
model has a solid ability to resist light noise interference.

3. The experiment of identifying the moisture content of the epidermis of three kinds of
cuttings with genotypes N40, N59, and G935 was carried out. The average accuracy
of the model was 91.69%. The detection speed rate of the model was 38.45 fps. The
average moisture retention rate of the humidification system for cuttings was 92.51%.
The system can realize the real-time monitoring of the moisture content of the cuttings’
epidermis and ensure consistent moisturizing. The model has good generalization and
practicability. It qualifies as an economical, non-contact, as well as non-destructive
monitoring method.
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