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Abstract: The impacts of climate change on agricultural production are becoming more severe, leading
to increased food insecurity. Adopting more progressive methodologies, like smart farming instead
of conventional methods, is essential for enhancing production. Consequently, livestock production
is swiftly evolving towards smart farming systems, propelled by rapid advancements in technology
such as cloud computing, the Internet of Things, big data, machine learning, augmented reality, and
robotics. A Digital Twin (DT), an aspect of cutting-edge digital agriculture technology, represents
a virtual replica or model of any physical entity (physical twin) linked through real-time data
exchange. A DT conceptually mirrors the state of its physical counterpart in real time and vice versa.
DT adoption in the livestock sector remains in its early stages, revealing a knowledge gap in fully
implementing DTs within livestock systems. DTs in livestock hold considerable promise for improving
animal health, welfare, and productivity. This research provides an overview of the current landscape
of digital transformation in the livestock sector, emphasizing applications in animal monitoring,
environmental management, precision agriculture, and supply chain optimization. Our findings
highlight the need for high-quality data, comprehensive data privacy measures, and integration across
varied data sources to ensure accurate and effective DT implementation. Similarly, the study outlines
their possible applications and effects on livestock and the challenges and limitations, including
concerns about data privacy, the necessity for high-quality data to ensure accurate simulations and
predictions, and the intricacies involved in integrating various data sources. Finally, the paper delves
into the possibilities of digital twins in livestock, emphasizing potential paths for future research
and progress.

Keywords: digital twin; livestock management; animal health; precision agriculture; environmental
monitoring; supply chain optimization

1. Introduction

Food insecurity is a pervasive and pressing global issue with significant consequences
for individuals, communities, and nations. As the global population approached nearly
8 billion in 2022 and is expected to exceed 10 billion by the latter half of the 21st century, the
United Nations’ Food and Agriculture Organization (FAO) predicts at least a 50% increase in
food commodity production compared to 2012 [1,2]. Modern agricultural practices depend
heavily on precise and up-to-date information about farm activities. Digital technologies,
such as sensing and monitoring devices, advanced analytics, and intelligent equipment, are
increasingly vital in agricultural operations [3]. The swift progress in technology, including
cloud computing [4], the Internet of Things (IoT) [5], big data [6], machine learning [7],
augmented reality [8], and robotics [9], is significantly transforming agricultural production
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towards smart farming systems. In developing countries, livestock production provides
a steady food supply, employment opportunities, and the potential for higher income.
Much of the demand for animal products will be met through local production. However,
despite the increasing need for animal protein, consumers are more concerned about the
environmental, public health, and animal welfare impacts of livestock farming [10]. Smart
Farming represents the next phase of precision agriculture, where management activities
depend on precise location data along with contextual information, situational awareness,
and event triggers.

The digital revolution has introduced a new era of innovation and efficiency across
various industries. A significant advancement in agriculture is the advent of digital twin
technology, a cutting-edge tool for monitoring and understanding systems and processes.
Digital twins (DTs) are virtual replicas of physical assets or processes that enable real-
time monitoring, predictive analytics, and enhanced decision-making [11,12]. They offer
valuable insights and optimization opportunities. In the livestock sector, where the main
priority is managing animal health, welfare, and productivity, the application of DT tech-
nology holds substantial promise for revolutionizing traditional farming practices and
addressing emerging challenges [13]. The agricultural physical system, or the physical
world in agriculture, is a complex and dynamic environment that includes essential in-
formation and characteristics of objects or devices, such as their shape, position, cooling
mechanisms, material composition, and living organisms [14,15]. This physical system
can pertain to a single component of an object or the entire object with its subcomponents
in a physical setting. It encompasses living organisms, such as animals, and the struc-
tures and resources on a farm, including buildings [16], feeding systems [17], and animal
populations [14,15,18–20]. Measurement technologies and sensors are essential to collect
data from these physical objects. The physical system is fundamental, as a DT without
a corresponding physical entity is merely a model. The scope of a DT is defined by the
real-world physical system it represents.

DTs in smart livestock have various applications such as animal tracking and disease
detection sensors, observing animal behavior, building sensors to monitor temperature,
humidity, and ammonia levels, managing energy supply in livestock barns, and optimizing
the food supply chain [14,15,18–23]. This review study examines the applications of DT
technology in livestock farming, driven by its significant advancements and transformative
potential. In addition, this study explores the potential benefits of using digital technology
in livestock industries. In order to accomplish this objective, the present study aims to
address the following research queries:

• What is the precise definition of “digital twins”? What are the architecture’s essential
characteristics and attributes that depend on digital twins? What are the leading
technologies and fields where digital twins are used?

• What methods exist for integrating DT technology into the livestock industry? What
is the impact of adopting DT on the livestock sector? In what scenarios can DT
technology be employed in the livestock industry to attain notable benefits?

• What are the current opportunities and challenges in implementing artificial intelli-
gence technology and DT technology in the livestock industry? What are the possible
future paths and advancements in evolution and development?

Paper Outline

The remainder of the written material is structured as follows: Section 2 delineates
the methodology for selecting research articles pertinent to the applications of digital
technology in the livestock sector. The general overview of DTs, including the timeline,
interpretations, and architecture, is presented in Section 3. Section 4 explores prospective
domains for DT applications in livestock management and critically analyses existing
published research articles. Section 5 delineates the significance of incorporating PLF in the
implementation of DTs. Furthermore, it summarizes the concept, components, properties,
and assumptions associated with implementing digital transformation in the livestock
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sector. Section 6 examines the benefits of implementing DTs in the livestock sector, while
Section 7 addresses the immediate challenges and constraints. Section 8 concludes with a
synthesis and analysis of the principal findings.

2. Materials and Methods

In this study, we identify and analyze the applications of the newly developed
DT technology in livestock production systems to improve their outputs and enhance
their sustainability. A systematic review was carried out using the methodology rec-
ommended by previous systematic and bibliometric reviews, following the PRISMA
guidelines [15,19,24–27]. Furthermore, the methodology introduced in the study was
chosen due to its high efficiency in identifying relevant research sources using strict quality
criteria. Based on these criteria, the review was conducted.

Literature searching methodology: The literature search on DTs was conducted using
the academic research databases Google Scholar, Scopus, and Web of Science (WoS). Works
indexed in ScienceDirect, IEEE Xplore, and SpringerLink were indirectly included, as
the previously mentioned databases cover these sources. The primary keyword used
was ‘digital twin’, combined with terms such as ‘cattle’, ‘smart farming’, ‘swine’, ‘energy
management’, ‘livestock production’, ‘pigsty’, ‘meat’, ‘animal’, ‘application’, ‘welfare’,
‘case study’, ‘environmental control’, ‘pig’, ‘dairy’, and ‘livestock.’ These keywords were
combined using the Boolean operators ‘AND’ and ‘OR’ to yield the most precise results.

Eligibility Criteria: The selected contributions met the following criteria:

• Peer-reviewed journal articles and conference papers presenting DT technology appli-
cations in the livestock farming sector were included.

• Only contributions accepted and published in indexed journals and conference pro-
ceedings were considered.

• The literature search was restricted to works published in English.
• Contributions from around the world were included.

Research questions: This study aims to identify the most recent research on using
DT technology in livestock production systems. The goal is to analyze the findings and
determine the opportunities and challenges associated with this topic. Thus, the objectives
of the research can be concisely summarized in the following research questions (RQs):

• RQ1—What is the definition of “digital twins”? What are the architecture’s fundamen-
tal features and qualities that rely on digital twins? What are the primary technologies
and areas of application for digital twins?

• RQ2—How can digital twin technology be integrated into the livestock sector? What
is the effect of implementing digital twins on the livestock industry? What are the
specific situations in which digital twin technology can be utilized in the livestock
industry to achieve significant advantages?

• RQ3—What are the current prospects and obstacles in utilizing artificial intelligence
technology and digital twin technology in the livestock industry?

• RQ4—What are the potential future trajectories and advancements in evolution
and development?

3. Digital Twin Technology
3.1. Timeline of Digital Twins

Despite the recent surge in the popularity of DT technology, the concept is only
partially novel. An advanced technique for evaluating and overseeing embedded systems
was employed in space missions, originating from the early Apollo missions by the National
Aeronautics and Space Administration (NASA). The “Twin” concept was first utilized as
a safety measure during the Apollo missions in the late 1970s. As shown in Figure 1, the
timeline of DT evolution is described.
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Figure 1. The timeline of Digital Twins.

The DT concept is credited to Michael Grieves, who collaborated with John Vick-
ers from NASA. Grieves first introduced the idea during a lecture on product life-cycle
management (PLM) in 2003, where he referred to it as the “Conceptual Ideal for PLM”.
Even in its early development, Grieves highlighted several core aspects of DTs [12,15,28].
Grieves emphasized the need for data and information exchange between real and virtual
entities to ensure they mirror each other while discussing the distinction between real
and virtual spaces. The next decade, the 2010s, proved to be a watershed moment in the
growth of DTs as a concept supported by swift development of IoT and data analytic
tools. The capacity to gather, preserve, and evaluate information allowed the production,
aviation, or automotive industries, for example, to begin implementing DT technology
for optimizing the systems and performing predictive maintenance. The decade saw the
incorporation of DTs within operational workflow processes for improved efficiency and
better decision making. In 2016, Siemens introduced DT technology as part of Industry
4.0. Since then, interest from researchers has surged, leading to a significant increase in
related research activities [29–31]. At present, the three-dimensional DT model established
by Grieves is the most implemented. However, with the ongoing evolution of application
requirements, new trends and needs in DT development and application are emerging. To
meet these demands, previous study [31] introduced a five-dimensional DT model that
expands on Grieves’ original concept, aiming to facilitate broader applications of DTs across
diverse sectors. The five-dimensional DT model can be expressed through the following
formula [29]:

MDT = (PE, VE, SS, DD, CN) (1)

where MDT refers to the DT, PE represents the physical entity, VE is the virtual equipment,
SS stands for services for PE and VE, DD refers to DT data, and CN is the connection among
PE, VE, SS and DD.

This formulation encapsulates the key dimensions contributing to a comprehensive
DT system.

3.2. Overview and Interpretations of Digital Twins

DTs have been delineated by diverse organizations and scholars. Two widely recog-
nized definitions are those provided by NASA and Grieves. NASA characterized a DT for
a space vehicle as “A Digital Twin is an integrated multi-physics, multiscale, probabilistic simu-
lation of an as-built vehicle or system that uses the best available physical models, sensor updates,
fleet history, etc., to mirror the life of its corresponding flying twin” [32]. Grieves described DT
as follows: “Digital Twin is a set of virtual information constructs that fully describes a potential
or actual physical manufactured product from the micro atomic level to the macro geometrical
level” [32].

However, Greaves pioneered the technological realm by formalizing the prototype
components of DTs currently in use. According to his assumptions, DTs are virtual represen-
tations of physical assets, as previously discussed. In addition, he stated that a fundamental
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DT model is composed of three primary components: (a) physical products in their real
representation, (b) virtual products in their virtual representation, and (c) the bidirectional
data connections that transmit data from the physical to the virtual representation, as well
as information and processes from the virtual representation back to the physical. This
flow was illustrated by Grieves as a cyclical interaction between physical and virtual states
(mirroring or twinning), where data is transferred from the physical realm to the virtual,
and information and processes are conveyed from the virtual realm back to the physical.
Figure 2A elucidates the theoretical framework governing the relationship between the
physical environment and the virtual environment. Similarly, Figure 2B depicts the transfer
of states between the physical asset and its DT.
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3.3. Technologies That Facilitate Digital Twins

Recent technological advancements have eliminated the technical obstacles to imple-
menting DTs. The DT framework integrates various techniques, including cloud computing,
machine learning, augmented reality and virtual reality, IoT, and application programming
interfaces to achieve DT implementation. Each technology not only provides essential
functionalities but also enhances the synchronization, intelligence, and user interactivity
within the DT framework. The following points will be discussed below.

• Internet of Things (IoT): IoT forms the backbone of DTs by connecting physical devices
and sensors that continuously collect and transmit data. This flow of real-time data
enables a highly responsive DT, allowing the virtual model to reflect changes in
the physical object in an accurate and timely manner. They also collect data on
biological parameters such as animal body temperature, weight, movement, and
relative information [4,33,34]. Additionally, they monitor animal health indicators such



Agriculture 2024, 14, 2231 6 of 22

as activity monitoring, stress, respiration, and potential issues [35]. The transmission
of this data through communication protocols and gateways allows the DT to perform
intelligent optimization of the environment, predictive health scenarios, and real-time
monitoring by ensuring that the virtual model remains synchronized with the physical
asset [36,37].

• Machine learning (ML): ML, a form of artificial intelligence, allows computers to
acquire knowledge from data and make inferences or judgments without explicit
programming [38,39]. ML facilitates sophisticated simulations and scenario planning,
offering profound insights for strategic decision-making. ML enhances DT by allowing
more adaptive and data-driven decision-making processes, optimizing supply chains,
and simulating environmental impacts, thereby increasing operational responsiveness
across industries [3,11,27,36].

• Cloud computing provides the scalable infrastructure needed to handle large volumes
of data generated by DT systems [40]. By offering remote access to storage and
processing resources, cloud computing supports real-time monitoring and enables
predictive analytics at a global scale. This technology reduces the need for local
infrastructure, making DT implementation more flexible and cost-effective [41–43].

• Augmented reality (AR) and Virtual reality (VR): AR and VR introduce immersive visu-
alization in DTs through letting users interact with virtual models in three-dimensional
space. While AR overlays data, in real time, on actual equipment for going through
maintenance or operational tasks, VR uses completely virtual simulations to train or
test designs. The use of such technologies makes the normally complex DT data easily
accessible and intuitively understandable to better inform engineers and operators in
decision-making [8,21,44].

Together, these technologies enable a DT to capture real-time data from physical
systems, analyze it, and simulate scenarios that inform actionable insights. Figure 3
illustrates a simplified sequence chart that represents the interactions and components
associated with these technologies that enable digital transformation, where the physical
object signifies the actual object or system being monitored and controlled. The DT is the
virtual representation of the Physical Object (PO), wherein data is processed and analyzed.
The PO provides sensor-aggregated data to the DT, which subsequently transmits the data
to the Analytics component for processing. The Analytics component delivers analytical
results to the DT. The DT transmits these analytical results to the decision maker, who bases
decisions on the information received. The DT subsequently transmits optimized actions
to the Actions component. The Actions component executes the optimized actions in the
PO [19,30,45].
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3.4. Architecture of Digital Twins

To effectively integrate devices with their virtual counterparts and enable smooth in-
formation exchange among DTs, physical twins, and external systems, a previous study [46]
proposed a six-layer DT architecture, shown in Figure 4. This architecture includes var-
ious physical devices, sensors, and data collection systems that manage data transfer
and processing in the virtual environment. Layers 1 and 2 represent the physical entity:
Layer 1 includes devices like actuators and sensors, while Layer 2 specifies the data sources.
Layer 3 contains a local data vault that gathers controller values from Layer 2 and facilitates
communication among the layers and the physical entity. Open Platform Communication-
Unified Architecture (OPC-UA) is essential for data exchange between these layers. Layer
4 converts data into useful information using IoT technologies, connecting Layer 3 to Layer
5. Layer 5 stores historical data, improving the DT’s availability and accuracy, while Layer
6 monitors machine health and contains historical information about the physical twin.
This layer allows users to interact with a virtual version of the physical twin, helping with
decision-making and predictions. Tools like Siemens Tecnomatix Plant Simulation, OPC-
UA, and artificial intelligence assist in analysis and optimization. Recent advancements in
DT technologies and the five-dimensional DT model developed by a previous author [31]
have also made it possible to implement DTs effectively.
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4. Potential Areas of Digital Twin Applications in Livestock Management

Over the past few years, DT technology has become more widespread in livestock
management, including animal monitoring, environmental management, precision agricul-
ture, and supply chain optimization. The subsequent sections present a comprehensive
summary of DTs’ primary application areas and use cases in the livestock industry. The
summary of recent applications of DTs in the livestock sector is shown in Table 1. Besides
a conceptual framework of potential possibilities of DT in livestock sector is explained in
Figure 5.

4.1. Environmental Management

General environmental control in animal husbandry involves constantly observing and
controlling temperatures, humidity, air, and water quality within those premises. The latest
DT technologies have sensors and IoT devices that continuously monitor environmental
parameters in real time, with indoor climate conditions, ventilation efficiency, and pollutant
levels. For example, a previous study [16] developed a DT-based framework for real-time
environmental control in a pig housing facility. This research used energy consumption
estimation of virtual objects and their optimum operational strategies as scenarios to
evaluate the energy performance of virtual HVAC systems that were not installed physically
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in a pig house through data synchronization between digital and physical spaces. The study
concisely described how real-time and virtual environments interact. Based on simulated
conditions in a virtual pig house using real data, the most energy-efficient solutions within
the study were identified. A DT framework for pig housing was presented that enables
comfortable feeding conditions while improving functionality within the livestock sector.
Through DT-based dynamic simulation, the framework identifies energy-efficient solutions
in the design phase and proposes guidelines for the optimal control of HVAC systems
during operation. DTs have potential to analyze environmental data and optimize control
systems to help farmers maintain optimum conditions for animal health, welfare, and
productivity using minimal resources and causing minimal environmental impact.
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In addition, DTs offer a robust, multifaceted tool for advancing sustainable practices
in livestock agriculture, with applications extending to waste management, climate adap-
tation, and resource efficiency. DTs provide insights that help reduce waste and enhance
recycling and composting efforts by tracking and analyzing waste production. For instance,
manure monitoring from livestock can be easily reused for biogas production or as miner-
alized fertilizers, hence closing the loop of agricultural waste management, which is part of
reducing environmental impact. In addition, there is great potential to integrate climate
modelling approaches into DTs to adapt the livestock system towards climate change. Gen-
eral circulation models (GCMs) and regional climate models (RCMs) project temperature,
humidity, and extreme weather changes by reproducing atmospheric and environmental
events. Embedding these projections within DTs enables proactive adjustments to climate
scenarios, such as the effects of rising temperatures and humidity on indoor air quality
and methane emissions. This climate-enhanced DT framework could inform management
practices supporting animal welfare and environmental goals, making livestock systems
more resilient and adaptive. Integrating these capabilities into our low-cost indoor air
quality monitoring system and ML model would further improve methane management
and help to ensure sustainable animal farming [47,48].

4.2. Farm Mangement

DT technology in farm management opens up a wide avenue for transformation by
creating virtual models of real-time farm activities. With its adoption, farmers can have
high accuracy tracking of the health and behavior of the livestock, as well as the prevailing
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environmental conditions. DTs merge sensor data with weather forecasts and animal health
records to do scenario simulations, optimize resources, and predict potential problems and
outbreaks of disease or feed shortages. For instance, Jo et al. performed a feasibility study
on the preliminary design of an intelligent pig farm based on DTs for improving the living
conditions of animals. This research focuses on the two-layer architecture of smart livestock
farming: the DT engine and the DT framework. It also briefly outlines an autonomous
control system, showing how physical and DT are integrated; however, the results need to
be assessed, and the research has been expanded in subsequent work [22]. The same author
has examined energy-related performance concerning various virtual objects in a pig barn,
building on the previous study. An energy planning framework for a pigsty to ensure
optimal feeding conditions was developed in that study [21]. The energy consumption
analysis involved utilizing fans with differing capacities in the pigsty. The results yielded
insights into projected energy consumption and provided recommendations for installing
new fans.

Likewise, Mu et al. (2023) [49] integrated the digital twin into animal husbandry in a
case study of the Qinghai Meadow that explored how to integrate DTs into the traditional
method of pasture management by creating a livestock supply chain. It is based on
two main flows: the first is horizontal communications between suppliers and consumers
for the commercial supply chain, and the second covers the IT operating system, structured
into three layers: physical, data, and virtual. According to this model, data received by
sensors in the physical layer are submitted to the data layer for processing, evaluation,
management, and storage. The physical layer further routes the information to the virtual
layer, where AI and ML process the data transmissions and feed the results back into the
physical layer. This minimizes losses due to severe weather and predicts diseases that
would be identified using machine learning during the animal’s life cycle. The system
will raise an alarm when abnormal behaviors or environmental anomalies are detected.
Unfortunately, the study was unable to include any evaluation results of the solution.

4.3. Animal Monitoring

The significant applications of DTs are relatively simple in monitoring animals. AI
and ML are integral to animal husbandry, facilitating constant surveillance of animals
and their surroundings. This continuous monitoring facilitates enhanced understanding
of animal behavior, more efficient disease management and prevention, and superior
decision-making for farmers. DT technology has emerged as a promising innovation,
building upon these technologies. In contrast to conventional models, DTs generate real-
time digital representations of physical entities, consistently refreshed with data. DTs, while
enhancing efficiency and decreasing costs across multiple sectors, possess considerable
potential for livestock farming. They could transform large-scale precision agriculture,
optimize the utilization of machinery and equipment, and improve the health and welfare
of various livestock. In support of this, a previous study [20] cited a study where sensor-
based decision-making technology for animals will be able to simulate and predict, in real
time, their emotional states and behaviors. While these proposals sound promising, they
are mostly theoretical and have not been empirically validated. The study claims that all
factors concerning physical and emotional well-being, social interaction, and environmental
conditions can be considered in comparative studies for an experimental group of farm
animals with DT technology and a control group without. A previous study [50] introduced
the reference architecture for a DT system to be applied to a smart animal welfare platform
to predict farm animal behavior. It typically consists of several interconnected parts in the
architecture: remote and wearable sensors gathering data from animals, cloud servers that
interface with sensors and process data, AI models for pattern recognition, ML models
for predictive analytics, and a user interface through which users can manipulate the
information and predictions coming from DT systems. They also highlighted the possible
applications of technology in animal husbandry, monitoring animal emotions, and early
detection of severe diseases in livestock.
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Furthermore, Yi Zhang et al. (2023) [51] introduced a universal DT architecture for
dairy cows that encompasses their entire lifecycle to enhance animal welfare and produc-
tion efficiency. A bespoke collar incorporating ultra-wideband (UWB) chips and inertial
measurement units (IMUs) was employed to gather real-time location and neck movement
data, facilitating the creation of a digital shadow of the cow for analyzing feeding and
non-feeding behaviors. Three layers, namely the perception, network, and service layers,
were introduced to develop a cow behavior monitoring system. Five layers are included in
the implementation architecture: integration, data management and information, model
and simulation, partial decision-making, and visualization. They found that, with this
setting, a custom-made collar, an anchor point, and integration with the local server reached
an accuracy of 95.07% in classifying feeding versus non-feeding behavior. The research
stated that this proposed DT architecture would be very beneficial in providing relevant
insights toward the development of similar systems for livestock.

In another recent study, Xue Han et al. [52] proposed an AI-based DT model for
detecting and predicting cattle behaviors as imminent physiological cycles. They categorized
cattle behaviors into different classes: rest, rumination, panting, high activity, eating, grazing,
walking, and medium activity. They used an identification of cattle behavior based on LSTM,
while an intelligent decision tree was used to model their conditions. This deep learning
decision tree model uses sensor data provided through an IoT farm system to monitor the
physiological cycles of cattle with real-time prediction of their next cycle state. While the
model performed well on big datasets, accuracy was lower for smaller sample sizes.

While the studies try to simulate the DT models, their aim is still at the virtual
modelling of physical entities rather than 3D data. A previous study [8] has suggested
that a real-time 3D virtual model of the barn and the animals can be generated, showing
their precise locations based on gathered data from IoT devices. In developing the DT
model with IoT devices for data collection, a five-domain model for assessing welfare
was proposed, which includes the physical environment, health, mental state, behavioral
interactions, and nutrition. For analysis of a three-dimensional physical model, software
such as Augmented Anatomy (mobile application, version 1.2.3), Easy Anatomy (mobile
application, version 5.14.0), and QVIRE, (windows software, version 3.0.46) was considered
in the study. The software also makes suggestions on the potential problems that can arise
from the measured deviations, on the basis of which immediate remedial action can be
taken to rectify the problem. Resources available in Augmented reality (AR) and virtual
reality (VR) facilitate faster learning in a safe environment and can be used by veterinarians,
breeders, and students. In that study, no evaluation results were presented for this solution.

4.4. Supply Chain Optimization

Likewise, DTs optimize the value chain for effectiveness and efficiency in the distri-
bution of livestock products right from the farm to the market. DT technology provides
essential tools and insights critical in optimizing operations along the supply chain, includ-
ing production planning, inventory management, logistics, and distribution. For instance,
a prior study [53] presents a novel framework for a digital twin that integrates essential
technological enablers throughout various sectors of the meat supply chain, aiming for
a “zero-waste”, circular meat supply chain. The study aims to enhance the food supply
chain by incorporating the entire cycle of meat production, encompassing feed crops,
livestock, processing, distribution, sale, utilization, and disposal of food products. They
evaluate physical entities, including land management, animal management, food pro-
cessing, food products and packaging, transportation, retail, household and hospitality,
and waste management, to optimize the supply chain utilizing the digital twin model. In
animal management, the tangible components of the framework encompass aspects related
to individual animals (e.g., exercise and rest levels, grazing behaviors, and location) as well
as environmental and housing conditions (e.g., temperature, humidity, luminosity, etc.).
This framework is in its initial stages, and its implementation and the development of a
simulation model will be addressed in future research endeavors. Due to ongoing concerns
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regarding decision-making in livestock production supply chains, a computer-aided sys-
tem was proposed by a previous study [17] as part of the IoFEED project to manage and
optimize the delivery of animal feed to multiple farms. At the farm level, a DT approach
incorporated sensors to monitor inventories remotely and generate data, which was then
utilized through a combination of biased randomization techniques and a simheuristic
framework. The study’s findings show that the suggested solution successfully enhanced
feeding practices on the livestock farms. DTs can provide virtual representations of supply
chain processes and assets that monitor and analyze production flows, real-time inventory
levels, and transport routes to find bottlenecks, smoothen operations, and make the whole
value chain more resilient and efficient. Moreover, owing to DTs, the building of traceability,
quality control systems, and sustainability standards will make the value chain of livestock
more transparent, trustworthy, and responsible.

Table 1. Summary of recent applications of DTs in livestock production systems.

S. No Development Level Application Area Year of Publication Reference

1 Application level Environmental Management 2023 [16]
2 Concept level Farm management 2018 [22]
3 Application level Farm management 2019 [21]
4 Concept level Farm management 2022 [49]
5 Concept level Animal Monitoring 2022 [50]
6 Application level Animal Monitoring 2023 [51]
7 Application level Animal Monitoring 2022 [52]
8 Concept level Animal Monitoring 2021 [8]
9 Concept level Supply Chain Optimization 2022 [53]

10 Application level Supply Chain Optimization 2021 [17]

5. Employing Precision Livestock Farming (PLF) for the Deployment of Digital Twins

Precision Livestock Farming (PLF) is a new form of animal husbandry. It enhances
livestock production through the help of advanced technological developments. In other
words, PLF applies data-driven decision-making through collecting, analyzing, and apply-
ing data to improve various aspects of animal husbandry. Conventional farming depends
on generalized guidelines and subjective decisions while handling animals, whereas PLF
brings into the field an added level of precision. Although DTs in livestock applications
continue to evolve, precision livestock farming facilitates their implementation on farms.
Wearable animal sensors, environmental sensors, IoT systems, and feed and nutrition
sensors, coupled with AI integration, are essential instruments for DT technology adoption
in the livestock sector.

5.1. Potential Applications of Sensor Technology

As mentioned earlier, the guidance of PLF is invaluable for implementing DTs in
the livestock sector, whereas the accomplishment of PLF is subject to gathering data
from numerous facets of livestock management along with the harmonious integration of
diverse sensor technologies. Generally, these sensors function in diverse configurations and
accomplish multiple purposes. An accelerometer sensor can be deployed to monitor animal
activity, posture-related behavior, and feeding and drinking habits. More than one sensor
will be required to provide sufficient information every so often. To resolve this issue,
it may be necessary to integrate several sensors, including an accelerometer, gyroscope,
magnetometer, and altimeter, into a single electronic device that functions as a wearable
sensor capable of gathering multiple types of information.

Numerous studies employed sensors to enhance overall farm management in multi-
ple facets of livestock management, encompassing monitoring animal health, optimizing
nutrition and feed management, and improving reproductive programs. Likewise, sev-
eral review studies have already been conducted to explore the potential of sensors in
deploying PLF effectively [54–62]. The studies provide a foundational understanding of the
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knowledge deficiencies in employing sensors to promote the adoption of PLF applications
within DT systems for livestock, thereby providing a roadmap for advancing DT technology
implementation. The studies identify the categories of sensors suitable for applying DT
technology in the livestock sector as follows. However, the current review apprehends that
the sensor, as mentioned earlier, will be beneficial for future DT studies; thus, a summary
of comprehensive information from prior studies is presented in Table 2.

Bio-information sensors: In this regard, bio-information sensors are employed to monitor
and acquire data on vital signs, activity levels, and location [63]. Non-contact bio-information
sensors, including infrared temperature sensors [64], microphones [65], thermal infrared
cameras [66], 2D cameras [67,68], 3D cameras [69,70], and load cells [65], have been employed
in acquiring animal data by surface reading. A 2D camera can provide information regarding
the activity of animals, posture detection, and behavioral classification. Infrared-based temper-
ature sensors are also used to gather information on the body surface and rectal temperature,
which can help monitor animal health. High-end biosensors have changed the method of
observing and caring in the livestock sector. In particular, wearable bio-information sensors,
such as RFID ear tags [71], rumination sensors [72,73], collar bands [74], and leg bands [74],
produce real-time information about an animal’s physiological attributes, providing informa-
tion on its health and welfare [7,75,76]. RFID tags facilitate the identification and tracking of
individual animals. Likewise, activity sensors can detect changes in behavior that can indicate
an animal’s health problems or the state of estrus of a female animal.

Feed and Nutrition Sensors: These sensors assess feed intake, ensuring that animals
obtain appropriate nutrition. They can also identify dietary preferences, enabling farmers
to modify feed formulations and reduce waste [77,78]. Feeding activities are indirectly
assessed by detecting body movements and postures, including jaw motion. Jaw move-
ments can be directly quantified by detecting variations in pressure or length of a sensor
positioned around the nose, and indirectly by capturing and analyzing the acoustic patterns
generated during feeding activities with microphones [79]. Recently, electronic feeding
systems have become widespread in animal sectors, offering benefits such as monitoring
feeding time and date, electronic identification of each animal, feed weight consumption,
and feeding duration [80,81]. For instance, an electronic feeding system offers various func-
tionalities that assist poultry farmers in managing their workloads, including automated
feeding based on time intervals, monitoring feed and water capacities in containers and
storage, and controlling overflow in water and feed containers [82].

Environmental Sensors: Environment monitoring systems installed in farmhouses,
storage areas, and external spaces monitor environmental conditions necessary to ensure
animal comfort and health. They monitor microclimate variables such as temperature,
humidity, ventilation, and air quality. For example, if the temperature exceeds a specific
threshold in animal husbandry, cooling mechanisms may be used to avoid livestock heat
stress [64]. In recent decades, the utilization of environmental monitoring systems based
on IoT devices equipped with low-cost sensors has noticeably developed [83–89]. IoT
systems facilitate remote surveillance and instantaneous data transmission to centralized
control centers [90,91]. This connectivity is crucial for thorough data analysis and informed
decision-making. The emergence of low-cost sensor resources, coupled with the accessibil-
ity of open-source resources, has accelerated the proliferation of IoT-based environmental
monitoring. “Open source” refers to software applications with publicly accessible source
code, allowing users to modify or utilize the program as intended. Numerous studies
have demonstrated that an IoT-based monitoring system can track multiple parameters,
including temperature, humidity, light, CO2, pressure, NH3, various gases, and air quality
metrics [83–89].

The consolidation of these sensors establishes a data framework in which information
transitions fluidly from the animal to the farm management system. This framework
is essential for analyzing the gathered data and producing practical conclusions. With
technological advancements, sensor technologies are evolving to be more sophisticated,
precise, and economical, thereby enhancing the accessibility and efficacy of DTs for further
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studies aiming to optimize their operations and tackle the challenges of contemporary
livestock farming.

Table 2. Collection of reviews utilizing precision livestock farming technology.

S. No Species Review Objective Sensing Technology Reference

1 Cattle Behavioral activities monitoring Wearable sensors [72]

2 Cattle, pigs and broilers Overall animal monitoring Non-contact radar monitoring [92]

3 Cattle, pigs and broilers Pasture-based
activities monitoring PLF sensors [93]

4 Cattle, pigs and broilers Animal health management Wearable sensors [54]

5 Cattle, pigs and broilers Animal health management Biosensors [55]

6 Cattle, pigs, sheep
and broilers Animal health management Wearable sensors [56]

7 Cattle Animal behavior
and environment

Wireless sensor networks, GPS
collars and satellite

remote sensing
[57]

8 Cattle Pasture-based activities
monitoring Non-contact sensors [58]

9 sheep Overall animal monitoring PLF sensors [59]

10 sheep Overall animal monitoring PLF sensors [60]

11 Cattle and sheep Pasture-based
activities monitoring PLF sensors [61]

12 Cattle and sheep Remote managing and
monitoring system PLF sensors [94]

13 Cattle, pigs, sheep
and broilers Overall animal monitoring PLF sensors [95]

14 Cattle Overall animal monitoring PLF sensors [96]

15 Cattle, pigs, and sheep Overall animal monitoring PLF sensors [97]

16 Cattle Overall animal monitoring PLF sensors [98]

17 Cattle Overall animal monitoring PLF sensors [99]

18 Cattle, pigs, and sheep Overall animal monitoring Wearable sensors [100]

19 Cattle Overall animal monitoring Wearable wireless biosensors [74]

20 Broilers Overall animal monitoring PLF sensors [6]

21 Cattle, pigs, sheep
and broilers Overall animal monitoring PLF sensors [101]

22 Cattle and pigs Animal behavior and
feed management PLF sensors [81]

23 Cattle Feed management PLF sensors [79]

24 Cattle, pigs and broilers Overall animal monitoring Biosensors [102]

25 Pigs Animal behavior Cameras [67]

26 Pigs Overall animal monitoring PLF sensors [65]

5.2. Implementation of Digital Twins

As has already been explained, DTs are virtual models of physical objects that look to
accurately recreate their behaviors and interactions with the environment; for DTs to be
employed effectively, some basic properties must be combined.

First, the twin must get real-time feedback from the physical or biological asset to
properly represent its ongoing interactions. Deploying various sensors connected to the
internet or at least secure private networks that may broadcast and receive certain data
types is required. Second, the DTs must be capable of receiving, storing, and processing
large volumes of information in real time. The idea of big data technologies and cloud
server architectures thus plays a vital role by availing advanced computing resources, data
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storage solutions, and processing capacity. The second crucial aspect is making sense of the
enormous volumes of data transmitted. Volume, in most cases, becomes an issue for human
analytical abilities; therefore, there arises a great need for AI algorithms. The algorithms
should sift valuable data from irrelevant information and provide recommendations and
courses of action based on analyses. Finally, the twinning would allow interconnection
between the physical and virtual state, allowing for data transmission from the physical
system to the virtual twin and reverse information feedback to the livestock production
system. The variety of techniques involved in such an establishment depends on the
volume, type, and source of data and the speed and rate of achieving minimum accepted
delay in both data transmission and information feedback.

In conclusion, this integrated information and analytics should be made available to
concerned decision-makers through a captivating digital interface. Computers, tablets, and
even smartphones can be used to access crucial information and insights that drive decision-
making. The framework of sensor integration, signal interactions, feedback systems and
decision-making process are illustrated in Figure 3. Conducive to accomplishing the DT
deployment in the livestock sector, the following components are inevitable. A prior
study [103] clarified the functions of various components of DTs and their primary roles.
Although the study was carried out for DTs’ application in the industrial sector, Table 3
was derived from prior research.

Hardware elements: The primary technology propelling DTs is the IoT sensors,
which facilitate the exchange of information between physical assets and their digital
counterparts. The hardware component also encompasses biosensors, environmental
controls, and agricultural management actuators. Similarly, this includes data transmission
and storage apparatus such as routers, edge servers, and IoT gateways, among others.

Middleware for data management: The fundamental component is a centralized
repository for aggregating data from various sources. The middleware platform should
ideally manage tasks including connectivity, data integration, data processing, data quality
assurance, data visualization, data modeling, governance, and additional functions.

Software elements: The analytics engine that transforms raw observations into valu-
able business insights is essential in digital twinning. In numerous instances, it is driven by
machine learning models. Essential components of a digital twin puzzle include dashboards
for real-time monitoring, design tools for modeling, and simulation software [25].

Table 3. Collection of components and their functions which are used to implement DTs in the
livestock sector [103].

Elements Role of That Element

Physical entity It functions as the counterpart of the digital twin.

IoT This element is used to collect and transfer the data.

Continuous Bijective Function It is utilized for synchronization and twinning.

Data They are utilized for synchronization, analysis, and input for machine learning.

Machine learning It is utilized for analysis and forecasting.

Security It is utilized to avert data breaches and information compromises.

Digital entity It is the digital twin.

Evaluation metrics/Testing It is used to evaluate the performance of the virtual models.

6. Rationale for Adopting Digital Twins in the Livestock Industry

Despite recent advancements in DT technology, its application in the livestock sector
remains in the early stages of development. Nonetheless, certain industries, including aero
manufacturing [104], oil field services [105], software [42], fast- moving consumer goods [106],
and tire manufacturing [106], are already harnessing the advantages of DTs. Similarly, the
experiments and review literature mentioned earlier [8,15,17,20,21,24,49,51–53,106–111] enable
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the broad adoption of DTs in the livestock sector to enhance animal management, early disease
detection, farm administration, environmental management, and optimization of feed and
water resources. This study aims to bridge the knowledge gap in DT adoption in livestock
by providing a comprehensive overview that builds on but expands beyond existing reviews.
While previous studies focus on specific DT applications like animal management and disease
detection, this review seeks to establish a foundation for broader DT integration in livestock.
By identifying current limitations and suggesting areas for future research, this paper serves
as a guide for advancing DT studies in this field. According to the authors’ perspective, the
analysis of the preceding studies and reviews indicates that DTs possess multiple advantages
for enhancing livestock production. This encompasses the following:

• Precision Livestock Farming: Health and nutrition are optimized by technology
using real-time data and monitoring down to the level of individual animals for
productivity at an individual animal level. This improves animal welfare while
ensuring maximum profitability at farms. While availing the possibility to simulate
alternative breeding scenarios, farmers make informed decisions based on the traits
that provide maximum productivity, for instance, better growth rate, fertility, or
resistance to diseases. However, another approach is to accelerate genetic gains
within herds. DTs identify early deviations in physiological signs and behavioral
and environmental parameters associated with disease states. Predictive models can
give the farmer an early warning to reduce mortality and treatment costs for health
issues about to become critical. The real-time monitoring of the animal’s physical
condition and immediate surroundings makes spotting discomfort or stress among
the animals easier. This improves general animal welfare, leading to healthier and
more productive livestock.

• Sustainability and Environmental Impact: DTs can significantly reduce waste and
environmental footprint by improving feed and water usage, among other resources.
This leads to more viable farming practices that fit the growing global demand for
environmentally responsible methods of producing livestock.

• Labor Efficiency: Automation through DTs reduces the need for further human
supervision. Farmers can, from a virtual monitoring and managing system, plan
several work schedules for feeding and caring for animals; hence, they can increase
efficiency and eliminate most human errors.

• Compliance with Regulations: DTs ensure straightforward records of animal health,
farm management, and environmental impact and align with local and international
animal welfare and sustainability legislation. This also furthers supply chain traceability.

• Remote Management: DT technology will help farmers carry out remote management
through cloud-based systems on livestock farming. This is also important in large-
scale operations or multi-site farms, ensuring increased oversight without needing
physical presence.

• Operational Cost Efficiency: While generally more expensive to set up, over time, the
DTs optimize resource usage, cut down on waste feed, and reduce healthcare costs
due to early interventions in animal care.

• Training and Education: The virtual replicas of the livestock system can train the staff
with new management techniques that do not affect the live animals, increasing the
level of skills and knowledge among farm personnel.

7. Challenges and Limitations

Despite the promising potential of digital twins, their widespread adoption necessi-
tates addressing several practical knowledge gaps. The authors express concern regarding
several open issues identified in recent research [8,10,15,17,20,21,24,49,51–53,106–111] that
warrant attention in future studies. To fully leverage the advantages of DTs in livestock pro-
duction systems, several unresolved issues and challenges must be addressed, as follows:
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• Complexity of Implementation: By nature, DTs are exceptionally complex, embed-
ding sensors, data analytics platforms, and connectivity infrastructures. Most farms
do not have the respective expertise to manage such tasks independently.

• Maintenance and Updates: Sensors, IoT devices, and the software powering these
DTs constantly need updating to make their information accurate. Faulty devices may
give bad data, leading to poor decisions or effects on farm operations.

• Resistance to the Adoption of Technologies: Conventional modes of farming are so
deeply entrenched in many areas that a few farmers would be resistant to adopting
new technologies if lack of trust, perceived complexity, or costs hampered judgments
associated with digital twin systems.

• Absence of Experts: Similarly, deploying and maintaining DT systems requires people
with equally advanced knowledge in data analytics, IoT, cloud computing, and AI. The
unavailability of skilled personnel may lead to poor implementation, inadequate usage,
or even poor decision-making resulting from an incorrect interpretation of the data.

• High Financial Risk: The extremely high initial investment in establishing DT systems
and continuous expenses concerning their maintenance, upgrade, and cloud services
are too financially overwhelming. If farm implementation is poor, inefficient, or
poor-quality data prevails, farms may not succeed in returning the investment.

• Poor access to high-speed internet: Most rural areas, where much livestock farming
goes on, need better access to reliable high-speed internet. The complication is that
implementing a cloud-based DT system requires continuous data transmission for
real-time monitoring and control.

• Data Overload and Mismanagement: A DT system generates large amounts of data,
and a farm without proper data management and analytics may not be able to act upon
such information. Faulty interpretation will lead to the wrong decisions that would
negatively impact animal health and productivity, impacting the overall performance
of the farms.

• Cybersecurity Threats: Being connected and cloud-based, the DTs present a risk due
to many cyber-attacks. Illegal access to farm data and systems can cause operations
disruption or even theft, which may threaten farm safety.

• Dependence on Technology: Excessive use of the DT system implies fewer human
observations and intuitive decisions. Farmers may become dependent on technology.
Herein lies one of the problems: if the system is technically faulty or a cyber-attack
occurs, farming operations could be utterly disrupted, affecting production.

• Limited personalization for small-scale farms: It would be of great help for large-
scale establishments, but on small-scale farms, one could realize that such systems are
not well- placed to deliver full customization for their specific needs, hence leading to
inefficiencies in the way they use the technology.

• Ethical and Animal Welfare Risks: Continuous monitoring by sensors and data
analytics can mean there is always a question of finding the right balance between
productivity and animal welfare. In this context, traditional practices centered on
animal well-being might be overridden by over-emphasis on technological efficiency,
with consequences for animal stress or discomfort.

• Challenges in Integration: Most farms use both legacy systems and the latest tech-
nology; hence, integration with DT solutions among farm management software and
sensor platforms will remain problematic and, therefore, require further investment in
using compatible technologies.

• Technological Failure: DTs are highly dependent on the use of advanced technologies;
should failure occur to any of these systems, such as sensors or any other element,
including loss of connectivity, there would be faulty data that might even mean
shutdowns of systems and therefore affect farm operations.

In resolving some of these challenges, it is expected that policymakers will be able
to provide incentives through regulations and create a framework where the application
of DT technologies is easier. Understandably, it is also rather important to note that the
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barriers included, such as the nonexistence of skilled personnel and the relatively high
implementation costs, may be facilitated by close collaboration among farmers, researchers,
and technology providers. Merging the technological advancement with practical, region-
specific solutions will better integrate DTs into the livestock sector and ensure their future
growth and sustainability.

8. Conclusions and Outlook

This study comprehensively analyzes the implementation of digital twins in livestock
agriculture. Furthermore, the current study elucidates the principles of digital twins and
their application in the livestock sector. The current study highlights the benefits and obsta-
cles associated with the implementation of digital twins in accordance with the objectives.
Digital twin technology exhibits significant potential for the digitization and replication
of complex systems within the livestock sector. DTs present significant opportunities for
improving livestock management practices, promoting animal health and welfare, increas-
ing productivity, and fostering sustainability and resilience within the livestock sector.
Advanced technologies, including IoT, AI, and cloud computing, facilitate real-time moni-
toring, predictive analytics, and data-driven decision-making in livestock farming. This
encompasses areas such as animal monitoring, environmental management, precision agri-
culture, and supply chain optimization. There is a necessity for additional evidence, data,
and case studies regarding digital twin technology to promote its widespread adoption
among livestock farmers. The current study examines the existing literature on DT imple-
mentations; however, it remains in the conceptual and prototypical phases. Researchers are
progressively developing digital twins that possess enhanced functionalities. Significant
progress is still required. Future research should investigate the unique characteristics of
living organisms and their interactions with virtual counterparts. It is essential to adopt a
broader perspective in the design of DTs for livestock applications. Numerous challenges
related to digital transformation stem from the technology’s novelty, including a lack of
consensus on its definition and value, absence of standards and regulations, insufficient
numbers of skilled engineers and technicians, and a deficit of supporting software. Data
security and ownership issues related to digital transformation require increased scrutiny,
as data constitute the fundamental basis for this transformation. Policymakers might
incentivize DT adoption through the consideration of regulatory schemes which could
mitigate such identified barriers and allow data sharing and protection. Alongside tackling
current challenges associated with digital transformation, it is essential to expand our
perspective and recognize potential future issues that this technology may encounter or
generate. Addressing these challenges through collaboration, innovation, and knowledge
sharing enables farmers, researchers, and stakeholders to leverage digital twin technology,
fostering a sustainable, efficient, and resilient livestock industry for the future.
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