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Abstract

:

Within the U.S., there is a growing need to integrate environmentally friendly practices into conventional agriculture. Agroforestry enhances environmental and resource stewardship in agricultural landscapes while offering potential economic benefits to farmers. Despite rising interest, limited information on its application in the U.S. hinders development efforts. A spatiotemporal analysis of current farm operations can provide crucial insights. This study examined patterns of agroforestry and tree crop adoption in the U.S. Corn Belt using USDA Census data (2012, 2017, and 2022) and spatial tools (Global Moran’s I, Local Moran’s I, and Moran scatterplots). The tree crops included in the analysis were chestnut (Castanea spp.), hazelnut (Corylus spp.), improved northern pecan (Carya illinoinensis), elderberry (Sambucus spp.), and pawpaw (Asimina triloba). The results showed increasing farm operations with agroforestry and tree crops over time for all census periods. Agroforestry had the strongest spatial cluster patterns, with Local Moran’s I revealing R2 values rising from 0.30 to 0.35 between 2017 and 2022. Chestnut, hazelnut, and improved pecan had clustered spatial patterns, but had decreasing spatial autocorrelations from 2012 to 2022, while elderberry clustered in 2017 but not 2022. This study reveals an upward trend in agroforestry adoption and the spatial expansion of certain tree crops in the U.S. Corn Belt, highlighting potential for region-specific agroforestry development. The findings offer insights to guide strategies and programs supporting sustainable agricultural practices.
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1. Introduction


As agriculture shifts toward eco-friendly practices, agroforestry is increasingly recognized for offering ecosystem benefits like clean water and air, while also providing farms with economic opportunities through tree crop cultivation and diversifying conventional agricultural landscapes [1]. However, the extent of agroforestry adoption in the U.S. is not fully known. To aid future agroforestry planning efforts, a more comprehensive understanding of agroforestry adoption on the landscape is needed [2]. This paper uses spatiotemporal analysis to investigate how the number of agroforestry and tree crop operations have changed over time in the U.S. Corn Belt. In this study, the United States Department of Agriculture (USDA) Census of Agriculture data is used for the spatiotemporal analysis for the census periods of 2012 to 2022. The USDA Census of Agriculture provides access to aggregated data related to the number of farm operations with at least one agroforestry practice and the number of farm operations that grow the selected tree crops at state and county levels.



Spatiotemporal analysis helps understand dynamic phenomena by integrating spatial and temporal dimensions. This allows the tracking of changes in spatial phenomena across time, enabling better decision-making and prediction models [3]. Analyzing spatial patterns for agroforestry can support its expansion and help achieve environmental and economic goals. Insights can provide region-specific information to optimize locations for processing and distribution infrastructure (e.g., aggregators, food hubs, etc.), assess the economic contribution of tree crops, evaluate environmental impacts, enhance environmental management, refine research and extension programs, and inform local and regional policies and incentives [4,5,6,7,8,9]. Analyzing spatial trends over time can help track market dynamics for a particular tree crop that could influence investment decisions for farmers, businesses, and policymakers and gauge the effectiveness of policy and incentive programs [8,9,10].



Furthermore, understanding spatiotemporal patterns can highlight spillover and diffusion processes, thereby informing strategies for regional development and innovation in agroforestry. By mapping the geographic spread and intensity of operations, tracking changes over time, and visualizing the data, spatiotemporal analysis can help identify influencing factors and inform interventions to support tree crop expansion [11,12]. For example, while regional climatic and biophysical factors influence spatial patterns for certain agricultural practices, the presence of supportive programs, farmer networks, the availability of resources and experts, the history of a place, the community structure, and the local context can enable, or hinder, the spatial diffusion of practices to neighbors [13,14,15].



Depending on data characteristics and study objectives, different spatiotemporal measures are used to determine patterns and influencing factors. Spatiotemporal statistics can capture complex agricultural and environmental dynamics, enhancing insight into spatiotemporal dependencies for informed decision making. Global Moran’s Index and Geary’s C are commonly used to detect dataset-wide spatial patterns. These measures are frequently used in yield mapping and precision agriculture, crop productivity, land use patterns, and other analyses for informing sustainable land use management [16,17]. Clemente et al. used Global Moran’s to determine spatiotemporal patterns in bean crop production in Brazil from 1990–2013 based on data from municipalities and their neighbors [18]. Jin et al. used Global Moran’s I to identify spatiotemporal patterns of grain productivity in China that compared municipal data from 2004 to 2014 [19]. While Global Moran’s is used to look at broader-scale spatiotemporal changes of agricultural activity, Geary’s C uses finer-scale insights and is, therefore, more commonly used to determine spatial differences on smaller scales and detect local dissimilarities. However, neither spatial measure identifies the location or spatial arrangement of data. Getis-Ord Gi* and Local Moran’s I are measures that determine the specific location and spatial arrangement of clusters, or rather “hotspots” and “cold spots” in a study area. Getis-Ord Gi* focuses solely on hot spots (high values) and cold spots (low values) without detecting outliers. This measure is useful in mapping clusters of crop diversity, soil quality, or pesticide use, allowing researchers and policymakers to focus resources or develop strategies for specific regions with similar agricultural characteristics [20]. Local Moran’s I detects both clusters (high–high or low–low) and spatial outliers (high–low or low–high) by comparing each location’s value to its neighbors in order to detect significant differences. Local Moran’s I offers a more detailed analysis that includes the location of spatial outliers. Kiryluk- Dryjska et al. used Global Moran’s I and Local Moran’s I to determine the spatial determinants of farm diversification in Poland [21]. Frequency coefficients for farmer interest in farm diversification were calculated for each administrative unit. Global Moran’s I was used to measure spatial autocorrelation among administrative units, and Local Moran’s I was used to cluster administrative units that had above and below averages for farmers applying for programs to support farm diversification. The identification of outliers provided information to better target the allocation of programs and payments to further support farm diversification. When used together, Global and Local Moran’s help identify appropriate management zones [17,21].



For this study, given the county-level census data (number of operations), Global Moran’s Index and Local Moran’s I were selected as the most suitable measures to identify spatial autocorrelation and locate clusters and outliers, respectively. The USDA Census of Agriculture collects broad-scale data (i.e., county-level) on farm operations and crop production, thereby being a suitable measure to identify overall clustering for agroforestry and tree crops in the study area. The use of Local Moran’s I provides insights into not just “hotspots” and “cold spots” for agroforestry and tree crop production, but also the location of outlier areas. Knowing the presence and location of outliers can have important implications for planning future agroforestry efforts.



The expansion of agroforestry across the landscape is an important topic to explore. Well-designed agroforestry systems could be an effective tool to mitigate numerous environmental challenges associated with conventional crop production and revitalize rural economies [1]. The USDA defines agroforestry as “…the intentional integration of trees and shrubs into crop and animal farming systems to create environmental, economic, and social benefits”. As land management strategies, agroforestry systems can be designed to promote environmental stewardship in agriculture and mitigate local and regional natural resource concerns (e.g., water quality, soil erosion, biodiversity) [22]. Tree crops included in agroforestry systems such as eastern black walnut (Juglans nigra), northern pecan (Carya illinoinensis), hazelnut (Corylus spp.), and American elderberry (Sambucus nigra subsp. canadensis) help increase food and nutritional diversity in conventional agricultural landscapes. Integrating underutilized, nutrient-dense tree crops in agricultural landscapes could also enhance food and nutrition security on the landscape as many are adapted to a range of growing conditions, have suitability for marginal areas where row crops are not suited to, and could contribute to diet quality and diversity [23,24,25]. Despite potential benefits, there are barriers to agroforestry and tree crop adoption. These barriers include low farmer awareness, insufficient technical expertise, high initial costs, delayed returns, and inadequate policy support compared to support mechanisms of annual commodity crops [26]. Additionally, within the U.S. there are temporal factors that influence adoption decisions. These include the long period to establishment before a return on expected outcomes and how outcomes vary greatly depending on the agroforestry practice and tree crop adopted [27]. These factors and limitations create a landscape where the cultivation of annual commodity crops is the default choice, making it challenging for farmers to adopt and integrate perennial cropping systems, like agroforestry [26,28].



To date, there has been no synthesis of the spatial patterns of tree crops for temperate agroforestry systems. Research is particularly limited on agroforestry and tree crop adoption trends within the U.S. [27]. Recent research has sought to address this. To provide a foundation for understanding agroforestry adoption in the U.S., Smith et al., used the 2017 U.S. Census of Agriculture data to map the extent of agroforestry in the U.S. This was the first and only synthesis of agroforestry inventory data used to create mapping products of agroforestry adoption in the U.S. at the county and state levels [1]. The results showed that there are 30,853 farm operations in the U.S. that report using an agroforestry practice. This represents 1.5% of all of the U.S [1]. While this number could be underestimated due to uncertainties surrounding the definition of agroforestry, widespread adoption still remains low, presenting opportunities to increase adoption. Therefore, a more nuanced understanding of existing agroforestry adoption and tree crops across the landscape in the U.S. overtime is needed [1].



The purpose of this article is to describe spatiotemporal patterns for agroforestry and five tree crops that are of research interest in temperate agroforestry systems within the United States using Global Moran’s Index and Local Moran’s I. This study will contribute to understanding county-level changes in agroforestry and tree crop adoption, offering insights for guiding area-specific strategies in policy, outreach, and education. These insights will support decision making and uncover potential drivers and factors influencing agroforestry and tree crop adoption [29,30,31].



The article uses the USDA Census of Agriculture data from three census periods, 2012, 2017, and 2022, to identify spatiotemporal trends for agroforestry and agroforestry tree crops in order to map production patterns by looking at changes in the number of operations. This article further discusses potential drivers of spatial patterns and offers recommendations for resource allocation. The research is guided by the research questions and objectives below.



1.1. Research Questions







	
What tree crops are increasing in production in the U.S. Corn Belt?



	
What are the spatial trends of tree crop operations?



	
What are the spatial trends for operations with an agroforestry practice?



	
How have spatial trends for tree crops and agroforestry changed over census periods?









1.2. Objectives of Review







	
Describe spatiotemporal trends for agroforestry within the U.S. Corn Belt.



	
Describe spatiotemporal trends for selected tree crops in the U.S. Corn Belt.



	
Identify what tree crops are increasing in production.



	
Discuss potential drivers for spatiotemporal patterns.



	
Recommend approaches for resource allocation to support the growth and maintenance of operations with tree crops and agroforestry practices.










2. Materials and Methods


2.1. Study Area


The study area for this review is the U.S. Corn Belt, one of the most agriculturally productive regions in the world. The “Corn Belt” as the USDA describes, includes several states in the Midwestern region of the U.S. They include Illinois, Indiana, Iowa, Michigan, Minnesota, Missouri, Ohio, and Wisconsin (Figure 1) [32]. There are roughly 51 million hectares of land in agricultural production within the Corn Belt region. Seventy-five percent of that land is for corn and soybean. The remaining 25 percent of agricultural land is used to produce alfalfa (Medicago sativa), apples (Malus spp.), blueberries (Vaccinium spp.), oats (Avena sativa), wheat (Triticum aestivum), tomatoes (Solanum lycopersicum), potatoes (Solanum tuberosum), plums (Prunus domestica and Prunus salicina), peaches (Prunus persica), and a variety of other crops [32]. These crops are cultivated in different geographic regions within the Corn Belt.




2.2. Data Sources


After a review of numerous data sources, it was determined that the Census of Agriculture was the only data source available that routinely collects data on the selected tree crops and agroforestry practices. The Census of Agriculture is completed every 5 years by individuals who are responsible for managing and making decisions about agricultural operations. This can include owners, tenants, or partners.



The number of operations with an agroforestry practice and number of operations growing tree crops are the variables used to analyze the spatial patterns in this study. These variables provide the necessary data to use in spatial statistical tests to determine “hot spots” of activity, “cold spots”, and outlier areas.



Data on the number of operations with an agroforestry practice was first collected in the 2012 census period; however, 2012 is excluded from this study as it only asked respondents if alley cropping and silvopasture were practiced. The 2017 and 2022 census periods include the five agroforestry practices recognized by the USDA. These five practices are defined by the USDA as follows [33]:




	
Alley cropping: crops are planted between rows of trees while the trees mature.



	
Forest farming: food, herbal, botanical, and decorative crops are grown under a canopy that is managed to provide ideal shade levels.



	
Silvopasture: Trees, forage, and livestock are managed on the same piece of land. The trees provide fodder, fruits, nuts, timber, along with shade and shelter for livestock.



	
Riparian forest buffers: Linear plantings of natural or re-established buffers along streams include trees, shrubs, and grasses. They can help filter runoff from agricultural fields, stabilize stream banks, and prevent erosion.



	
Windbreaks: Linear plantings of trees and shrubs to provide shelter for crops, animals, buildings, and soil from wind, snow, dust, and odors. Also support wildlife habitat.








The 2017 and 2022 censuses asked growers if at any time during the census year did the farmer “practice alley cropping, silvopasture, or forest farming, or have riparian forest buffers, or windbreaks” [34,35]. However, they did not collect specific data on which practice each operation used.



This study includes five tree crops that are well-adapted and of increasing interest for commercialization in the Corn Belt region. The USDA does not include specific species of crops that are grown; therefore, exact species in the study area are not known for all tree crops. The tree crops for this study include elderberry (Sambucus spp.), pawpaw (Asimina triloba), hazelnut (Corylus spp.), improved pecan (Carya illinoinensis), and chestnut (Castanea spp.). It should be noted that this study uses data for “improved pecan” and not pecan seedlings. The Census of Agriculture collects data for both. However, unlike wild or native pecan seedlings, which grow naturally and have more variable characteristics, improved pecans are cultivated varieties (cultivars) developed to enhance specific attributes that are valuable for commercial production. Therefore, when this study refers to pecan production, it is referring to the production of improved pecans. The selected tree crops present local and regional market opportunities, diverse health and nutritional benefits, and, with an increased scale of production and processing infrastructure, could open access to national and international markets.



The Quick Stats Database on the USDA’s National Agriculture Statistics Service website was used to access data for trend analysis [36]. The Census of Agriculture collects production-related data for commodity crops, tree fruits and nuts, berries, and other crops. These data are available at the county level and state level. For this study, county-level data are collected from three census periods, 2012, 2017, and 2022 [37,38,39]. The data availability (census periods by county) varied with different tree crops. Data availability for hazelnuts is reported for the 2002–2022 census periods, chestnuts is reported for the 2007–2022 census periods, elderberry is reported for the 2017–2022 census periods, and pawpaw is first reported in the most recent census period, 2022.




2.3. Data Processing


Global Moran’s Index, Local Moran’s I, and Moran’s scatterplots are spatial autocorrelations tests that were used to assess spatial dependencies and patterns for tree crop operations in the US Corn Belt. Global Moran’s I and Local Moran’s I are statistical measures used in spatial analyses to detect the overall and localized spatial autocorrelation and heterogeneity within datasets. When combined with temporal data, they can help analyze spatiotemporal patterns [40,41]. While these indices can reveal spatial dependencies and heterogeneity, they do not directly quantify the number of farm operations, but rather assess the spatial relationships and patterns within the data related to those operations. For this study, Global Moran’s I and Local Moran’s I, null values were not converted to 0 as it would inflate the spatial autocorrelation measures. Spatial autocorrelation analyses were computed in ArcGIS Pro.



Global Moran’s I, a statistic for measuring the spatial autocorrelation, is used to provide insights into the spatial structuring of the data in the study region. It assesses whether similar values tend to be dispersed, random, or clustered across a geographic area (Figure 2). The following equation was used to calculate Global Moran’s I:


  I =        N Σ   i = 1   N   Σ   j = 1   N     w   i j       x   i   −   x  ¯        x   j   −   x  ¯        S   0     Σ   i = 1   N   (   x   i   −   x  ¯    )   2           








where:




	
I is the Global Moran’s I statistic.



	
N is the total number of spatial units (features).



	
xi and xj are the values of the attribute of interest at locations i and j.



	
    x  ¯    is the mean of the attribute values.



	
wij is the spatial weight between locations i and j.



	
S0 is the sum of all spatial weights, calculated as:


    S   0   =   Σ   i = 1   N     Σ   j = 1   N     w   i j    
















The spatial weights matrix (wij) defines the spatial relationship between pairs of locations. Different conceptualizations of spatial relationships (e.g., inverse distance, fixed distance, contiguity) affect how wij is determined. In this case, inverse distance weighting was used to define the spatial weights. The inverse distance weighting (IDW) method is commonly used for calculating spatial weights in spatial analysis. The basic principle is that features closer to each other have a greater influence on each other than those that are farther apart. Common spatial weight schemes include binary weights (e.g., 1 if locations are neighbors, 0 otherwise) and distance-based weights (e.g., inverse of the distance between locations). The equation for calculating the spatial weight wij between locations i and j using the inverse distance method is as follows:


    w   i j   =    1     d   i j   p       








where:




	
wij is the spatial weight between location i and location j.



	
dij is the distance between location i and location j.



	
p is a positive power parameter that controls the rate of distance decay.








The resulting Global Moran’s I ranges from −1 to 1, where positive values indicate positive spatial autocorrelation (clustered), negative values indicate negative spatial autocorrelation (dispersed), and values close to zero indicate spatial randomness (Figure 2). After calculating I, a Z-score and p-value are computed to assess the statistical significance. The Z-score is derived from the expected value and variance of Moran’s I under the null hypothesis of spatial randomness.



It is important to note some of the limitations using Global Morans I. Moran’s I reveals correlations between the data. It does not explain causal relationships. Moran’s I is highly sensitive to the scale of analysis, including the size of spatial units and the extent of the study area. Different scales can yield different results, which may lead to incorrect conclusions about spatial patterns. Global Moran’s I assumes that spatial processes are homogeneous across the study area. This means it may not accurately capture spatial heterogeneity or localized variations, leading to a loss of important local information. It does not distinguish between different types of clustering (e.g., high–high or low–low) or identify the specific locations where clustering occurs. This limitation is often addressed by using local indicators of spatial association (LISA) instead [42].
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Figure 2. Spatial arrangement based on feature attributes are described as dispersed, random, or clustered (source: ESRI). 






Figure 2. Spatial arrangement based on feature attributes are described as dispersed, random, or clustered (source: ESRI).
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Local Moran’s I was used to look at spatial patterns of tree crop operations at the local level within the study region to identify cluster areas and outliers. The Local Moran’s I formula calculates the degree of the spatial autocorrelation for each individual spatial unit within a study area [41]. It identifies specific areas on a map where similar values are clustered together or where they are significantly different from neighboring areas.



The formula for Local Moran’s I is as follows:


    I   i   =        x   i   −   x  ¯        m   2        Σ   j = 1   n     w   i j       x   j   −   x  ¯     








where:




	
Ii is the Local Moran’s I statistic for location i.



	
xi is the value of the attribute at location i.



	
    x  ¯    is the mean of the attribute values.



	
xj is the value of the attribute at neighboring location j.



	
wij is the spatial weight between locations i and j.



	
m2 is a measure of variance, defined as:









     m   2   =    1   2      Σ   i = 1   n         x   i   −   x  ¯      2     









After calculating Ii, the Z-scores and p-values are computed to determine the statistical significance of each Local Moran’s I value. A high positive Z-score and low p-value for a location indicate a significant cluster of similar values (high–high or low–low). A high negative Z-score and low p-value indicate a significant outlier (high–low or low–high). Specific thresholds used to determine clusters and outliers are below:




	
High–High Cluster (HH):




	
Z-Score: positive and high (e.g., greater than +1.96 for a significance level of 0.05).



	
p-Value: low (e.g., less than 0.05).








	
Low–Low Cluster (LL):




	
Z-Score: negative and low (e.g., less than −1.96 for a significance level of 0.05).



	
p-Value: low (e.g., less than 0.05).








	
High–Low Outlier (HL):




	
Z-Score: negative and high (in absolute value, e.g., less than −1.96 for a significance level of 0.05).



	
p-Value: low (e.g., less than 0.05).








	
Low–High Outlier (LH):




	
Z-Score: positive and high (e.g., greater than +1.96 for a significance level of 0.05).



	
p-Value: low (e.g., less than 0.05).













Local Moran’s I is sensitive to the choice of the spatial scale and the boundaries of spatial units (the Modifiable Areal Unit Problem, or MAUP). Different zoning schemes or spatial resolutions can lead to different results, potentially altering the identification of clusters or outliers. Similar to Global Moran’s I, Local Moran’s I can be affected by edge effects. Spatial units near the boundaries of the study area may have fewer neighbors, leading to biased results. This can especially affect the detection of clusters near the edges of the study area. The results of Local Moran’s I are highly dependent on the specification of the spatial weights matrix, which defines the spatial relationships between units [41].



The Moran’s scatterplot is a graphical representation of the spatial autocorrelation present in the data, specifically used for visualizing Local Moran’s I. It plots each feature’s attribute value against the spatially lagged values of its neighbors. Axes are defined in the scatterplot for Local Moran’s I below:




	
The X-Axis (Attribute Values Z-transformed):




	
The x-axis represents the standardized (or Z-transformed) values of the attribute of interest. The Z-transformation centers and scales the data, making the mean 0 and the standard deviation 1. The equation for the Z-transformation is     Z   i   =      x   i   −   x  ¯    s     .








where:








	
Zi is the Z-transformed value for feature i.



	
xi is the original attribute value for feature i.



	
    x  ¯    is the mean of the attribute values across all features.



	
s is the standard deviation of the attribute values.








	
The Y-Axis (Spatial Lag):




	
The y-axis represents the spatially lagged values, which are the weighted averages of the neighboring attribute values. This spatial lag value is also standardized. The spatial lag for a feature i is calculated as:


    S p a t i a l   L a g   i   =   Σ   j     w   i j     Z   j    
















where:








	
Spatial Lag i is the spatial lag for feature i.



	
wij is the spatial weight between feature i and feature j.



	
Zj is the Z-transformed value for neighboring feature j.













Interpretation of the Scatterplot:




	
Quadrant I (Top-Right): High–High (HH) cluster; features with high attribute values surrounded by features with high values.



	
Quadrant II (Top-Left): Low–High (LH) outlier; features with low attribute values surrounded by features with high values.



	
Quadrant III (Bottom-Left): Low–Low (LL) cluster; features with low attribute values surrounded by features with low values.



	
Quadrant IV (Bottom-Right): High–Low (HL) outlier; features with high attribute values surrounded by features with low values.








The R2 value of the best fit line in a Moran’s scatterplot provides insight into the strength and nature of the spatial autocorrelation in the dataset. A high R2 value indicates that a large proportion of the variance in the spatial lag can be explained by the variance in the attribute values. This means there is strong spatial autocorrelation, suggesting that similar values are clustered together (i.e., number of operations). A low R2 value indicates that only a small proportion of the variance in the spatial lag is explained by the attribute values. This suggests weak spatial autocorrelation, indicating a more random spatial distribution of values.





3. Results


The number of operations with at least one agroforestry practice and the number of operations growing tree crops increased across the US Corn Belt during the census periods, with the exception of pawpaw as the census data were only collected for 2022 (Table 1; see Appendix A, Table A3 for the number of operations with an agroforestry practice and the number of operations growing tree crops at the state level). The number of operations growing tree crops is highest for chestnut (Castanea spp.) and elderberry (Sambucus spp.), followed by hazelnut (Corylus spp.), pawpaw (Asimina triloba), and improved pecan (Carya illinoinensis), respectively. The number of tree crops acres has also increased each census period, with the exception of pawpaw, which only had data collected for the 2022 census period, and pecan, which saw a decrease in total hectares from 2017 to 2022 (Table 2).



3.1. Descriptive Maps


This section will use descriptive maps to show the number of operations in the Corn Belt growing each tree crop followed by analysis using Global Moran’s and Local Moran’s I to define and discuss significant patterns for tree crop operations. Analyzing the data on the location of agroforestry practices, tree crop operations and their patterns overtime can help identify areas of clustering, outliers, and shifts in production. The following figures illustrate how agroforestry practices and tree crop operations are dispersed throughout the Corn Belt region. Figure 3 illustrates agroforestry practices. Figure 4 illustrates improved pecan operations. Figure 5 illustrates hazelnut operations. Figure 6 illustrates elderberry operations. Figure 7 illustrates pawpaw operations. Figure 8 illustrates chestnut operations.



The natural range for the tree crops were obtained from the Little maps found the US Forest Service Fire Effects Information System (FEIS) website [43]. Natural ranges were available for the selected species except Chinese chestnut as it does not have a natural range in North America. However, it has a hardiness zone of 4b to 9a. This covers most of the study region with the exception of the northernmost parts of the Upper Midwest.




3.2. Global Moran’s Index for Spatial Autocorrelation in the Study Area


Global Moran’s was used to calculate the spatial autocorrelation in the study region. Within a study area, the formula calculates the spatial weight between a spatial unit (i.e., county) and their attributes (i.e., number of operations) to determine how similar a spatial unit’s attributes are to neighboring spatial units. From this information, it calculates an index, Global Moran’s I, to determine if the spatial patterns are dispersed, random, or clustered (Figure 2). Table 3 provides the Global Moran’s Index for tree crop operation patterns in the Corn Belt and their significance. All variances for Moran’s I rounded to zero. All Expected Index values have a value of −0.01, except chestnut (2022) and elderberry (2022) which take values of 0.



From the analysis, agroforestry practices are clustered for both census periods, 2017 and 2022, with Moran’s Indices of 0.32 and 0.36, respectively. This means that on a scale of −1 to 1, values above 0 are considered to have a cluster pattern (see Figure 2). The value above 0 for Moran’s I indicates the strength of the cluster pattern. For agroforestry, spatial autocorrelation (or clustering) is considered moderate and positive. Chestnut is shown to be clustered for all three census periods in the study region. For tree crops, chestnut had the highest Moran’s Index (0.35) for all tree crops in all census periods in 2012. In 2022, Moran’s I decreased to 0.12, showing a weak and positive spatial autocorrelation. Despite the decrease, chestnut has the strongest autocorrelation out of all tree crops for 2022. Hazelnut is also clustered for all three census periods, though Global Moran’s Index has decreased from 0.16 to 0.05. Pecan had a random dispersion for 2012 and 2017, and clustered for 2022 with a Moran’s Index of 0.07. Elderberry was clustered for 2017 with a Moran’s Index of 0.07, but decreased to a Moran’s Index of 0.03 and a random dispersion. Lastly, pawpaw also had random dispersion (Moran’s Index 0.05) for the only census period it is reported in, 2022. The results indicate that while the number of agroforestry practices and tree crop operations have consistently increased, adoption trends show dynamic spatial structures across the census periods.




3.3. Local Moran’s I for Spatial Heterogeneity at Local Levels in the Study Region


Local Moran’s I identified locations in the study region with significant spatial autocorrelation and the location of outliers. The patterns are determined by counties with a similar number of operations (high or low) being spatially proximate.



3.3.1. Spatial Autocorrelation for Agroforestry Practices


Local Moran’s I identified several high–high cluster areas and low–low cluster areas for agroforestry practices (Figure 9). High cluster areas are concentrated in Wisconsin, Ohio, Michigan, and Missouri. Low cluster areas are concentrated in Illinois, Indiana, and southwestern Minnesota and western Iowa. High–low outliers occur in Illinois and Indiana, indicating that counties with high numbers of agroforestry practices are embedded in areas with lower numbers of agroforestry practices. The low–high outliers are situated on the periphery and within high cluster areas, indicating that counties that have a low number of agroforestry practices are near high cluster areas. In the 2017 census period for Wisconsin, low–high outliers occurred around and within the high clusters. By 2022, several low outliers had increased in the number of operations with an agroforestry practice, thereby transitioning from outliers to now part of the high cluster area. These are specific areas where agroforestry increased in the census period, and increased more so in areas where there were high numbers of operations. This aligns with the higher R2 value (compared to tree crop operations), which suggests that spatial dependency is an important factor to the spread of agroforestry. Or rather, the presence of agroforestry clusters is important to the spread of agroforestry in nearby areas. Morans I increased from 0.32 to 0.36 and R2 increased from 0.30 to 0.35 from 2017 to 2022 (Figures S1 and S2). This is a higher value R2 value than all tree crop operations and the only model to increase between census periods.




3.3.2. Spatial Autocorrelation for Chestnut


Based on Global Moran’s Index, chestnut operations are clustered for all three census periods in the study area. Local Moran’s I located specific areas where there is clustering. Southeast Iowa and western Michigan have high–high clusters, indicating that a county (i.e., spatial unit) which has a high number of chestnut operations is surrounded by other counties that also have a high number of chestnut operations. In spatial proximity to high–high clusters are low–high outliers which indicate counties with few chestnut operations that are near counties with a high number of operations (i.e., high–high clusters). Missouri has seen an increase in high–low outliers and low–low clusters. Several counties in Missouri that have a high number of chestnut operations are surrounded by counties with few operations. Missouri’s low–low clusters also increasingly occur throughout the region, indicating counties with few chestnut operations are near counties that similarly have few chestnut operations. Scatterplots of Local Moran’s I for chestnut operations (Figure 10) show a spatial dependency for 2012, 2017, and 2022. Spatial dependency was highest in 2012 (R2 = 0.29), then dropped in 2017 (R2 = 0.09), and has increased for the most recent census period (R2 = 0.11) (Figures S3–S5).




3.3.3. Spatial Autocorrelation for Hazelnut Production


Local Moran’s I identified southwest Wisconsin as an area of increasing high–high clustering and low–high outliers. For 2022, northeast Iowa and southeast Minnesota also had high–high clustering and low–high outliers. Michigan saw a decrease in high–high clustering and low–high outliers between 2017 and 2022. There were a few high–low outliers located in Indiana, Ohio, and northern Michigan in 2022. These locations reflect changes from 2017. Low–low clusters occurred in central Iowa and eastern Illinois. Moran’s scatterplots show low spatial autocorrelation with R2 values being 0.09, 0.02, and 0.03 for the 2012, 2017, and 2022 census periods, respectively (Figure 11, Figure S6, Figure S7 and Figure S8).




3.3.4. Spatial Autocorrelation for Improved Pecan


Global Moran’s I indicated a cluster pattern for pecan operations in 2022 and random patterns for the previous two census periods (Figure 12). Therefore, patterns for 2022 will be discussed for this result. High–high clusters and low–high clusters for pecan predominately occur in west-central Missouri for the 2022 census period. High–low outliers also occur in southeastern Missouri, Iowa, Wisconsin, Indiana, and Ohio, where low–low clusters also occur. There is weak spatial correlation (R2 = 0.04) (Figure S9).




3.3.5. Spatial Autocorrelation for Elderberry


Global Moran’s I indicated a non-significant clustered pattern in the study region for 2017, but a random pattern for 2022; therefore, the clustered pattern for 2017 will be discussed (Figure 13). Local Moran’s I indicated that these areas occur in Ohio and Missouri, where there are high–high clusters. Low–high outliers also occur in Ohio, Iowa, Illinois, and Wisconsin. Low–low clusters occur in Missouri, Illinois, and Iowa. There was positive, but very weak spatial autocorrelation for elderberry operations (R2 = 0.02) (Figure S10).






4. Discussion


This study provides insights on several interesting findings. Though findings reveal adoption hotspots, cold spots, and outliers for agroforestry and tree crop operations within the Corn Belt, spatial dynamics are complex with notable shifts between high–high clusters and adjacent areas overtime. The findings include (1) high–high clusters for hazelnut and chestnut are concentrated in the Upper Midwest; (2) high–high clusters for agroforestry are concentrated in the Upper Midwest, southwest-central Missouri, and eastern Ohio; (3) an increased number of agroforestry operations resulted in increased spatial autocorrelation over the census periods; (4) an increased number of hazelnut and chestnut operations resulted in decreased spatial autocorrelation over the census periods; (5) elderberry operations had significant spatial autocorrelation for 2017, but as the number of operations increased, spatial autocorrelation was not observed for 2022; and (6) improved pecan was spatially autocorrelated for 2022, with high–high clusters located in southwest Missouri. The findings are further discussed below.



The location of clusters aligns with earlier cited research that highlighted the importance of farmer networks in the diffusion of new agricultural practices and technologies [11,13,42]. Chestnut and hazelnut in particular benefit from long-standing institutional support and research, collaborative learning networks, grower associations cooperatives, processing facilities, product development, and market linkages [44,45,46,47,48,49]. These efforts are prevalent in the Upper Midwest. Even with their wide natural range in the study region, chestnut and hazelnut still tend to cluster in the Upper Midwest. This is consistent with previously cited research that found the presence of farmer networks, support programs, and other social factors enable the diffusion of agricultural practices [13,14,15].



The Local Moran’s I maps indicate where spatial patterns have changed for chestnut and hazelnut. For example, high–high clustering for chestnuts has emerged in southeast Iowa. In 2012, while this area had operations, there was not statistical significance in how they clustered (spatial autocorrelation), though there were high–low outliers. In 2017, there was no significant spatial autocorrelation or differences. In 2022, high–high cluster pattern or significant spatial autocorrelation was identified. The presence of low–high outliers on the periphery of the high clusters indicates significant statistical differences between the high number of operations in the high–high clusters and the low number of operations (i.e., low–high outliers) on the periphery. Hazelnut shows a similar spatial dynamic from 2012 to 2022. In 2012 there were smaller areas of high–high clusters in the Upper Midwest, followed by the emergence of low–high outliers in 2017. In 2022, some of the low–high outliers became part of high cluster areas, indicating that the number of operations in those areas increased enough to have significant spatial autocorrelation with the adjacent high cluster. Similar patterns are also seen for agroforestry. It is important to note that some counties also became low–high outliers if they experienced a significant decrease in the number of operations compared to adjacent high cluster areas.



Elderberry is another example that reflects an interesting dynamic. Elderberry is second to chestnut in the total number of operations in the U.S. Corn Belt and also in the largest increase in the number of operations from 2017 to 2022. In 2017, elderberry had high–high spatial clustering in Missouri and Ohio. In 2022, operations had a random spatial pattern (no significant spatial autocorrelation). This indicates that while adoption saw a large increase from 2017 to 2022, it was more disparate and less cohesive across the study area compared to the high cluster growth seen for hazelnut and chestnut. However, it should be noted that while hazelnut and chestnut have significant spatial autocorrelation based on R2 values, the correlations are weaker than they were in 2012.



Additional relationship dynamics to explore are the presence of high–low outliers that indicate counties with a significantly higher number of operations compared to neighboring counties. These areas could represent areas of opportunity for targeted expansion or investigations into why these counties have a significantly higher number of operations compared to the low number of operations in adjacent counties.



It is also important to discuss the implications of climate change in the Corn Belt and the mechanisms that make transitions to more environmentally friendly agricultural practices like agroforestry difficult [26,50]. In the U.S. Corn Belt, changing climate patterns are likely to reshape spatial patterns in the adoption of tree crops due to shifting temperatures, altered rainfall patterns, and an increased risk of pests and diseases [50,51,52]. Rising temperatures and more frequent droughts may make traditional crops like corn and soy less viable in some areas, encouraging a transition to tree crops that are better suited to variable climates and offer resilience benefits such as drought tolerance and soil stabilization. Water availability, impacted by unpredictable rainfall and increased evaporation, could potentially drive the adoption of tree crops in regions with reliable water resources or irrigation infrastructure. Additionally, as climate change expands the range of pests and pathogens, pest-resistant tree crops may become more attractive, especially with policy incentives focused on climate adaptation and carbon sequestration. However, the high demand and established infrastructure for corn and soy create strong economic incentives to maintain these staple crops, potentially limiting the available land for tree crops [26,31]. Yet, with the rising risks to corn and soy from extreme weather, drought, and pests, farmers may increasingly turn to tree crops to diversify and stabilize their income while enhancing soil health, erosion control, and water retention. Together, these economic, environmental, and policy factors influence the spatial adoption of tree crops across the Corn Belt, especially in areas seeking sustainable agricultural practices and income stability through crop diversification.



The difficulty in transitioning into environmentally friendly agricultural practices in the Corn Belt is perhaps reflected in the presence of low–low clusters in concentrated areas of the Corn Belt, in states like Illinois and Indiana, along with parts of western Iowa and southwestern Minnesota. Low–low clusters indicate significant spatial autocorrelation among counties with low numbers of operations. Iowa, Illinois, Indiana, and Minnesota are the top U.S. states with the highest cash receipts from corn and soybean crops [53]. Targeting high–low outliers in these areas could be an effective strategy to plan future agroforestry support efforts.



Allocating Resources Based on Spatial Patterns


To continue supporting the expansion of agroforestry and tree crops into suitable areas on agricultural landscapes, the following section offers recommendations to support the long-term growth of agroforestry and tree crop production. The recommendations are detailed for each spatial structure and are based on findings from this article and from the earlier cited academic literature on spillover and diffusion processes among neighboring farms [12,13,14,15,54]. The recommendations are not exhaustive and there can be overlap in approaches between clusters and outliers. The dominance of commodity crop production, particularly for Illinois and Indiana, makes the transition to agroforestry difficult.



High–high clusters:




	
Increase links between high–high clusters and adjacent areas to facilitate knowledge flow (i.e., field days and demonstration farms) and diffusion.



	
Continue building and supporting farmer networks between high cluster areas and adjacent areas.



	
Evaluate efficacy of existing programs and policy.








Low–low clusters:




	
Host field days at early adopters’ farms.



	
Provide agroforestry training for local extension agents and other agricultural professionals.



	
Engage with local stakeholders to understand local context.



	
Develop farmer networks to share and exchange knowledge and information.



	
Promote private sector/entrepreneurs, NGO, and government agency collaborations.



	
Offer incentives to encourage adoption or funds to help with start-up or establishment costs of agroforestry practice.








High–low outliers:




	
Host field days and workshops for neighboring farms.



	
Promote agritourism opportunities to educate the public and other farmers about the operation.



	
Form cooperatives, associations, or other joint ventures with surrounding areas to promote growth.








Low–high outliers:




	
Engage with local stakeholders to understand the local context.



	
Promote collaborations with NGOs and the private sector/entrepreneurs in adjacent high cluster areas.



	
Target investments, grants, and incentives that promote the adoption of agroforestry and tree crops and need support infrastructure.



	
Partner with extension services and farmers in neighboring high-value areas to develop training programs.



	
Provide incentives in low outlier areas to integrate agroforestry practices or tree crops.



	
Provide agroforestry training for local extension agents and other agricultural professionals.










5. Conclusions


From 2012 to 2022, the number of agroforestry operations and number of operations for each tree crop increased. The increase in the number of operations overtime influences changes in the spatial patterns in the study area. These changes can notably be seen in spatial autocorrelation for agroforestry, chestnut, and hazelnut operations for each census period. There were significant differences between the Expected Index and Global Moran’s I for agroforestry practices, chestnut, and hazelnut. Agroforestry had a positive and significant Moran’s I for 2017 and 2022 (<0.001). Chestnut had a positive and significant Moran’s I (<0.001) for all three census periods, indicating spatial autocorrelation, or cluster patterns, in the study region. Hazelnut also had positive Moran’s I cluster patterns for all three census periods, significantly for 2012 (<0.001) and 2022 (<0.05). They also had the highest Z-scores, indicating that Moran’s I varied significantly from the null hypothesis of spatial randomness.



The presence of low–high outliers and high–low outliers overtime, particularly for chestnut and hazelnut, could account for the decreasing R2 values. Potential explanations could be the gradual adoption of either chestnut or hazelnut in counties that neighbor high cluster areas (i.e., low–high outliers). Or, in the case of high–low outliers, the adoption of either chestnut or hazelnut could be more rapid and statistically different in one county compared to neighboring counties. While the presence of low–high and high–low outliers over time could contribute to decreasing R2 values, the decrease could also stem from localized adoption patterns that introduce spatial variability not captured by the model. Improved pecan had statistically significant spatial autocorrelation for 2022, but a random pattern for 2012 and 2017. The high–high cluster is located in southwest Missouri. Missouri is at the northern natural range for pecan, so the lack of high–high clusters in the Corn Belt, particularly the Upper Midwest is not a surprising result. The presence of low–high outliers adjacent to “not-significant” county units indicates neutral or transitional zones where spatial relationships could still be evolving. Lastly, although elderberry saw the second-largest increase in the number of operations from 2017 to 2022, the spatial autocorrelation was only significant for 2017. High–high clusters were located in Missouri and Ohio with the sporadic presence of low–high outliers and high–low outliers in the Corn Belt. Similar to pecan, this could indicate transitional zones where values (i.e., the number of operations) are more varied and less cohesive as the number of operations increases.



The results from this paper demonstrate that spatiotemporal trends for agroforestry and tree crops are shaped by dynamic and complex processes that continue to shift overtime as knowledge, innovation, and networks spread. The selected tree crops present numerous economic opportunities for growers to diversify agricultural production, generate new revenue streams, and perhaps buffer against future climatic changes. The increase in the number of operations for all tree crops over each census period indicates that these tree crops present viable economic opportunities. Notably, the areas that show consistent high–high clustering, are also the areas that benefit from the continued work of growers’ associations and cooperatives, particularly in the Upper Midwest. Many of these associations have institutional links to research institutions, government programs, market partnerships, and other networks that enable them to provide growers needed education and resources for agroforestry and tree crop production, as well as market linkages.



While this study revealed the spatial structure of agroforestry and tree crop operations, there are several limitations to the methodology used. The analysis did not account for the numerous other variables that influence the spatial structure of operations in the region. The obvious role of the different types of social capital is one factor that was not accounted for in the regression models. Furthermore, there are obvious biophysical, climatic, socioeconomic, and land uses practices, as well as other factors, that also impact the patterns and numbers of operations overtime. Incorporating these factors into future spatial analyses could better refine regression models and provide detailed insights on important drivers at the local level. There are also challenges with using Census of Agriculture data. The data are collected infrequently (every 5 years) so likely do not capture changes or fluctuations and response rates may vary. Additionally, the Census of Agriculture data lack granularity. For the number of operations, they only capture what happens at the county-level, missing smaller-scale, tract-level changes. They also do not provide details on crop species, operation characteristics, farming practices, or other details. Lastly, neither Global Moran’s Index, Local Moran’s I, nor census data capture causal factors. As noted by Smith et al., future research would benefit from regional agroforestry surveys. As discussed earlier, Local Moran’s I is sensitive to the choice of scale and spatial unit boundaries. Therefore, some counties with fewer neighbors or that are on the edge of the study area (and, therefore, have nothing to compare) could impact the accurate identification of true clusters and patterns.



This study contributes to agroforestry research by analyzing spatial and temporal patterns of tree crop adoption across U.S. farms, specifically in the Corn Belt. By leveraging USDA Census data and spatial analysis tools, it highlights trends in agroforestry practices from 2012 to 2022. This study provides evidence of increasing agroforestry adoption, particularly for chestnut, hazelnut, pecan, elderberry, and pawpaw crops, noting significant spatial clustering for agroforestry overall. However, some crops show a shift toward more dispersed patterns, indicating expansion into new areas. These findings offer valuable insights to inform targeted, region-specific agroforestry programs, strategies, and research, aiming to support sustainable agriculture in the U.S.
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Table A1. The 2012 state-level data number of operations.






Table A1. The 2012 state-level data number of operations.











	
	Chestnut
	Improved Pecan
	Hazelnut





	Illinois
	17
	25
	20



	Indiana
	19
	15
	6



	Iowa
	35
	2
	31



	Michigan
	115
	6
	28



	Minnesota
	6
	2
	27



	Missouri
	34
	121
	8



	Ohio
	41
	15
	20



	Wisconsin
	8
	1
	41



	Total
	275
	187
	181










 





Table A2. The 2017 state-level data number of operations.






Table A2. The 2017 state-level data number of operations.













	
	Agroforestry
	Chestnut
	Improved Pecan
	Hazelnut
	Elderberry





	Illinois
	604
	42
	62
	36
	37



	Indiana
	594
	30
	14
	37
	16



	Iowa
	822
	68
	8
	49
	45



	Michigan
	957
	143
	12
	90
	23



	Minnesota
	1011
	8
	2
	47
	46



	Missouri
	1311
	59
	131
	29
	86



	Ohio
	1156
	75
	27
	42
	73



	Wisconsin
	1120
	29
	4
	90
	75



	Total
	7575
	454
	260
	420
	401










 





Table A3. The 2022 state-level data number of operations.






Table A3. The 2022 state-level data number of operations.














	
	Agroforestry
	Chestnut
	Improved Pecan
	Hazelnut
	Elderberry
	Pawpaw





	Illinois
	623
	82
	68
	42
	61
	42



	Indiana
	605
	41
	21
	61
	68
	100



	Iowa
	787
	195
	19
	73
	67
	38



	Michigan
	1114
	216
	23
	67
	91
	73



	Minnesota
	1082
	24
	NR
	63
	91
	NR



	Missouri
	1383
	115
	157
	46
	186
	67



	Ohio
	1316
	160
	27
	77
	132
	165



	Wisconsin
	1286
	68
	7
	141
	132
	15



	Total
	8196
	901
	322
	570
	828
	500
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Figure 1. Corn Belt states as defined by the USDA include Missouri, Iowa, Minnesota, Wisconsin, Michigan, Illinois, Indiana, and Ohio as part of the agricultural region known as the “Corn Belt” in the United States [26]. 
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Figure 3. Descriptive map for number of operations with at least one agroforestry practice in the study region census periods 2017 and 2022 [37,38,39]. 
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Figure 4. Descriptive map for number of operations growing improved pecan by county in the study region for each census period [37,38,39]. 
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Figure 5. Descriptive map for number of operations growing hazelnuts by county in the study region for each census period [37,38,39]. 
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Figure 6. Descriptive map for number of operations growing elderberry by county in the study region for census periods 2017 and 2022 [37,38,39]. 
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Figure 7. Descriptive map for number of operations growing pawpaw by county in the study region for 2022 [37,38,39]. 
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Figure 8. Descriptive map for number of operations growing chestnut by county for each census period [37,38,39]. 
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Figure 9. Local Moran’s I identified areas of high and low clustering for agroforestry practices [38,39]. 
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Figure 10. Local Moran’s I identified areas of high and low clustering for chestnut tree operations [37,38,39]. 
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Figure 11. Local Moran’s I identified areas of clustering and outliers for hazelnut operations [37,38,39]. 
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Figure 12. Local Moran’s I identified areas of clustering and outliers for pecan operations [39]. 
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Figure 13. Local Moran’s I identified areas of clustering and outliers for elderberry operations [38]. 
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Table 1. Number of operations in the U.S. Corn Belt growing tree crops for 2012, 2017, and 2022 census periods [37,38,39].
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	Agroforestry
	Chestnut
	Pecan
	Hazelnut
	Elderberry
	Pawpaw





	2012
	NA
	275
	187
	181
	NA
	NA



	2017
	7575
	454
	260
	420
	401
	NA



	2022
	8196
	901
	322
	570
	828
	500










 





Table 2. Total tree crop hectares grown in the U.S. Corn Belt for 2012, 2017, and 2022 census periods [37,38,39].
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	Agroforestry
	Chestnut
	Pecan
	Hazelnut
	Elderberry
	Pawpaw





	2012
	NA
	544
	856
	152
	NA
	NA



	2017
	NA
	667
	1242
	189
	193
	NA



	2022
	NA
	1412
	1200
	280
	391
	140










 





Table 3. Global Moran’s Index of dispersion patterns for agroforestry practices and tree crop operations (Data source: Census of Agriculture; prepared by author).
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Moran’s I

	
Z-Score

	
Aggregation






	
Agroforestry

	

	

	




	
2017

	
0.32 ***

	
18.60

	
clustered




	
2022

	
0.36 ***

	
20.71

	
clustered




	
Chestnut

	

	

	




	
2012

	
0.35 ***

	
7.29

	
clustered




	
2017

	
0.14 ***

	
3.98

	
clustered




	
2022

	
0.12 ***

	
4.91

	
clustered




	
Hazelnut

	

	

	




	
2012

	
0.16 ***

	
3.31

	
clustered




	
2017

	
0.05 *

	
1.72

	
clustered




	
2022

	
0.05 **

	
2.01

	
clustered




	
Pecan

	

	

	




	
2012

	
0.05

	
1.11

	
random




	
2017

	
0.00

	
0.15

	
random




	
2022

	
0.07 *

	
1.77

	
clustered




	
Elderberry

	

	




	
2017

	
0.07 *

	
1.73

	
clustered




	
2022

	
0.03

	
1.15

	
random




	
Pawpaw

	

	

	




	
2022

	
0.05

	
1.24

	
random








*** p-value < 0.001; ** p-value < 0.05; * p-value < 0.10.



















	
	
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.











© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).








Check ACS Ref Order





Check Foot Note Order





Check CrossRef













media/file26.jpg
Elderberry Operations Local Moran's I

= =
N
Clusters and ¢
Outliers

High-High cluster
High-Low outler
I Lovi-High outlier
Low-Low cluster
Not significant

0 100200 400 Kiometers.

Projecton: Alers Equal Avea Contiguous, NAD 1963 bt et iuture






media/file8.jpg
[T ————

Pecan Operations

2022

2017

[r——






media/file27.png
Elderberry Operations Local Moran's I

e sl ‘,L ‘ /‘
el LNA7% S ¢
#_‘f ;r, = .
\[ ;Tj{
Ll I l%‘ “ ‘*‘—* Y
1 Hj § |8 11
Clusters and %+ T NI AT, A
Outliers O AT =t
High-High cluster ® B - ?I—IE
B High-Low outlier ' T [ é:zt
B Low-High outlier Uy AN L T Car )
Low-Low cluster [ | —~1~ 1 i

Not significant

2017

0 100 200 400 Kilometers

T I O
Projection: Albers Equal Area Contiguous, NAD 1983 Data Source: U.S. Census of Agriculture






media/file13.png
SOLOTRNRE
SRR R RN
R R
R RS
a&,‘ﬂ.&vs‘ N B..m.vm..n

B
- by
-

N

)

{ &
L)

0O,
1/

10NS

Natural Range

[""] None Reported

Elderberry Operat

400 Kilometers

0 100200

Data Source: U.S. Census of Agriculture

Projection: Albers Equal Area Contiguous, NAD 1983






media/file12.jpg
-

Elderberry Operations
--.L-

2017






media/file18.jpg
Agroforestry Practices Local Moran's I






media/file9.png
Pecan Operations

‘ P!
VA7)
AN

Number of
Operations
B 1

B 2
B4
B
B s- 14
|| None Reported
Natural Range

0 100 200 400 Kilometers
N T O T O T |

Projection: Albers Equal Area Contiguous, NAD 1983 Data Source: U.S. Census of Agriculture






media/file14.jpg
Pawpaw Operations

N

A

Number of 5:
Operations
.G

3.4

5-7

811
_F*8

[T] None Reported
2 Natural Range

Projection: Abers Equal Avea Contiguous, NAD 1983

d

2022

o 100 200

T Sore:

400 Miles.

s o Agriuture






media/file20.jpg
Chestnut Operations Local Moran's I






media/file23.png
Hazelnut Operations Local Moran's I

Clusters and
Qutliers
.~ High-High cluster
I High-Low outlier
I Low-High outlier
. Low-Low cluster
Not significant

0 100 200 400 Kilometers
g e ] g g

Data Source: U.S. Census of Agriculture

Projection: Albers Equal Area Contiguous, NAD 1983





media/file5.png
| I
9200°0"W 84°0°0"W
North America
bl |
> Minnesota T ORTHEY
© N
Wisconsin
Michigan
=
o lowa
L.
?\l -
~ Ohio
Indiana
lllinois
z Missouri
O
(]
@
E Corn Belt
0 200 400 Kilometers
(T I I N






media/file15.png
Pawpaw Operations

#

Number of
Operations
Bl i-2
I 3-4
s
B s- 11
B 12-16
|| None Reported 2022

4
(/| Natural Range 0 100 200 400 Miles

N T TR N N N I
Projection: Albers Equal Area Contiguous, NAD 1983 Data Source: U.S. Census of Agriculture

e S
=






media/file19.png
Agroforestry Practices Local Moran's I

Clusters and
Outliers
High-High cluster
B High-Low outlier N
I Low-High outlier A

Low-Low cluster

Not significant

2017

0 100200 400 Kilometers

Projection: Albers Equal Area Contiguous, NAD 1983 I T T O O | Data Source: U.S. Census of Agriculture






nav.xhtml


  agriculture-14-02241


  
    		
      agriculture-14-02241
    


  




  





media/file11.png
ARG
AR
AN
L ""‘"
A J
b

B

400 Kilometers
Data Source: U.S. Census of Agriculture

AN
{

S
N
,.’Aﬂ V‘uy”" =

I T O O |

o

- N X

AN QEEN T R R SR S R S
NN R R R SR 2
'Iﬂﬂ”'lﬁ. NS W LR i’A’IQ’..jr/ N -
o

a < "‘ ) N
AN e AR RN
AWSNN AR

%47

Z
7

%
!"
.
i1/

7z
,"l"

Y,
.
A

/
7

7
4
(5

%

O NN

NN P Y

RRERRIRR
NN N

SO
<y 7 ..r BN
B A Bopd ' nmmmr"‘m S .r/ W"‘ﬂmﬂ“ N
- r r.,‘ - X Ar’.A'.AA S X%
LU SEINTREN AR AR
. X AR
R
RO
NRRENS l!-ﬂ.l.ﬂw j
i NS ry d ‘ﬂv’Wf r‘ '4
SRR O 2

Hazelnut Operations

NS
."/n"’ 'Alﬂﬂ‘"ff. (QV
O SR RO O B Y R RSN ERE
R R

P SRR A

TR T RN

11
-14

Number of
Operations
B i-2

B 3-4
B

I s-

B

[ | None Reported
7/ Natural Range

| uﬂa.w%%%ﬂaaz
SER N o NN ¢
A AR R T AN
RRRRRRRRA
N R
I’/./ﬂ.vl’l N
PORS NS N NN
=

N NN RNV ARE
LRI
L ,r, ¥ M‘,"‘i""ﬂ‘r}”" 1N
NN
\ S OO
2 USSP '4‘ SR
AR R
R A T R
A R R R Y
™ N 3
NN SN NN
N\ SN NNRRRRNNS
SRR R RN R
AR W

NN
NN
0

Projection: Albers Equal Area Contiguous, NAD 1983






media/file6.jpg
Agroforestry Practices
£






media/file24.jpg
Pecan Oerations Local Moran's I
E==r

Clusters and

Outliers

[ High-High cluster

I High-Low outlier

I Low-High outlier
Lovw-Low duster

Not significant

0 100200 400 Kilometers

[
Projecon: bers EqulAvea Cotiguous, NAD 1983 ot Soure . Census of Arcuture






media/file2.png
Dispersed - = Clustered






media/file10.jpg
Hazelnut Operatins






media/file7.png
Agroforestry Practices

Value N

-7
Bl s- 15 A
B i6-25
2017 B -4

B 42-75

:] None Reported
0 100 200 400 Kilometers
Projection: Albers Equal Area Contiguous, NAD 1983 I T T O | Data Source: U.S. Census of Agriculture

=
Yo
| l". ¢
-.-";f}""‘l
=0

[






media/file1.jpg
Dispersed e3> Clustered





media/file16.jpg
Chestnut Operations

2017






media/file3.png





media/file0.png





media/file22.jpg
Hazelnut Operations Local Moran's T

Clusters and

Outliers

2 o cser

- oriowouser

[P

5 ietow st
st






media/file17.png
Chestnut Operations

=2
L
T AT "
iy
S
-='EI:IEI=L!II“===I.:

fiRctia
[ | iy
|

PR
Fasa

ifaumi

ALEE] ] )
e e 81
| | A LA
TS -

LPST ETY
|1 "‘."r‘

Number of
Operations
]1-3

B 4-6

Bl -

B 0-13

Bl 14-23

[ ] None Reported

72

0 100200 400 Kilometers
T T I I

Projection: Albers Equal Area Contiguous, NAD 1983 Data Source: U.S. Census of Agriculture






media/file4.jpg
z

4P00N

380N

T
92000°W

Minnesota
Wisconsin
lowa
Illinois
Missouri

T
8400'W

North America

Michigan

Corn Belt

[ 200 400 Kilometers
| SN SR






media/file25.png
Pecan Operations Local Moran's 1

7
.:B'
I
L1 1
I

Clusters and (| -

- 3 [ e ! » o @ ,,,-‘;J“
Outliers : S ragan

High-High cluster - - u |

L B

B High