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Abstract: Chlorophyll is a crucial indicator for monitoring crop growth and assessing nutritional
status. Hyperspectral remote sensing plays an important role in precision agriculture, offering a
non-destructive approach to predicting leaf chlorophyll. However, crop canopy spectra often face
background noise and data redundancy challenges. To tackle these issues, this study develops an
integrated processing strategy incorporating multiple preprocessing techniques, sequential module
fusion, and feature mining methods. Initially, the original spectrum (OS) from 2021, 2022, and the
fusion year underwent preprocessing through Fast Fourier Transform (FFT) smoothing, multiple
scattering correction (MSC), the first derivative (FD), and the second derivative (SD). Secondly,
feature mining was conducted using Competitive Adaptive Reweighted Sampling (CARS), Iterative
Retention of Information Variables (IRIV), and Principal Component Analysis (PCA) based on the
optimal preprocessing order module fusion data. Finally, Partial Least Squares Regression (PLSR)
was used to construct a prediction model for winter wheat SPAD to compare the prediction effects
in different years and growth stages. The findings show that the preprocessing sequential module
fusion of FFT-MSC (firstly pre-processing using FFT, and secondly secondary processing of FFT
spectral data using MSC) effectively reduced issues such as noisy signals and baseline drift. The
FFT-MSC-IRIV-PLSR model (based on the combined FFT-MSC preprocessed spectral data, feature
screening using IRIV, and then combining with PLSR to construct a prediction model) predicts SPAD
with the highest overall accuracy, with an R2 of 0.79–0.89, RMSE of 4.51–5.61, and MAE of 4.01–4.43.
The model performed best in 2022, with an R2 of 0.84–0.89 and RMSE of 4.51–6.74. The best prediction
during different growth stages occurred in the early filling stage, with an R2 of 0.75 and RMSE of
0.58. On the basis of this research, future work will focus on optimizing the data processing process
and incorporating richer environmental data, so as to further enhance the predictive capability and
applicability of the model.

Keywords: hyperspectral; winter wheat; chlorophyll; feature mining methods; preprocessing
methods

1. Introduction

Wheat is one of China’s most important grain crops and is essential in ensuring food
security [1]. Chlorophyll is a crucial molecule in promoting plant photosynthesis and
is closely related to crop health and nitrogen fertilizer use efficiency, which can directly
affect wheat yield [2]. Therefore, rapid, non-destructive, and accurate acquisition of leaf
chlorophyll information is essential for agricultural production management [3].
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Traditional chlorophyll measurement methods, such as acetone extraction and fluores-
cence analysis, are both a safety risk and cumbersome and challenging to promote [4]. In
recent years, remote sensing technology has become a powerful tool for monitoring crop
growth in precision agriculture because of its efficiency and convenience [5]. It provides
technical support for real-time and accurate acquisition of chlorophyll information [6].
Currently, remote sensing platforms such as satellite platforms [7], near-Earth hyperspec-
tral platforms [8], and unmanned aerial vehicle (UAV) platforms [9] are widely used to
assess the physiological and biochemical parameters of crops [10–12]. Satellite platforms
are usually used for large-scale regional monitoring, but the spatial resolution is low and
susceptible to weather impacts, making it challenging to conduct refined research [13].
Unmanned aerial vehicles (UAVs) are inexpensive and easy to operate but are limited
by endurance and face challenges in realizing large-scale and long-time monitoring [14].
Compared with these two platforms, near-surface hyperspectroscopy, which can acquire
continuous narrow bands, can identify the reflectance and absorption properties of wheat
chlorophyll in different wavelength ranges, and can capture subtle wavelength variations in
the canopy reflectance spectra using its high spectral resolution. This approach shows great
potential in crop chlorophyll monitoring, providing richer spectral data for chlorophyll
monitoring [15,16].

Canopy hyperspectral prediction of wheat chlorophyll is susceptible to interference
from random noise, light source noise, and multiple scattering [17]. To reduce the impact
of noise on chlorophyll monitoring, a large number of studies have used preprocessing
methods such as FFT filtering [18], MSC [19], FD [20], and SD [21] to solve such problematic
interferences. FFT can significantly improve the data quality by identifying and filtering
frequency-specific noise components in the frequency domain [22]. MSC can effectively
resolve the spectral data affected by scattering effects and improve the purity of spectral
signals [23]. Moreover, FD and SD can highlight peaks and valleys in spectral signals
and analyze changes and trends in spectral curves [24,25]. For example, Singh et al. [26]
acquired canopy spectral data of 17 crops using a hyperspectral imaging spectrometer
(AVIRIS-NG) and evaluated the performance of three denoising techniques, the FFT filter,
the mean filter, and SG smoothing, and the results showed that the FFT filter performed
the best. Zhang et al. [27] investigated the relationship between chlorophyll content and
spectral data of winter wheat. They used preprocessing methods such as MSC and standard
normal variable transformation (SNV) to eliminate the light-scattering effect due to the
inconsistency in the size of the solid particles on the wheat leaves, which serves the purpose
of correcting the canopy spectra. Zhou et al. [28] used FD, SD, and MSC to preprocess the
Vis-NIR spectra of lettuce and combined it with various regression algorithms to construct
the SPAD prediction model, which had good prediction results (R2 > 0.80).

The background noise problem in canopy spectra is challenging to solve using a single
method. Ollinger et al. [29] showed that plant canopy reflectance variations are affected
by multiple factors, such as physiological structure, leaf pigment types, nitrogen, and
proteins, which may generate different types of noise affecting the estimation of plant
physicochemical parameters. Therefore, integrating different preprocessing methods is
necessary to attenuate the effects of multi-source noise [30]. In addition to noise interference,
canopy spectral data have problems such as high dimensionality and redundancy [31].
Deep mining of the characteristic bands that are highly correlated with chlorophyll provides
a possibility to address these issues [32–34]. For example, Jin et al. [35] showed that the
bands within the blue and red light regions contain rich plant phenotypic information,
which is highly correlated with the biochemical properties of chlorophyll and provides
reliable data for accurate estimation of leaf chlorophyll content. Zhang et al. [36] revealed
that the red-edge region is extremely sensitive to changes in plant chlorophyll content and
that it is possible to capture fluctuations in the position of the red edge, and thus track
changes in chlorophyll content at different growth stages. Buschmann et al. [37] pointed
out that leaf chlorophyll is more absorptive and, therefore, less reflective in the 400~500 nm
band range.
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The above studies have shown that using sensitive bands for chlorophyll prediction is
conducive to reducing the complexity of prediction model construction, on the one hand,
and facilitating the scientific interpretation of the relationship between canopy spectra and
chlorophyll, on the other [38]. Therefore, using suitable feature mining methods to obtain
sensitive bands plays a key role in predicting wheat chlorophyll [39]. For example, CARS
aims to select the optimal bands that are highly correlated with the target variable from
the raw spectral data. The core idea is based on a competitive elimination mechanism that
gradually eliminates redundant bands with little or no correlation with the target variable
in each iteration, thus improving the generalization ability of the model [40]. IRIV, as a
feature selection algorithm with heuristic search, avoids the local optimum problem that
may be brought about when selecting feature bands directly from high-dimensional data
through random sampling and step-by-step optimization, and ultimately retains the feature
bands that are the most useful for the target variables [41].

PCA converts the original spectral data into a set of mutually orthogonal principal
components through linear transformation, which can simplify the data structure and
improve the model’s computational efficiency while retaining the original data’s basic
information [42]. The above methods have also been widely used in previous studies.
For example, Sudu et al. [43] acquired hyperspectral data of different growth stages of
summer maize based on UAV hyperspectral data, and then used the feature selection
algorithms CARS and RFE to select the feature bands and compared the SPAD prediction
accuracy with different machine learning algorithms. Yuan et al. [44] used three methods,
the correlation coefficient, CARS, and IRIV, to select the characteristic bands and construct
a prediction model for the SPAD value of chili peppers, of which the IRIV model had
the highest accuracy, with R2 ≥ 0.80. Shen et al. [45] took winter wheat as the research
object to compare the performance of the SPAD prediction model constructed from the
original data and the spectral data after dimensionality reduction by the feature extraction
technique PCA, and the results showed that the sensitive features can significantly improve
the model accuracy.

In summary, previous studies lacked systematic exploration of the fusion of different
sequential modules of multiple preprocessing methods, which may be defective regarding
the noise reduction effect. Meanwhile, although the application of feature mining methods
has been widely reported [46,47], the potential of combining different sequential modules
of multiple preprocessing fusion methods for predicting crop chlorophyll is not yet known.
Therefore, this study mainly proposes an integrated processing strategy that utilizes the
fusion of different sequential modules of multiple preprocessing methods (FFT, MSC, FD,
SD) combined with feature mining methods (the feature selection algorithms CARS and
IRIV, and the feature extraction technique PCA) to solve the problems of crop canopy
spectral noise interference and data processing complexity, to improve the effectiveness of
wheat SPAD prediction. The research objectives are as follows: (1) to explore the model
performance under the fusion of a single preprocessing method and the fusion of different
sequential modules of multiple preprocessing methods; (2) to evaluate the effectiveness of
two types of feature mining methods for predicting SPAD in wheat; and (3) to compare the
differences in SPAD prediction accuracy across years and growth stages.

2. Materials and Methods
2.1. Experimental Site

The experimental site was situated in Xiaogang Village (117◦46′7′′ E, 32◦48′52′′ N),
located in Chuzhou City, Anhui Province, China (Figure 1). This region experiences a warm-
temperate semi-moist monsoon climate characterized by abundant sunshine and distinct
monsoon seasons. The experiment was conducted over 2021 and 2022, during which the
average annual temperature ranged from 14 to 16 ◦C, the average annual precipitation
fell between 1000 and 1100 mm, and the average annual sunshine duration was between
1800 and 2500 h. Furthermore, Xiaogang Village features flat terrain and moderate soil
fertility, making it a significant experimental base for grain crops.
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Figure 1. Study area. (A) The experiment field was in Chuzhou, Anhui province, China; (B) field
experimental design.

2.2. Experimental Design

Three nitrogen treatment levels (N0: 0, N1: 100, N2: 200, N3: 300 kg/ha1) were applied,
of which 60% was applied before sowing, and 40% was applied at the jointing stage. Within
each fertilizer rate, three wheat varieties were sown: high-gluten wheat HuaiMai 44,
high-gluten wheat YanNong 999, and low-gluten wheat NingMai 13 (designated as V1,
V2, and V3). Each plot included three replications. The experimental area consisted of
36 subplots, and each subplot was 16 m2 (2 m × 8 m) in 2021 and 10 m2 (2 m × 5 m) in 2022.
A wheat–rice rotation system was used to explore crop growth differences. Phosphorus
fertilizer (P: 90 kg/ha1) and potash fertilizer (K: 135 kg/ha1) were applied as basal fertilizer.
Field management was the same as that used locally.

2.3. SPAD Data Collection

The collection times of wheat SPAD data were the jointing stage (14 March 2021
and 16 March 2022), the booting stage (8 April 2021 and 10 April 2022), the early filling
stage (9 May 2021 and 5 May 2022), and the late filling stage (24 May 2021 and 21 May
2022). A plant nutrient analyzer (TYS-4N, Zhejiang Top Cloud-Agri Technology Co., Ltd.,
Hangzhou, China) was utilized for these measurements with an accuracy of ±3.0 SPAD and
a repeatability of ±3.0 SPAD (SPAD values between 0 and 50). During the measurements,
three wheat plants were randomly selected from each plot. For each plant, measurements
were taken at the apical leaves’ top, middle, and bottom, ensuring the main veins were
avoided. The average of the nine points gathered was then used as the SPAD reference
value for the plot samples.
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2.4. Canopy Spectral Data Acquisition

Wheat canopy spectra were acquired using an ASD FieldSpec HandHeld2 ground
spectrometer (Analytical Spectral Devices, Boulder, CO, USA). This spectrometer operates
within a wavelength range of 325 to 1075 nm, featuring a wavelength accuracy of ±1 nm
and a 25◦ fully tapered field of view. Data collection coincided with the SPAD measurement
between 10:00 am and 2:00 pm on a clear, cloudless day with high light intensity. Before each
acquisition, radiometric corrections were performed using a standard reference whiteboard
with a reflectance of 0.98. Three representative target areas within each plot were selected
for spectral acquisition. The optical fiber input of the spectrometer was positioned vertically
at a distance of 50 cm from the plants. Three spectral curves were obtained by scanning
each target area once, and the average reflectance value of nine spectral curves was taken
as the reference value for the plot.

2.5. Data Processing
2.5.1. Spectral Preprocessing Methods

In this study, the wavelength band of 400 to 900 nm was explicitly selected for analysis
to reduce the mechanical noise and baseline drift in the raw spectral data, thereby enhancing
the accuracy of the results. The spectral data underwent preprocessing through four distinct
methods: Fast Fourier Transform (FFT), Multiplicative Scatter Correction (MSC), Finite
Difference (FD), and Savitzky–Golay (SD) smoothing techniques. This process is outlined
in the technology roadmap to visualize the sequential steps from data acquisition to
model development (Figure 2). First, in this study, based on winter wheat canopy spectral
data, we used multiple preprocessing methods (FFT, MSC, FD, and SD) for fusion of
different sequence modules and constructed a PLSR prediction model by combining SPAD
data separately to determine the optimal combination of preprocessed sequences. On
this basis, feature mining methods (CARS, IRIV, and PCA) were used to determine the
feature wavelengths, and principal components to further optimize the SPAD prediction
model. Finally, the best prediction model was determined by comparing the prediction
performance of different models.

The FFT method employs frequency domain analysis for smoothing [48]. The FFT
initially transforms the original signal from the spatial domain to the frequency domain.
This transformation allows access to the magnitude of the frequency components, which
typically exhibit lower magnitudes at high frequencies and greater magnitudes at low
frequencies. Subsequently, a low-pass filtering method is applied to eliminate noise by
selecting an appropriate cutoff frequency that retains the low-frequency components. The
final step involves the application of Inverse Fast Fourier Transform (IFFT) to obtain
smoothed spectral data. The FFT filter was executed using Origin 2018 with the cutoff
frequency set to 0.1 and the window parameter configured to 5.

MSC [49] is implemented to rectify spectral data for optical path inhomogeneities and
scattering associated with physical factors such as sample surface roughness and particle
size. The method involves selecting the mean spectrum of all the samples as the reference,
from which the mean scattering coefficient was calculated by determining the ratio of the
sample spectrum to the reference spectrum. The corrected spectrum was subsequently
derived based on the mean scattering coefficient utilizing MATLAB 2021a for computations.

The FD and SD [50] methods were utilized to enhance the resolutions of rapid spectral
changes. This functionality assists in the differentiation of overlapping peaks and the
extraction of clearer peak information. The calculations of these methods were executed
through the software Central Difference feature in Origin 2018. Formula (1), employed for
the FD center difference method, is outlined below:

f′(x i) =
f(xi+1)− f(xi−1)

xi+1 − xi−1
(1)
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For the first and last points of the spectral data, forward differencing (2) or backward
differencing (3) was used with the following formulas, respectively:

f′(x i) =
f(xi+1)− f(xi)

xi+1 − xi
(2)

f′(x i) =
f(xi)− f(xi−1)

xi − xi−1
(3)

where x is the wavelength, xi is the wavelength value, xi+1 is the wavelength value after
xi, and xi−1 is the wavelength value before xi. In addition, SD is calculated as the second
derivative of FD.

Additionally, the approach of fusing multiple preprocessing sequential modules aims
to leverage the combination of individual preprocessing methods with distinct spectral
processing effects to create a prediction model for SPAD in winter wheat. The multiple
preprocessing steps were as follows:

(1) Each preprocessing step is considered an independent module sequentially applied to
the raw spectral data. Modular processing is implemented using the Origin software
and MATLAB programming language, with data progressing to the next module after
processing each module. In this study, FFT and MSC serve as the initial preprocessing
modules, with various combinations established alongside FD or SD, such as FFT-
MSC-FD and MSC-FFT, reflecting the order of preprocessing.
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(2) The fusion of these different sequential modules was utilized to construct SPAD
prediction models, which were then compared to prediction models developed using
individual preprocessing methods.

(3) The optimal preprocessing sequential module fusion was selected based on evalua-
tions of accuracy and stability across different models.

2.5.2. Feature Mining Methods

To solve the issues of redundancy and high dimensionality inherent in canopy spectral
data, this study employed the feature selection methods, Coupled Adaptive Reweighed
Sampling (CARS) and Iterative Reweighed Importance Variable (IRIV), alongside the fea-
ture extraction technique of Principal Component Analysis (PCA), to reduce dimensionality.
This approach enhances the efficiency and accuracy of model construction.

CARS [51,52] is a stepwise weighted sampling feature selection method comprising
three phases. Initially, the algorithm generates multiple feature subsets through Monte
Carlo sampling, subsequently selecting sample data to construct a Partial Least Squares
Regression (PLSR) model while simultaneously updating the weights of each feature. The
weight adjustments are facilitated by an exponentially decreasing function, allowing for
the ranking and selection of features based on these adjusted weights. Following this,
5-fold cross-validation is performed to access the predictive performance of each subset.
Ultimately, the subset characterized by the lowest root mean square error of prediction
(RMSEP) is identified as the optimal feature set.

IRIV [53–55] represents an iterative feature mining approach focused on the stepwise
selection of critical features for model prediction through systematic weighting and statis-
tical testing. The method starts with the identification of optimal principal components
via 5-fold cross-validation. Then, a subset space was constructed for the sub-model using
Binary Matrix Sampling (BMS) in each iteration, and the RMSECV for the combination
of binary matrices was accessed using Monte Carlo sampling. Variable importance was
quantified using the parameters DMEAN (Difference in RMSECV per Variable) and the
Mann–Whitney U test. The variables were then categorized as strongly influential, weakly
influential, uninformative, or interfering variables, and this process was iterated until no
uninformative or confounding variables remained. Finally, backward elimination was
employed to refine feature selection, ensuring that the resultant feature set possesses the
highest predictive power.

PCA [56,57] is an unsupervised learning method for dimensionality reduction, seeking
to generate mutually orthogonal principal components through linear transformations,
effectively mapping high-dimensional data into a low-latitude space.

The method starts by decentering the original data to compute the covariance matrix
(C) of the adjusted data, which is expressed in Equation (4):

C =
1

n − 1
XT

centeredXcentered (4)

where n is the number of samples, X is the original data, Xcentered is the centered data, and
XT

centered is the transpose of the centered data matrix.
Subsequently, the eigenvalue decomposition of this covariance matrix is performed

to obtain latent variables and coefficients. The latent variables are then ranked, and the
top k principal components with the largest cumulative explained variance are selected.
Finally, the original data were projected onto the space defined by these selected principal
components, facilitating dimensionality reduction, as expressed in Equation (5):

Xreduced = X × coeffselected (5)

where Xreduced is the reduced dimension data matrix, X is the original data, and coeffselected
is the selected principal component.



Agriculture 2024, 14, 2258 8 of 21

2.6. Model Construction and Evaluation

PLSR [58–60] is a statistical method used for multivariate regression analysis to manage
multiple linear relationships between independent and dependent variables. The core
idea is to develop a regression model that reduces dimensionality by extracting potential
variables that can account for variations in both independent and dependent variables. The
process can be outlined as follows:

(1) Project the independent and dependent variables into low-dimensional space and
identify latent variables that explain their covariance. These latent variables are
linear combinations of independent and dependent variables that are orthogonal to
each other.

(2) Extract these latent variables to construct a regression model.
(3) Evaluate the model’s fit and prediction effects through evaluation indicators such as

coefficient of determination (R2) and root mean square error (RMSE).

In this study, the PLSR algorithm was employed to predict and analyze the SPAD
values of the winter wheat canopy, utilizing the spectral data and SPAD values as model
inputs. A total of 144 data samples were collected each year, although 141 were deemed
suitable due to the presence of outliers, resulting in a total of 282 samples. For modeling
purposes, 70% of the sample data were selected as the training set, while 30% were allocated
to the validation set to construct the SPAD prediction model for winter wheat. The model
accuracy was assessed using three evaluation parameters: coefficient of determination
(R2), root mean square error (RMSE), and mean absolute error (MAE). The formulas for
calculations are as follows:

R2 = 1 − ∑n
i=1(xi − yi)

2

∑n
i=1(xi − x̂)2 (6)

RMSE =

√
∑n

i=1(yi − xi)
2

n
(7)

MAE =
∑n

i=1 |y i − xi|
n

(8)

Note: xi, yi, and x̂ are the actual measured value, predicted value, and average value
of the measured data, respectively; n is the number of samples.

3. Results
3.1. Spectral Preprocessing

To better explore the hyperspectral features used for estimating SPAD in wheat,
we analyze the spectral variations between the original spectra and those after different
methods of preprocessing (Figure 3). The spectral curves of the wheat canopy showed
similar trends across growth years, showing an overall pattern of increase followed by
a decrease. Notable differences in spectral reflectance were observed at 550 nm, 670 nm,
and 720 nm (Figure 3a). The noise present in the FFT-smoothed spectral curves within
the 400–500 nm and 800–900 nm ranges was effectively reduced, while the primary trends
of the spectral signals were preserved (Figure 3b,c). Meanwhile, when compared to the
original spectra, the MSC-treated spectral curves exhibited more concentrated reflectance
within the 400–700 nm range, more prominent curve shapes, and enhanced consistency
in variation trends (Figure 3d). Furthermore, the reflectance of the FD spectral curve in
the 680–750 nm range was amplified, the baseline of the SD spectral curve was flattened,
and its variation trend aligned more closely with a horizontal line, resulting in fluctuations
concentrated around the peaks and valleys, particularly at 750 nm (Figure 3e,f).
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3.2. Accuracy Assessment of Different Preprocessing Methods

To evaluate the performance of single preprocessing methods (FFT, MSC, FD, and SD)
and their fusion with different sequence modules to construct PLSR prediction models, in
this study, the models were categorized into three groups, C1, C2, and C3, and evaluation
metrics such as R2 and RMSE were compared (Figure 4). The order of the processing
techniques in C2 and C3 mirrors the sequence of spectral processing. For instance, the
analysis employing FFT-MSC-FD indicates an initial prioritization of the FFT method,
followed by the application of MSC on the FFT spectra, and finally, the application of the
FD transformation on the FFT-MSC spectra.

In 2021, model C1 (Figure 4a,b) revealed that the MSC-processed spectral reflectance
yielded the highest accuracy (R2 = 0.72 and RMSE = 5.46), with an improvement of 0.02
and a decrease of 0.53 in RMSE compared to the OR model. Conversely, the FFT model
exhibited the lowest accuracy (R2 = 0.64 and RMSE = 6.01). Fusing the two preprocessing
methods highlighted the FFT-MSC model as the superior combination, with an R2 of 0.74,
thus representing enhancements of 0.04, 0.02, and 0.10 compared to the R2 values of the
OR, MSC, and FFT models, respectively. In contrast, the MSC-FFT model showed a decline
of 0.06 relative to the MSC model R2, while improving by 0.02 over the FFT model R2. The
analysis showed that FFT-FD improved R2 by 0.03 over the MSC-FD model, while FFT-SD
improved R2 by 0.02 over the MSC-SD model. These findings underscore the significant
contribution of FFT-prioritized spectra in enhancing model prediction accuracy in 2021.

This study compares model accuracy in both 2022 and the fusion year (Figure 4c–f).
The results from 2022 indicate that model C1 achieved the highest accuracy with the OR and
FD models, both attaining an R2 of 0.88, followed closely by the MSC model at R2 = 0.87,
while the FFT presented the lowest accuracy, with R2 = 0.77. This result is slightly different
from 2021. After the fusion of FFT and MSC, the R2 of the FFT-MSC model reached 0.86.
Although the prediction accuracy was slightly lower than that of the OR and MSC models,
the R2 was improved by 0.09 and 0.12 compared with the FFT and MSC-FFT models,
respectively. At the same time, the study also found that when FFT-MSC was fused with
FD or SD, the model performance was poor, with the FFT-MSC-FD model R2 = 0.80 and
RMSE = 6.29, and the FFT-MSC-SD model R2 = 0.82 and RMSE = 8.66.
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In the fusion year C1, the OR model had the highest accuracy (R2 = 0.82, RMSE = 6.24)
and the FFT model had the lowest accuracy (R2 = 0.66, RMSE = 6.25). However, in C2, the
performance of the FFT-MSC model was significantly improved, with R2 of 0.01, 0.17, and
0.04 higher than that of the single model OR, FFT, and MSC, respectively, and R2 of 0.17
higher than that of the combined model MSC-FFT. Additionally, this study identified that
the performance of the MSC-SD model was sub-optimal during both single and fusion
years, with R2 values of 0.64, 0.76, and 0.64, respectively, and correspondingly high RMSE
values of 7.24, 9.91, and 9.88, respectively. In conclusion, the FFT-MSC fusion preprocessing
method was selected for subsequent studies based on its superior performance in the
comparison of model accuracy.
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3.3. Spectral Feature Mining Results

In this study, the canopy spectra after FFT-MSC preprocessing were subjected to
feature extraction utilizing the CARS and IRIV algorithms for feature selection. The results
of the feature band selection, along with their corresponding spectral ranges, are shown in
Table 1 and Figure 5.

Table 1. Characteristic wavelength results by single growth year and fusion growth year.

Feature Selection
Algorithms

Growth
Year Number Characteristic Wavelengths (nm)

CARS
2021 17 460, 463, 465, 467, 468, 475, 479, 480, 481, 485, 692, 694, 695, 696, 728, 776, 897
2022 7 504, 508, 517, 518, 694, 753, 820
All 18 409, 424, 425, 502, 503, 504, 506, 507, 508, 509, 552, 553, 673, 675, 677, 757, 899, 900

IRIV

2021 12 467, 710, 712, 713, 785, 787, 790, 849, 850, 851, 865, 866
2022 12 435, 488, 724, 725, 726, 727, 728, 753, 754, 835, 836, 861

All 26 427, 428, 429, 430, 431, 465, 466, 467, 489, 490, 505, 506, 538, 539, 540, 671, 672, 673,
674, 688, 817, 818, 819, 820, 821, 822
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Figure 5. Wavelength selection for winter wheat SPAD prediction using CARS and IRIV methods
across different growth years. The selected feature wavelengths in the blue (B), green (G), red-edge
(RE), and near-infrared (NIR) regions are shown for 2021, 2022, and fusion years. The orange ellipses
indicate the most relevant wavelength bands selected by the feature mining methods. The black line
represents the average reflectance curve from 400 to 900 nm across the spectral range.

The characteristic wavelengths selected by CARS in 2021 predominantly fall within
the spectral ranges of 460 to 485 nm and 692 to 728 nm, situated in the blue light and red-
edge regions, respectively. Additionally, the wavelengths of 776 and 897 nm are classified
in the near-infrared region. In 2022, the minimum characteristic wavelengths identified
were limited to seven, with 694 nm and 753 nm in the red-edge region, 820 nm in the
near-infrared region, and the remaining wavelengths distributed across the blue–green
light spectrum. In the fusion year, the characteristic wavelengths predominantly occupied
the blue–green and green light regions.

The results of the IRIV feature selection indicate that the characteristic wavelength of
467 nm in 2021 is located in the blue light region, while wavelengths of 710 nm, 712 nm,
and 713 nm are within the red-edge region. The remaining wavelengths are confined to the
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near-infrared region. Similar patterns are observed for the characteristic wavelengths in
2022, spanning the blue light, red-edge, and near-infrared regions. During the fusion year,
the characteristic wavelengths of 505 nm, 506 nm, 538 nm, 539 nm, and 540 nm fall within
the blue–green and green light regions, with all remaining wavelengths situated in the blue
light, red-edge, and near-infrared regions.

Concerning PCA, the cumulative variance-explained curves for both single and fusion
years exhibit a comparable upward trend, demonstrating a systematic increase as the
number of principal components increases (Figure 6). The variance accounted for by the
first principal component under the single-year analysis surpasses 99%. Conversely, the
variance explained by the first principal component during the fusion year reaches only
78%, followed by a sharp increase in the curve, exhibiting an inflection point at the third
principal component, beyond which the curve attains a plateau, resulting in a cumulative
variance explained exceeding 99%. To enhance the stability and generalization ability of the
model, the first three principal components were designated as the independent variables
of the subsequent SPAD prediction model.
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3.4. Evaluation of SPAD Prediction Models Based on CARS, IRIV, and PCA

This study evaluated the effectiveness of CARS and IRIV feature selection algorithms
and the PCA feature extraction technique in predicting wheat SPAD values (a summary
table comparing different preprocessing methods and feature selection algorithm models is
shown in Supplementary Materials). The PLSR model is shown in Figure 7. The results
indicate that the SPAD prediction model derived from the IRIV algorithm demonstrates
superior accuracy. For example, in the fusion year, the SPAD prediction model based on
IRIV achieved the highest accuracy, with an R2 of 0.85, RMSE of 5.61, MAE of 4.43, and
standard error (SE) of 0.34. Similarly, for 2021, the IRIV-derived model secured an R2 of
0.79, RMSE of 5.01, MAE of 4.17, and SE of 0.43. Conversely, the PCA models yielded the
lowest accuracy and largest standard error in 2021, with an R2 value of 0.56, RMSE of 7.21,
MAE of 5.59, and SE of 0.63. In addition, further analysis revealed that in 2022, all three
algorithms—CARS, IRIV, and PCA—demonstrated optimal performance, with R2 values of
0.89, 0.89, and 0.84, and corresponding RMSE values of 5.72, 4.51, and 6.74, respectively. The
study also found that in the fusion year, the SE values of CARS, IRIV, and PCA models were
the smallest, which were 0.36, 0.34, and 0.38, respectively. A comprehensive comparison
elucidates that the prediction model derived from IRIV showed the best performance, with
the year 2022 marking the peak of predictive accuracy, closely followed by the fusion year.
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To account for the multifaceted influence of distinct growth stages on SPAD prediction,
this study utilized the fusion year as a case study to develop a linear regression model
employing both calibrated and predicted values derived from the IRIV model. Subsequent
investigations explored the effect of SPAD prediction across individual growth stages and
through the combination of two or three adjacent growth stages.

3.5. Evaluation of SPAD Prediction Model Under Single Growth Stage and Fused Growth Stage

As shown in Table 2, the jointing, booting, early filling, and late filling stages are
denoted as S1, S2, S3, and S4, respectively. The combination of booting, jointing, and late
filling is designated as S1-S2-S3, etc., when the stages are fused. The results show varying
degrees of model accuracy across growth stages, exhibiting an initial increase followed
by a decline in predictive performance trend. The accuracy is ranked as follows: S3, S4,
S2, and S1, from highest to lowest. Notably, the SPAD value predicted for S3 achieved the
highest accuracy, with R2 = 0.72 and RMSE = 5.58, followed by the S4 model, with R2 = 0.63,
but with poorer robustness, with RMSE = 7.49. When S3 and S4 were fused, the resulting
model achieved an R2 = 0.84, which was enhanced by 0.13 and 0.22 over the individual R2

values, underscoring its prediction efficacy.
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Table 2. Comparison of SPAD prediction models at different growth stages.

Models Symbol Growth Stage R2 RMSE

Single S1 Jointing 0.31 4.55
S2 Booting 0.49 4.57
S3 Early filling 0.72 5.58
S4 Late filing 0.63 7.49

Fusion S1-S2 Jointing-Booting 0.39 4.56
S2-S3 Booting-Early filling 0.64 5.10
S3-S4 Early filling-Late filling 0.85 6.57

S1-S2-S3 Jointing-Booting-Early filling 0.57 4.94
S2-S3-S4 Booting-Early filling-Late filling 0.85 5.89

Similarly, the S2-S3-S4 model elevated the R2 by increments of 0.36, 0.13, and 0.22
compared to the S2, S3, and S4 models. However, the anticipated trend observed in previous
results did not persist with the inclusion of other single growth stages. For example, the
S2-S3 model improved R2 by 0.15 compared to the S2 model but decreased R2 by 0.08
relative to the S3 model.

This investigation uncovered a decline in model accuracy when S1 was integrated
with other growth stage models; specifically, the S1-S2 model exhibited a decline in R2

of 0.10 compared to the S2 model, while the S1-S2-S3 model demonstrated a decrease of
0.07 compared to the S2-S3 model. These findings necessitate further exploration of SPAD
prediction efficacy across varying growth stages.

4. Discussion
4.1. Winter Wheat SPAD Prediction Based on Different Sequential Fusion of Multiple Preprocesses

The original spectral curves exhibited a general decrease following MSC processing
within the visible light spectrum (Figure 3d). The spectral curves of various samples demon-
strated increased proximity. This phenomenon is likely attributed to the standardization of
each sample’s spectra by MSC, addressing baseline drift issues resulting from phenotypic
variations among individual plants, affecting light scattering differently, and ultimately
enhancing data reliability [61]. Similarly, FFT reduces noise by smoothing the spectral
curve [62]. FD and SD can accentuate subtle features in spectral data, enhancing data
resolution [63]. However, comparing the efficacy of these four methods solely based on
spectral visualization results after different preprocessing techniques is challenging.

Consequently, through modeling, this study evaluates the impact of FFT, MSC, FD,
and SD and their various sequential combinations on SPAD prediction accuracy. The
findings indicate that the FFT-MSC combination yields the most favorable performance.
Conversely, the accuracy of MSC-FFT across different processing sequence combinations
of the same method was notably lower, with R2 discrepancies ranging from 0.08 to 0.17
(Figure 4). These discrepancies are likely attributed to FFT’s ability to prioritize isolating
signals with distinct frequency components within spectral data, thereby targeting the
elimination of high-frequency noise while preserving low-frequency signals [48]. Subse-
quent processing of spectral data in conjunction with MSC aids in minimizing multi-source
interference and enhancing baseline drift correction capabilities [64]. Notably, this study
also observed a diminishing trend in model accuracy and reliability with the inclusion of
SD in the combination. This observation may be ascribed to SD introducing new noise
while amplifying sensitive bands, which not only reduces the signal-to-noise ratio, but
also weakens the spectral and SPAD correlation. [65]. Hence, selecting an appropriate
combination of preprocessing methods for constructing a wheat SPAD prediction model is
imperative for optimizing nitrogen utilization and maximizing yield.

4.2. Wheat SPAD Prediction with Different Feature Mining Methods

In this study, three feature mining methods, CARS, IRIV, and PCA, were selected with
the aim of eliminating the potential interference of redundant information in hyperspectral
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data for SPAD prediction. Moreover, when modeling with spectral data, employing feature
mining techniques can reduce dimensionality and simplify the model structure [66].

In this study, the model’s prediction performance, from highest to lowest, varies across
different years, with IRIV, CARS, and PCA being the top performers, respectively (Figure 7;
Table 1). CARS showcased that Monte Carlo sampling and EDF could identify 17, 7, and
18 characteristic wavelengths, while IRIV retained 12, 12, and 26 characteristic wavelengths
with varying influence on SPAD prediction. Notably, CARS selects a more evenly dis-
tributed set of feature bands, with about 40% falling within the blue–green light region
and closely associated with carotenoids [67]. On the other hand, IRIV tends to choose a
more concentrated distribution of feature bands, with approximately 80% falling within
the blue light and red-edge regions. The blue light region is crucial for chlorophyll a and
b absorption, directly reflecting the plant’s chlorophyll concentration [68]. The red-edge
region contains valuable plant canopy information due to the rapid decrease in chlorophyll
absorption and the sharp increase in reflectance, playing a significant role in SPAD pre-
diction [69]. The disparity in feature band selection between the two algorithms can be
attributed to the fact that CARS is centered on adaptive reweighting, aiming to dynam-
ically select the features that contribute the most to the model’s predictive performance
through repeated sample sampling and feature selection, with a greater emphasis on the
overall performance of the full spectrum [70]. Meanwhile, IRIV typically utilizes statistical
methods to assess the relationship between individual bands and target variables, focusing
on identifying the most informative features within a given band [71].

To fully harness the predictive capabilities of CARS and IRIV, it is essential to attribute
the corresponding chemical bonding and physicochemical characteristics to the chosen
characteristic wavelengths. The characteristic wavelength at 467 nm in 2021, jointly selected
by CARS and IRIV, closely aligns with the first overtone of the C-H bond, correlates with
the chlorophyll absorption peak, and indicates photosynthesis efficiency [72]. IRIV selected
characteristic wavelengths at 710 nm, 712 nm, 713 nm, 724 nm, 725 nm, 726 nm, 727 nm,
and 728 nm, which are situated in the transition region between strong absorption in the
red-edge region, and strong reflection in the near-infrared to the red-edge region. These
wavelengths are associated with O-H and C-H bonds and typically reflect changes in plant
tissue moisture and chlorophyll content [73]. In previous studies, the red-edge band has
been identified as crucial for predicting wheat chlorophyll [74,75]. This study found that
CARS, under the 2022 and fusion years, mistakenly excluded important characteristic
bands in the red-edge region, potentially contributing to lower model accuracy than
IRIV. Additionally, it was observed in this study that the increases in the characteristic
wavelengths of CARS and IRIV in the fusion year were in the spectral ranges of 409 to
509 nm and 671 to 688 nm, respectively. These increases may be linked to the diverse
physiological state of plants across different years, resulting in varied spectral features.
Data fusion aids feature mining algorithms in better identifying physiological feature
differences, selecting bands that perform well within a single year, and capturing relatively
stable bands across years, leading to a more comprehensive feature selection [76].

The difference in model performance may be due to the intrinsic differences in the
classes of the three feature mining methods [77]. PCA belongs to the feature extraction
technique, which is a linear combination of principal components to reduce the spectral
data dimensionality. It mainly focuses on the correlation between the features while
ignoring the relationship between the features and the SPAD, and may discard the feature
bands that explain less variance but have a stronger correlation with the SPAD [78]. By
comparison, CARS and IRIV are feature selection algorithms, which can select features
that are strongly correlated with SPAD based on the original spectra [52,53], and IRIV can
recognize complex interactions between spectral data and improve the ability of prediction
models to capture nonlinear feature bands [79]. In summary, IRIV can more effectively
select feature bands for wheat SPAD. The results of this study also further show that
accurate feature mining can effectively reduce data redundancy and enhance the saliency
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of feature bands, which in turn provides theoretical support and a technical path for feature
optimization of hyperspectral data.

4.3. Prediction of SPAD in Wheat in Different Years and Growth Stages

Exploring the applicability of the SPAD prediction model at multiple growth stages
facilitates dynamic monitoring over the full life span, capturing key changing characteristics
of the crop at different growth stages and providing more comprehensive data support for
crop growth status assessment.

In this study, SPAD prediction models were constructed for wheat in 2021, 2022,
and fusion years, and the prediction accuracy of different models varied, which may be
because the SPAD prediction effect is affected by factors such as crop canopy structure,
light condition, and moisture status, which vary from year to year [80]. As shown in
Figure 7, the maximum accuracies of the wheat SPAD prediction models all appeared in
2022. From Figure 8, it can be seen that the SPAD values in 2021 were concentrated in the
range of 30~50, while those in 2022 were concentrated in the range of 40~60. The spectral
curves in 2022 varied more significantly from the red light to the near-infrared region, and
the reflectance of the near-infrared region spectra was higher. This may be because the
differences in climatic conditions (e.g., temperature, humidity) in different years may lead
to different physiological states of the plants, and the characteristics of the spectral response
change, thus affecting the predictive ability of the model [81].
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To further explore the impact of wheat physiological characteristics on the accuracy
and robustness of the SPAD prediction model, this study further compared the SPAD
prediction effects of the IRIV model at the jointing stage, booting stage, early filling stage,
and late filling stage in the fusion years. As shown in Table 2, the model accuracy is
compared from high to low, namely, early filling stage, late filling stage, booting stage,
and jointing stag. However, the model robustness shows the opposite trend, from high to
low, namely the booting stage, jointing stage, early filling stage, and late filling stage. This
may be because the leaves in the early filling stage remain green and persistent, which is
conducive to yield accumulation [82]. As seen from Table 3, the coefficient of variation (CV)
of SPAD was higher in the early and late filling stages, and the significant changes in SPAD
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contributed to the excellent fitting of the model [83]. However, at the same time, plant
chlorophyll degradation and spectral purity decreased under the influence of tasseling and
some withered leaves, which affected the predictive stability of the model [84]. In addition,
the model’s prediction accuracy in this study was lowest at the jointing stage, which may
be because this stage is the transition from plant growth to reproductive growth. Complex
physiological changes within the plant lead to significant differences in individual growth
and a decrease in the stability of spectral features, affecting the model’s construction [85].

Table 3. SPAD statistics at different growth stages in the fusion year.

Growth Stage Min Mean Max SD CV (%)

Jointing 30.36 43.34 56.27 5.27 0.12
Booting 26.49 43.01 52.17 5.48 0.13

Early filling 20.60 41.42 60.30 10.42 0.25
Late filling 1.57 16.49 44.29 12.30 0.75

In summary, there were significant differences in the accuracy of SPAD prediction in
different years and growth stages. In the mid-growth stage, the SPAD prediction model
had high accuracy and good stability, and the regularity of leaf green content changes was
strong, and this stage provided a critical monitoring time for precise nitrogen management.

4.4. Limitations and Future Research Perspectives

In this study, a two-year field trial was conducted with winter wheat as the test
object. Based on the fusion strategy of multiple preprocessing methods and feature mining
techniques, a SPAD prediction model was constructed for different years and growth stages,
and a high prediction accuracy was achieved. However, this study still has the following
two limitations, which need to be further optimized and expanded.

First of all, the data in this study came from a single crop and test site, so the sample
diversity is insufficient, and the results need to be further verified when the growth
environment of winter wheat or varieties change. In the future, we will expand the scope
of the experiment to increase the sample representativeness, and combine the biomass and
nitrogen data of other crops (e.g., rice, maize), so as to further improve the performance
and applicability of the predictive model of crop chlorophyll. In addition, the acquisition of
winter wheat canopy spectral data is susceptible to weather (e.g., cloudy days, strong winds,
etc.), and future research could incorporate multi-temporal observation techniques to
improve the quality of the spectral data by fusing data under sunny and cloudy conditions.
Secondly, for high-dimensional data, it is difficult for current feature mining methods to
capture all potential influences in spectral data, and future work will introduce nonlinear
modeling algorithms such as the Convolutional Neural Network (CNN) and Recurrent
Neural Network (RNN) to mine deep features. Meanwhile, the computational efficiency of
real-time applications is also one of the core directions of the subsequent research, which
will be combined with migration learning to realize the rapid adaptation and efficient
computation of models among different agricultural environments in the future.

5. Conclusions

This study aimed to enhance the accuracy of SPAD prediction in winter wheat by
refining the processing of canopy hyperspectral data. The integrated preprocessing ap-
proach effectively addressed noise and high data dimensionality challenges. The FFT-MSC
sequential module fusion demonstrated significant effectiveness in predicting SPAD values.
The FFT-MSC-PLSR model achieved an R2 of 0.83 and an RMSE of 5.97, surpassing the
MSC-FFT model by improving the R2 by 0.08 to 0.17 and reducing the RMSE by 0.53.
Utilizing FFT as the initial preprocessing step significantly enhanced overall model per-
formance. Feature selection through IRIV was particularly sensitive to wheat chlorophyll,
especially within the blue light and red-edge regions. The FFT-MSC-IRIV-PLSR model
exhibited the highest prediction accuracy, with R2 values ranging from 0.79 to 0.89 and an
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RMSE of 4.51 to 5.61, while PCA demonstrated the lowest accuracy. The year 2022 offered
the best conditions for SPAD prediction, with R2 values reaching up to 0.89 and RMSE
values as low as 4.51. The early filling stage yielded the highest prediction accuracy among
various growth stages, with an R2 of 0.72 and RMSE of 0.58. These findings indicate that
sequential fusion preprocessing and feature mining significantly enhance SPAD prediction
in winter wheat.
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