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Abstract: An emerging drying method, far-infrared radiation heating-assisted pulsed vacuum
drying (FIR-PVD), was employed to dry raspberries. In this study, the impacts of FIR-PVD, freeze
drying (FD), and hot air drying (HAD) on drying characteristics and quality attributes, including
color, rehydration ratio, content of total phenolics (TP), content of total monomeric anthocyanins
(TMA), antioxidant activity, and microstructural attributes of dried raspberries, were examined.
Results indicated that FIR-PVD notably shortened the drying time by 47.78% compared to HAD and
by 73.89% compared to FD. The FIR-PVD samples exhibited the highest TP content, DPPH radical
scavenging activity, and FRAP value, which were 17.73%, 6.09%, and 38.16% higher than those of
the FD samples, respectively, and 2.78%, 2.77%, and 18.74% higher than those of the HAD samples.
Significant correlations (p < 0.05) were observed between antioxidant capacity, as measured by
DPPH and FRAP assays, and TP content. However, FD at a low temperature led to a higher TMA
content than FIR-PVD and HAD. FIR-PVD resulted in the highest ∆E values of dried products
due to the lightness enhancement. In addition, the dried products obtained by FIR-PVD had
better rehydration capacity. These findings indicate that FIR-PVD presents a promising alternative
method for drying raspberries, as it enhances drying efficiency and improves the quality attributes
of the dried products.

Keywords: raspberries; FIR-PVD; drying curves; color; total phenolics; microstructure; antioxidant
capacity; total monomeric anthocyanins

1. Introduction

Raspberry (Rubus idaeus L.), a member of the Rosaceae family, is a widely cultivated
berry fruit in the temperate regions of Europe, Asia, and North America owing to its
endearing flavor and color. It is abundant in anthocyanins, phenolic compounds, ellagic
acids, and flavonoids, which play a key role in preventing aging, improving immunity, and
protecting the cardiovascular system [1–3]. Due to its dual features of being a medicine
and food, raspberry is widely consumed daily. However, fresh raspberries are extremely
perishable even in refrigerator conditions due to their soft texture and highly sensitive skin,
which restricts their commercialization [4]. With the exception of being available in fresh
and frozen forms, the majority of raspberries are processed into wines, snacks, juices, and
jellies [5].

Practices have proved that drying processing is an efficient approach to prolonging
the shelf life and improving the value of fresh raspberry. Hot air drying (HAD) is a
commonly adopted drying technique for industrial raspberry processing. Nevertheless,
fresh raspberries are coated with a distinctive waxy hydrophobic layer on their surface,
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which hinders the transfer of moisture from the inner to the outer regions during the
dehydration procedure, thereby prolonging the drying time [6]. Moreover, the elevated air
temperature may promote the substantial degradation of bioactive compounds. To optimize
both the efficiency and quality of dehydrated raspberries, several alternative techniques,
namely freeze drying, microwave drying, and vacuum drying, have been explored for
their processing. The microwave drying method is popular for processing agro-materials
because of its high drying efficiency and energy-saving characteristics, although uneven
heating remains an inherent drawback of microwave drying [7,8]. Freeze and vacuum
drying could significantly retain the bioactive compounds by reducing thermal degradation
and oxidation reactions [9–11].

The novel technology of far-infrared radiation heating-assisted pulsed vacuum drying
(FIR-PVD) has the potential to facilitate an improvement in both the efficiency and product
quality of raspberry drying. During the FIR-PVD process, the boiling point of moisture
in the material decreases as the surrounding pressure is reduced. Consequently, under
the same heat transfer conditions, the material in the vacuum environment requires less
time for the moisture to reach its boiling point and vaporize. This reduction in boiling
point under vacuum conditions enhances moisture diffusion, thereby improving the overall
drying efficiency. Furthermore, the alternating cycles of pressure within the drying chamber
create disturbances in the vapor pressure of water at the material surface. This frequent dis-
ruption of the equilibrium between the vapor pressure of the material and the surrounding
medium promotes the expansion of the material’s micropores, thereby facilitating moisture
migration [12]. The long-term vacuum environment could reduce the decomposition of
organic compounds with bioactive properties. Also, the heat source of FIR could improve
the drying uniformity and save energy [13,14]. Currently, the application of FIR-PVD has
been demonstrated to be a viable primary processing technique for a variety of agricultural
products, including fruits and vegetables. Deng et al. [15] employed FIR-PVD processing
on red pepper and found that the dried products produced by FIR-PVD demonstrated
superior retention of red pigment and ascorbic acid compared to those produced by HAD
and infrared-assisted hot air drying (IR-HAD). Liu et al. [16] reported that FIR-PVD de-
creased the drying period for blueberries by 32.14% and improved the retention of total
phenolics and total monomeric anthocyanins compared to HAD under identical drying
conditions. Moreover, Wang et al. [17] applied FIR-PVD in drying hawthorn slices and
observed that FIR-PVD could notably reduce the degradation of both ascorbic acid and
citric acid compared to HAD. Nevertheless, no prior published work has explored the
influence of FIR-PVD on the physicochemical characteristics of raspberries.

Therefore, the principal aims of the present work are as follows: (i) to evaluate the
impact of FIR-PVD and HAD on the drying characteristics of raspberries; (ii) to analyze in
detail the quality properties of raspberries dried by FIR-PVD, FD, and HAD, which include
contents of total phenolics (TP), color parameters, contents of total monomeric anthocyanins
(TMA), antioxidant capacity, rehydration ratio, and microstructure. This experimental study
aims to provide valuable insights into practical methods for processing raspberries.

2. Materials and Methods
2.1. Preparation of Materials

In May 2024, fresh raspberries were sourced from a local supermarket in Beijing and
refrigerated at 4 ◦C with 95% relative humidity for no more than 3 days. To maintain
uniformity, the fruits were carefully selected based on consistent size and the prevention
of external damage, with a mean diameter of 16 ± 1 mm for experimental purposes. The
initial moisture content of the fresh raspberries was measured using methods outlined by
the AOAC [18], with a measurement of 86.98% ± 0.56% (wet basis).
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2.2. Drying Methods
2.2.1. Freeze Drying

Roughly 200 g of raspberry was subjected to a pre-freezing process for 3 h in an
LGJ-25C vacuum freeze-dryer (Sihuan Scientific Instrument Co., Ltd., Beijing, China) at
−50 ◦C, followed by lyophilization for 24 h under the same apparatus with a constant
pressure of 20 Pa. The temperature settings for the material trays and condenser were fixed
at 30 ◦C and −50 ◦C, respectively.

2.2.2. Far-Infrared Radiation Heating-Assisted Pulsed Vacuum Drying (FIR-PVD)

The dryer utilized for the FIR-PVD experiments at the College of Engineering, China
Agricultural University, is illustrated in Figure 1. A comprehensive description of its
specifications was sourced from the study of Wang et al. [17]. The apparatus for the
dehydration process incorporates a vacuum module, a heating module, a cooling module,
a weighing module, and an electronic control module. Among them, the electronic control
module is equipped with the capability of automatically regulating the drying conditions
based on user-defined parameters. According to preliminary experiments, the drying
temperature, vacuum holding time, and ambient holding time were set to 65 ◦C, 15 min,
and 4 min, respectively. Each drying experiment involves distributing approximately 200 g
of the sample evenly across each stainless steel tray.
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Figure 1. Structure diagram of far-infrared radiation heating-assisted pulsed vacuum dryer.

2.2.3. Hot Air Drying

The dryer of HAD utilized in the dehydration procedure was developed by the
Laboratory of Agricultural Product Processing Technology and Equipment at the College
of Engineering, China Agricultural University, as illustrated in Figure 2. The dehydration
tests were conducted at 65 ◦C and an airflow speed of 3 m/s, with each tray uniformly
loaded with 200 g of fresh raspberries. All drying trials were performed in triplicate.
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2.3. Drying Characteristics

Weight data for the FIR-PVD process were recorded every 45 min, while for the HAD
process, they were recorded every 30 min. The moisture content of raspberries at time t (Mt,
g/g, dry basis) was calculated using the primary moisture content (M0, g/g, dry basis), the
primary weight, and the raspberries’ weight at time t. Additionally, the moisture ratio (MR)
of the samples was evaluated based on the following equation.

MR =
Mt

M0
(1)

2.4. Total Phenolic (TP) Content

TP content was determined using the method mentioned by Liu et al. [16]. A 2.0 g
sample of raspberry was transferred into a mortar and finely ground using 5 mL of a 1%
hydrochloric acid–70% methanol solution. Quartz sand was introduced to aid in grinding
the sample into a paste; afterward, 20 mL of a 1% hydrochloric acid–70% methanol solution
was mixed in, and the resulting mixture was subsequently homogenized. The mixture was
subsequently treated via ultrasonic extraction (160 W for 30 min, KQ5200DE, Kunshan
Ultrasonic Instrument Co., Ltd., Kunshan, China) and subsequent centrifugation (8000 rpm
and 4 ◦C for 15 min, GL-20G-II, Shanghai Anting Scientific Instrument Factory, Shanghai,
China). The resulting solution was designated as the extract.

To quantify the content of total phenolics, 0.2 mL of the sample extract was pro-
duced by combining this quantity with 0.5 mL of Folin–Ciocalteu reagent (BR, Macklin
Biochemical Technology Co., Ltd., Shanghai, China) plus 5.8 mL of distilled water. After
thorough mixing, the solution was allowed to stand for 10 min. Subsequently, 1.5 mL
of a 20% Na2CO3 solution was introduced to the mixture, which was then subjected to
homogenization. The solution was placed in a light-tight environment at 20 ◦C for 60 min.
The measurement of the absorbance was conducted at a wavelength of 750 nm, utilizing
a spectrophotometer (Beijing Purkinje General Instrument Co., Ltd., Beijing, China). In
expressing the contents of total phenolics, the values were presented in terms of gallic acid
equivalence, specifically expressed as mg GAE/g DW.
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2.5. Total Monomeric Anthocyanin (TMA) Content

The content of TMA was performed with slight modifications to the procedure outlined
by Liu et al. [16]. Specifically, 1 mL of the extract obtained in Section 2.4 was combined
with 9 mL of buffer solutions, each adjusted to a pH of 1.0 and 4.5, respectively. Fol-
lowing thorough mixing, the mixtures were permitted to react in the absence of light at
20 ◦C for 15 min. The measurement of the absorbance of the solutions was determined at
wavelengths of 520 nm and 700 nm. TMA content was calculated and provided as mg
Cy-3-G/100 g DW.

2.6. Antioxidant Capacity

The extract from Section 2.4 was employed as a measure of antioxidant activity [15].
The current work evaluated the antioxidant capacity using a 2,2-diphenyl-1-picrylhydrazyl
(DPPH) radical scavenging activity assay and ferric reducing antioxidant power (FRAP)
assay. The data were presented in mmol Trolox/g DW.

In the DPPH assay, a 0.5 mL aliquot of the sample extract was combined with 1.5 mL
of 70% methanol and 2.0 mL of a DPPH solution (Macklin Biochemical Technology Co.,
Ltd., Shanghai, China) with a concentration of 0.2 mg/mL. The aforementioned blend was
thoroughly mixed and permitted to react in the light-tight conditions of a laboratory at
room temperature for half an hour. Subsequently, the absorbance measurements of the
mixture were taken at 517 nm.

For analysis with the FRAP method, 25 µL of the sample extract was combined with
775 µL of 70% methanol and 3.2 mL of FRAP reagent. The solution from this combination
was then incubated at 37 ◦C in a water bath for half an hour. The absorbance of the resulting
solution was then evaluated at a wavelength of 593 nm.

2.7. Color

A LabScan XE spectrophotometer (Hunter Associates Laboratory, Inc., Reston, VA,
USA) was utilized in reflectance mode to quantify the L*, a*, and b* values of the samples.
The L* value, which represents lightness, ranges from 0, which corresponds to black, to
100, which corresponds to white. The a* value, which corresponds to the green–red axis,
ranges from −60 to +60, as does the b* value, indicating the blue–yellow axis. The total
color difference (∆E) between the fresh and dried raspberries was computed using the
formula provided below:

∆E =
[
(L∗ − L∗

0)
2 + (a∗ − a0

∗)2 + (b∗ − b0
∗)2

]1/2
(2)

where L0*, a0*, and b0* represent the control group, which is composed of the color parame-
ters for the fresh raspberry.

2.8. Rehydration Ratio (RR)

The RR experiment on raspberry was conducted utilizing the procedure outlined
by Liu et al. [16], with minor modifications. Dried samples (10 g) were combined with
200 mL of distilled water at 90 ◦C, and the mixture was then permitted to stand for 1 h.
Subsequently, the samples underwent a moisture removal process utilizing absorbent paper.
Afterward, the samples were weighed using an electronic balance. The following formula
was utilized to calculate the RR:

RR =
Ww

Wd
(3)

where Ww (g) and Wd (g) denote the mass of the raspberry following and preceding a
rehydration process, respectively.
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2.9. Microstructure

Samples of dried raspberries, cut into 5 mm × 5 mm sections, were affixed to an
observation stage with conductive tape. Each sample was then sputtered with a thin
layer of gold for 30 s. Subsequently, observation was carried out using a SU3500 scanning
electron microscope (Hitachi, Tokyo, Japan) operated at an accelerating voltage of 15 kV.
This was carried out for the purpose of observing the surface and epidermal corneum.
Images were obtained at magnifications of 20× and 200×, respectively.

2.10. Statistical Analysis

The experimental results are shown as the mean ± standard deviation. A one-way
analysis of variance (ANOVA) was conducted, followed by Duncan’s multiple range test
for statistical analysis. A p-value of less than 0.05 was deemed statistically significant. The
data were analyzed using IBM SPSS Statistics, version 27.0 (IBM Corp., Armonk, NY, USA).

3. Results
3.1. Drying Curves

Figure 3 illustrates the impact of HAD and FIR-PVD on the drying kinetics of rasp-
berries at a constant drying temperature of 65 ◦C. As anticipated, the moisture ratio of
the raspberries tended to decrease with the prolongation of the drying time. The total
drying duration required to attain the target moisture content was 376, 720, and 1440 min
for FIR-PVD, HAD, and freeze drying (FD), respectively. Notably, FIR-PVD markedly
decreased the drying time by 47.78% and 73.89% in comparison to HAD and FD, respec-
tively. This effect may be explained by the crust formation observed on the surface of the
material during the HAD process, which impedes water migration from the interior to the
exterior. FIR-PVD might facilitate the creation of micro-porous channels via the application
of successive pressure variations within the drying apparatus [19].
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3.2. Total Phenolic (TP) Content

Figure 4 presents the total phenolic (TP) content of dried raspberries produced us-
ing various drying techniques. As depicted in Figure 4, the choice of drying method
significantly influenced the total phenolic (TP) content of the dried products. The highest
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TP content occurred in FIR-PVD, i.e., 22.43 mg GAE/g DW. However, the FD method
resulted in much lower TP retention than other drying methods, i.e., 19.05 mg GAE/g DW.
Si et al. [20] also found that FD led to the lowest TP content of raspberry powders compared
to HAD, infrared radiation drying (IRD), hot air and explosion puffing drying (HA-EPD),
as well as infrared radiation-assisted microwave vacuum drying (IR-MVD). Li et al. [21] fur-
ther reported that freeze-dried walnut kernel exhibited a diminished TP content compared
to samples dried by gradient hot air drying and constant hot air drying methods. Maybe
the long drying time of 1440 min caused by the low-temperature dehydration treatment
made the phenolics unstable, which led to a more serious degradation. Additionally, heat
treatment increases the breakdown of material tissues, thereby enhancing the extraction of
phenolic compounds. The alternating pressure shifts between vacuum and atmospheric
conditions notably altered the structures of cellular organelles [15]. Comparable results
were observed by Liu et al. [12] for blueberries processed with FIR-PVD in contrast to HAD.
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(p < 0.05) in TP between different groups, while the lowercase letters (a–c) indicate significant differ-
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3.3. Total Monomeric Anthocyanin (TMA) Content

Anthocyanins, one of the primary bioactive compounds in many fruits and vegetables,
are notably more sensitive to heat compared to other phenolic compounds [22,23]. The
total monomeric anthocyanin (TMA) content of dried raspberries obtained through various
drying technologies is demonstrated in Figure 4. TMA contents of FD, FIR-PVD, and HAD
products were 24.76, 13.03, and 7.59 mg Cy-3-G/100 g DW. FD at a low temperature led to a
higher TMA content than FIR-PVD and HAD. The analysis revealed that the dried samples
belonging to the HAD group exhibited the lowest TMA content. The alternating fluctuations
between vacuum and atmospheric pressure during the FIR-PVD process may significantly
disrupt cellular integrity. Conversely, the vacuum condition and shortened dehydration
period reduced the oxidation reaction and heat degradation of anthocyanins. However, the
longer heat process during the HAD process promoted the thermal degradation of TMA.
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Therefore, fresh raspberries after FIR-PVD contained a higher TMA content than after
HAD. Similar observations were described by Si et al. [20], who conducted a comparison of
various drying methods and their effects on the total anthocyanin content in raspberries.
Also, Liu et al. [16] discovered that the content of TMA of FIR-PVD blueberries was more
than twice that of HAD at the same drying time.

3.4. Antioxidant Capacity

The antioxidant capacity of dried raspberry was evaluated using DPPH and FRAP
assays, with the resulting values presented in Figure 5. The DPPH and FRAP values
of the dried products ranged from 23.43 to 24.86 mmol Trolox/g DW and 171.91 to
237.52 mmol Trolox/g DW, in the respective order. The highest values for both DPPH
and FRAP were measured for the FIR-PVD method at 65 ◦C, with values of 24.86 and
237.52 mmol Trolox/g DW, respectively. The lowest DPPH and FRAP values were ob-
served for samples prepared using the FD method, with values of 23.43 and 171.91 mmol
Trolox/g DW. Kumazawa et al. [24] assessed the antioxidant capacity of seven types of
berries, including R. hirsutus Thunb., R. microphyllus L. fil., R. palmatus Thunb., R. trifidus
Thunb., R x medius Kuntze, blackberry, and raspberry. The DPPH radical scavenging activ-
ity (expressed as percentage scavenging of DPPH radicals at 50 µg/mL) and FRAP values
were found to be 38.4, 50.3, 42.1, 28.3, 44.2, 35.1, and 42.4, and 56.7, 58.2, 53.4, 37.0, 42.2, 83.8,
and 45.4 µmol Trolox/g DW, respectively. FIR-PVD noticeably improved the antioxidant
capacity of dried raspberries. However, FD had no leverage on the retention of antioxi-
dant components in the samples. Similar trends were observed in the change in DPPH
and FRAP values under various drying methods, which correlated with the TP content.
The data demonstrate a notable correlation (p < 0.05) between the DPPH, FRAP, and TP
content, as illustrated in Figure 6. These findings are consistent with the results published
by Li et al. [21], Zhang et al. [25], and Yang et al. [26], who observed that the antioxidant
activity of walnut kernel, yellow maize, and quinoa seed grains was significantly correlated
with TP content. During the drying process, the degradation of phenolic compounds might
potentially diminish the antioxidants in the finished product.
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3.5. Color

Color characteristics of dehydrated fruits represent the retention of pigments such as
carotenoids, anthocyanins, chlorophyll, and phenols. These color parameters may serve as
quality indicators, guiding the optimization of drying conditions and the minimization of
bioactive compound degradation [27]. The color parameters of dried raspberries obtained
by different drying methods are illustrated in Table 1. The L*, a*, and b* values of fresh
samples were 32.24, 23.79, and 7.02, respectively. Different drying methods significantly
influenced the color values of dried products. Compared with the fresh samples, the L* and
a* values of the FIR-PVD samples increased significantly by 12.59% and 32.79%, indicating
the brightest and reddest appearance. However, HAD led to the lowest L*, a*, and b*
values, i.e., 29.38, 23.97, and 1.05, respectively. Freeze-dried samples resulted in the lowest
∆E values of dried materials and the overall appearance of the products was close to the
fresh sample. The highest ∆E values of dried products occurred with FIR-PVD. These
phenomena can be attributed to the considerable modifications in the internal structure
of materials caused by FIR-PVD, which subsequently led to a more pronounced surface
color [28]. During the HAD process, the extended drying time led to the materials having
more exposure to the hot air and thus promoted browning reactions [29,30]. In contrast,
FD significantly reduced color deterioration. These results indicated that the extended
exposure to heat and air increased the degradations of pigments.

3.6. Rehydration Ratio

The RR of dried materials was applied to determine their water absorption ability,
which generally reflected the changes in tissue structure. A higher RR in dried samples
indicates a lesser extent of structural alteration, which is associated with superior product
quality [31]. The effects of various drying methods on the rehydration ratio of dried
products are shown in Figure 7. As can be seen from Figure 7, the highest rehydration
ratio was noted for the samples prepared by FIR-PVD, i.e., 3.62. Nevertheless, no notable
difference was found in the rehydration ratio between FD and HAD. The difference in
rehydration ratio between different drying methods might be caused by various changes in
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the materials’ structure. Several studies indicated that FIR-PVD induced a more porous
structure in materials due to the cyclic pressure fluctuations between vacuum and ambient
pressure, thereby enhancing their rehydration capacity [15,19,32].

Table 1. Images and color parameters of raspberries under various conditions.

Fresh FD FIR-PVD HAD

Images
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3.7. Microstructure by SEM

The modification of microstructure has a significant impact on the macroscopic prop-
erties and overall quality of dried materials. This process is fundamental for elucidating
the underlying cellular mechanisms and assessing the effectiveness of various drying tech-
niques [33,34]. From the microstructure of materials, as shown in Figure 8, the micropores
in FD samples had a minor diameter of up to 4 mm, whereas those in HAD samples
were approximately less than 1 mm, with the micropores in FIR-PVD samples falling in
between these methods. It can be seen that FD led to a relatively regular waxy and thinner
epidermis. The skin of FD samples looked fragile. The application of FIR-PVD treatment
resulted in the contraction of the tissue material, which led to an increase in the thickness
of the cuticular layer due to its exposure to alternating vacuum and atmospheric pressures.
Also, the microstructure obtained by FIR-PVD was more porous in the cross-section of the
epidermis. However, HAD resulted in serious cell tissue collapse and epidermal crusting.
This confirmed that the dried products obtained by FIR-PVD had better rehydration perfor-
mance. Similar findings were reported by Liu et al. [16], who found that the blueberries
dried by FIR-PVD showed greater rehydration capability than those treated by HAD.
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Figure 8. Microstructural images of dried raspberries at 20 and 200 magnification under various
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4. Conclusions

FIR-PVD was employed to process fresh raspberries. The overall drying period
necessary to achieve the desired FIR-PVD moisture content was 376 min. Compared to
HAD and FD, FIR-PVD demonstrated a notable reduction in drying time, with a decrease of
47.78% and 73.89%, respectively. The highest TP content occurred in FIR-PVD, i.e., 22.43 mg
GAE/g DW. FD at a low temperature led to a higher TMA content than FIR-PVD and HAD.
In addition, the highest DPPH and FRAP values were observed for FIR-PVD at 65 ◦C, i.e.,
24.86 and 237.52 mmol Trolox/g DW, respectively. Significant positive relationships were
observed between DPPH, FRAP, and TP content (p < 0.05). However, the highest values
of the ∆E for the dried products were observed for the samples treated with the FIR-PVD
method, due to the observed lightness enhancement. The dried products obtained by
FIR-PVD had better rehydration performance. The alternating pressure between ambient
and vacuum pressure during FIR-PVD made the material tissue shrink and thus resulted
in a thicker cuticular layer. Overall, the FIR-PVD method produced higher quality dried
raspberries. Current studies highlight the potential of FIR-PVD as an effective drying
method for berry materials with similar structures, contributing to improving their quality
attributes. However, potential challenges such as the need for specialized equipment,
higher energy requirements, and initial investment may require further consideration to
enhance its scalability and cost-effectiveness for broader industrial applications.
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