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Abstract: Peanuts are susceptible to defects such as insect damage, breakage, germinant, and mildew,
leading to varying qualities of peanuts. The disparity in peanut kernel quality results in significant
differences in their prices and economic value. Conducting real-time, accurate, and non-destructive
quality inspections of peanut kernels can effectively increase the utilization rate and commercial
value of peanuts. Manual inspections are inefficient and subjective, while photoelectric sorting is
costly and less precise. Therefore, this study proposes a peanut kernel quality detection algorithm
based on an enhanced YOLO v5 model. Compared to other models, this model is practical, highly
accurate, lightweight, and easy to integrate. Initially, YOLO v5s was chosen as the foundational
training model through comparison. Subsequently, the original backbone network was replaced with
a lightweight ShuffleNet v2 network to improve the model’s ability to differentiate features among
various types of peanut kernels and reduce the parameters. The ECA (Efficient Channel Attention)
mechanism was introduced into the C3 module to enhance feature extraction capabilities, thereby
improving average accuracy. The CIoU loss function was replaced with the alpha-IoU loss function to
boost detection accuracy. The experimental results indicated that the improved model, SEA-YOLOv5,
achieved an accuracy of 98.8% with a parameter count of 0.47 M and an average detection time
of 11.2 ms per image. When compared to other detection models, there was an improvement in
accuracy, demonstrating the effectiveness of the proposed peanut kernel quality detection model.
Furthermore, this model is suitable for deployment on resource-limited embedded devices such as
mobile terminals, enabling real-time and precise detection of peanut kernel quality.

Keywords: peanut kernel; quality testing; YOLOv5; lightweight; attention mechanism

1. Introduction

As a pivotal oilseed and economic crop, peanuts occupy a prominent position in
Chinese agriculture, with their export volume standing out among numerous agricultural
products in the country. They are one of the few agricultural products whose exports
exceed imports [1]. During storage and transportation, peanuts are highly susceptible to
breakage, insect infestation, damage, and mold growth due to factors such as humidity,
temperature, and other uncontrollable elements. Ensuring the appearance quality of peanut
kernels is crucial, as it not only affects their edible value and market price, but also directly
relates to consumer health and safety. Moldy peanuts produce a carcinogen that poses a
serious threat to human health. Therefore, strictly controlling the quality of peanuts is a
crucial step in ensuring food safety and maintaining public health [2–4]. Manual sorting
is highly subjective, inefficient, and costly; photoelectric sorting requires high technical
proficiency from operators, has poor adaptability to environmental factors, low accuracy,
and is costly. Solving these problems requires a more efficient, accurate, and economical
detection method [5].
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With the rapid development of artificial intelligence technology in recent years, target
detection based on deep learning has become the focus of scientific research and attracted
much attention. Target detection models based on deep learning are mainly divided into
two main categories: the first category includes candidate region-based two-stage target
detection models, and the mainstream models are R-CNN [6], Faster R-CNN [7], Mask R-
CNN [8], and so on; the other category includes regression-based one-stage target detection
models, which omits the candidate region generation step, and can directly extract features,
and the mainstream models are SSD [9], YOLO [10–15], etc. These models have been widely
used in the field of agriculture, such as pest and disease identification and detection of
plant leaves, maturity detection of various types of fruits, fruit grading quality detection,
seed grading detection, and weed detection. Gai et al. [16] proposed a deep learning
algorithm based on the improved YOLO v4 deep learning algorithm for cherry fruit
detection, with an average accuracy value of 0.15% improvement over the original YOLO
v4 model. Rai et al. [17] built a model based on the improved YOLO v7-tiny architecture
for weed detection using aerial images and video crops, demonstrating a 0.6% accuracy
improvement and five-times faster speed. Wang et al. [18] built an improved Faster R-CNN
model as an engineering tool for tomato ripening detection with an average detection
accuracy of 96.14%. Shi et al. [19] proposed a lightweight model OMC-YOLO based on
improved YOLOv8n for automatic detection and grading of oyster mushrooms with an
average accuracy value of 94.98% and a 26% reduction in the number of parameters and
computation. Bhupendra et al. [20] proposed a method for classification of pre-processed
rice grains based on a CNN model with an overall classification accuracy of 98.37%. You
et al. [21] developed an apple target detection model for fruit thinning period with an
average accuracy of 95.2%. Xiong et al. [22] proposed a lightweight YOLO v5-Lite model
for detecting papaya ripeness in natural environments with an average detection accuracy
of 92.4% and a model memory footprint of only 11.3 MB.

Currently, many scholars are engaged in research pertaining to peanut quality testing.
Yang et al. [23] proposed a convolutional neural network (CNN) for peanut pod quality
detection. The proposed algorithm is based on an improved version of ResNet, achieving
an accuracy of 98.1% with a parameter size of only 32.63 M. Wu et al. [24] employed
hyperspectral imaging in conjunction with a hybrid learning model (SEL) and an optical
gradient boosting algorithm to achieve non-destructive detection of peanut mold, achieving
an accuracy of 99%. Yang et al. [25] obtained peanut pod images of 12 varieties through a
scanner. Concurrently, the enhanced deep CNN, VGG16, was employed for the recognition
and classification of the peanut dataset, with an average accuracy of 96.7%. Yang et al. [26]
employed a multi-target recognition method with a multispectral system and an enhanced
version of Faster R-CNN for the detection of peanut defects, achieving an average accuracy
of 99.97%. Zhang et al. [27] proposed a peanut kernel quality defect recognition system
based on machine vision and an adaptive CNN. The system achieved an average recognition
rate of 99.7%.

The analysis demonstrates that deep learning detection algorithms have been effec-
tively utilized in the field of peanut quality detection. However, there are limitations,
including a limited number of detection categories, a high number and volume of parame-
ters, and a lack of applicability to embedded systems. To address the aforementioned issues,
this study presents a detection algorithm based on enhanced YOLOv5 (SEA-YOLOv5),
which aims to achieve low-cost, high-precision, lightweight, and rapid peanut kernel qual-
ity detection. The research presented here enhances the performance of the model in the
peanut kernel quality detection task, effectively improving the accuracy and efficiency of
peanut kernel quality detection. This ensures the quality and safety of agricultural products
and provides a technical reference for other similar tasks. The scientific community can
further optimize and extend the model to meet target detection needs in more complex sce-
narios, which will promote the further development of agricultural intelligent technology,
improve the efficiency of agricultural production, and enhance quality and safety levels.
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This will facilitate the joint exploration of innovative solutions to promote the synergistic
development of related fields.

2. Materials and Methods
2.1. Production and Construction of Peanut Kernel Dataset

The peanut variety examined in this experiment was Qinghua 308 (medium grain
type). A total of 300 peanuts were randomly selected for hulling from a large number
of peanut samples, and about 100 full and undamaged peanut kernels were selected as
the complete sample group. The remaining peanut kernels were equally divided into
5 parts. The samples were divided into a germination sample group, an insect erosion
sample group, a breakage sample group, a broken sample group and a mildew sample
group. All sample groups were created to ensure the same environment and the same
variables. Finally, a soil/stone sample group was added, bringing the total to 7 sample
groups. Representative samples of the various categories are illustrated in Figure 1.
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Figure 1. Comparison of samples in different categories: (a) complete; (b) mildew (c) breakage
(d) germinant (e) broken (f) insect erosion; and (g) soil/stone.

To ensure consistency in the data acquisition process, this experiment was conducted
using a custom-built peanut kernel data-acquisition test bench, as illustrated in Figure 2.
The test bench comprises a dark box, a CHUBU DC311L camera, a light source, and a
conveyor belt. The camera is positioned at a height of 150 mm, while the light source is
situated at a height of 220 mm. In the conveyor belt, a rectangular box with dimensions of
80 mm by 80 mm was used to draw 4–5 peanut kernels or stones, which were randomly
selected from the seven sample groups. The kernels or stones were placed in the rectangular
box in a random combination and random spacing, and the conveyor belt was driven at a
rate of 40 mm/s. The peanut kernels were rolled and conveyed forward by a multi-cone
roller and conveyor belt, with the camera operating at a rate of 2 frames per second. This
process yielded 2323 images, which were then screened to remove those with blurred
content. Ultimately, 2000 images were selected for further analysis.
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In this experiment, the LabelImg tool was employed to annotate the original images
with rectangles; to designate the complete peanut kernel labels as complete, breakage,
broken, mildew, germinant, insect erosion, and soil/stone; and to generate XML (Extensible
Markup Language)-type markup files. The labeled data were randomly divided into
a training set and a validation set according to an 8:2 ratio. To simulate the various
luminance and motion blurring effects observed in the actual production process, as well as
other factors that can affect the efficacy of model training and generalization performance,
resulting in overfitting or underfitting, it is necessary to enhance the robustness and
accuracy of the model. This can be achieved through the incorporation of a pretraining
phase. The data set was augmented in five ways: introduction of salt-and-pepper noise,
brightness adjustment, exposure adjustment, Gaussian noise, and random rotation. This
resulted in an additional 10,000 images being included in the data set. The impact of this
augmentation is illustrated in Figure 3.
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2.2. Peanut Kernel Detection Model
2.2.1. YOLOv5 Model

YOLOv5 is an advanced single-stage target detection algorithm. As shown in Figure 4,
at the input end, the mosaic data enhancement method is used to scale, crop, arrange,
and then splice four images randomly, which greatly enriches the dataset and enhances
the generalization of the model. The accuracy and robustness of the model are improved
by calculating the optimal anchor frame parameters with an adaptive anchor frame. The
backbone network is primarily employed for the extraction of features in instance seg-
mentation. This is achieved through the use of convolutional modules (CBS, C3), CSP1_X
and SP2_X modules, and spatial pyramid pooling. The SPPF module generated by the
SPP [28] structure changes the three parallel maximum pooling layers in SPP into serial
connections to reduce the computational cost of multi-feature fusion. The neck network
is structured in a manner that is analogous to that of a feature pyramid network, with
the addition of a path aggregation network. FPN conveys semantic information from top
to bottom, and PAN integrates positional information from bottom to top. Thus, more
abundant feature information can be obtained. The prediction terminal predicts three
different size feature maps, adopts the CIoU function as the boundary-frame loss function,
obtains the best prediction frame through non-maximum suppression, and the final output
comprises the category and confidence of the predicted target, together with its location
information. Compared with the previous generations of the YOLO series, YOLOv5 pays
more attention to the detection of small targets, and has higher accuracy. While maintaining
higher precision, YOLOv5 has smaller weight files and faster training and reasoning speed.
According to different network depths and widths, YOLOv5 is available in four versions,
namely, YOLOv5s, YOLOv5m, YOLOv5l and YOLOv5x. The width and depth of these
models are different, so that they can adapt to different application requirements.
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When training the peanut kernel dataset, the original YOLOv5 algorithm has the
problems of insufficient training accuracy and low recognition rate. The models of different
YOLOv5 series versions were tested on the peanut kernel data set, and the mean average
precision (mAP), parameters, floating-point operations per second (FLOPS), frames per
second (FPS), and size of model were evaluated to select the most appropriate YOLOv5
version. Table 1 shows the test results. Among the four versions, the average accuracy of
YOLOv5s is slightly lower than that of the other three, but the parameters, size of model,
and FLOPs are the lowest and the FPS is the highest. Considering the model complexity
and detection accuracy, size of model is crucial for embedded devices. Compared with
YOLOv5x, which has the best detection effect, the floating-point number, parameters,
and size of model are greatly reduced and the FPS is greatly increased when the average
accuracy of YOLOv5s is only reduced by 1.1 percentage points. Therefore, the YOLOv5s
model is finally selected as the basic model for subsequent improvement in this study.

Table 1. Comparison of different YOLOv5 versions.

Model Depth
Multiple

Width
Multiple

Parameters
(M)

Size of
Model
(MB)

Precision
(%)

Recall
(%)

mAP0.5
(%)

FLOPs
(G)

FPS
(s − 1)

YOLOv5s 0.33 0.5 7.07 13.7 96.1 96.5 0.984 16.3 158.73
YOLOv5m 0.67 0.75 21.07 40.8 97.7 97.8 0.988 50.6 80.45
YOLOv5l 1.00 1.00 46.65 89.3 97.9 97.9 0.992 114.6 70.32
YOLOv5x 1.33 1.25 87.27 166 99.4 99.7 0.995 217.9 59.63

2.2.2. ShuffleNetv2: Lightweight Backbone Network

YOLOv5s uses CSPDarknet53 as the backbone network for image feature extraction,
including CBL, FOCUS, CSP, and SPP modules. The backbone network includes multi-
ple deep convolutional modules, which enhances the feature-extraction capability of the
model. Nevertheless, this approach also results in a larger size of model, increased model
complexity, and challenges in terminal device deployment. To improve the lightweight
structure of the YOLOv5s network for detecting peanut kernel appearance quality, Shuf-
fleNetv2 is introduced in Backbone to strengthen the model’s effective extraction ability
of similar features of multiple categories of peanut kernel. ShuffleNetv2 is a lightweight
network proposed by MegVII (Beijing, China) in July 2018, which achieves a balance of
speed and accuracy. Different from ShuffleNetv1, ShuffleNetv2 was designed as an efficient
network with both speed and accuracy in mind under the G1–G4 criteria, as far as was
possible [29,30].
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The ShuffleNetV2 building block consists of a base unit and a downsampling unit
(Figure 5). The fundamental unit presents the channel splitting operation, which divides
the input feature graph into two branches along the channel dimension. The number of
channels is represented as C’ and C-C’. The left branch executes an equal mapping, whereas
the right branch performs three continuous convolutions in one-step intervals, resulting
in an output channel that is identical to the input channel. Two 1 × 1 convolutions are
standard convolution, and one 3 × 3 convolution is deep convolution. As a key component
in lightweight networks [31–33], deep convolution, in conjunction with the subsequent
1 × 1 convolution, constitutes deep separable convolution. This approach markedly
diminishes the parameters and computational costs associated with the convolutional
layer, while enhancing the feature interaction process. The outputs of the two branches are
then concatenated and subsequently shuffled to enhance the process of information fusion
between the channels. Compared with the base unit, the left branch of the downsampling
unit is successively increased by 3 × 3 depth convolution and 1 × 1 standard convolution,
and the step length of the depth convolution in the two branches is 2. Channel segmentation
is omitted, the number and width of network channels are directly increased, and the
feature-extraction capability of the network is enhanced.
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2.2.3. ECA Mechanism

The alteration of the illumination and the environmental impact of the testing appa-
ratus will impair the network’s capacity to extract pivotal data, which will consequently
impact the model’s performance. At the same time, the ShuffleNetv2 module will reduce
the number of parameters, but also slightly reduce the model performance. To solve the
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above problems and improve the attention paid by the model to peanut kernels, the ECA
mechanism was added to the model network structure.

The ECA mechanism [34] module (Figure 6) removes the full connection layer in
the squeeze and excitation (SE) [35] module. After the global average-pooling operation,
features are learned through a one-dimensional convolution. The ECA mechanism pro-
poses a local cross-channel interaction strategy without dimensionality reduction, which
effectively avoids the impact of dimensionality reduction on channel attention learning.
The ECA module uses a fast 1D convolution kernel of size k1, and uses an adaptive method
to determine k1, where the coverage of the cross-channel interaction (the size of the 1D
convolution kernel k1) is proportional to the channel dimension, thereby avoiding manual
adjustment of the k1 value. Proper interaction across channels can significantly reduce the
complexity of the model, while maintaining performance. Through the adjustment of a few
parameters, an obvious effect gain can be obtained, and the effect on the speed of network
processing is small.
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2.2.4. Alpha-IoU Loss Function

The loss function of bounding box regression plays an important role in target detec-
tion, which can significantly improve the performance of the model. In object detection
tasks, intersection over union (IoU) is widely used to measure the overlap between the
prediction box and the real label box. Its structure is shown in Figure 7.

Supposing that the predicted detection box
→
B = [x, y, w, h] and the real detection

box
→
Bgt = [xgt, ygt, wgt, hgt], where Wg and Hg represent the width and height of the

minimum bounding box, respectively, the function of IoU loss is defined as

LossIoU = 1 − IoU = 1 − WiHi
Su

(1)

where Su refers to the union of the prediction box and the real box. When the IoU has no
intersection between the prediction box and the real box, the backpropagation gradient of
LossIoU will disappear. To solve this problem, a penalty term is added to the subsequent
loss function.

YOLOv5s uses CIoU as the bounding box-regression loss function, while GIoU is a
method proposed by Rezatofighi et al. to optimize bounding boxes [36]. CIoU loss function
is designed based on IoU, which considers the position, scale, aspect ratio and other factors
between the predicted box and the real box. CIoU minimizes the distance between the
predicted box and the real box, and backpropagates it as a loss value. When the prediction
frame and the real frame exhibit a high degree of overlap (very large IoU) or a low degree of
overlap (very small IoU), resulting in a denominator of CIoU approaching 0 or a numerator
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approaching the denominator, it will lead to an inability to reflect the precise position of
the prediction frame and the real frame, which will affect the stability of the model and the
convergence speed.
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between the real box and the prediction box, respectively; B and Bgt represent the center points of the
prediction and real boxes, respectively.

To address the issues associated with the calculation of the loss in CIoU, alpha-IoU [37]
is employed in lieu of conventional IoU. Alpha-IoU incorporates a greater number of
penalty terms than IoU and employs the power exponential form to represent the loss
function, thereby facilitating adaptability to varying degrees of bounding box-regression
precision [38]. Additionally, alpha-IoU incorporates an adjustable hyperparameter, alpha,
which can be calibrated to align with varying training requirements. Empirical evidence
demonstrates that the alpha-IoU loss function outperforms all existing IoUs, exhibiting
enhanced regression precision and resilience.

Specifically, the alpha-IoU and CIoU loss functions have the following general forms:

Lossα−IoU = 1 − (
WiHi

Su
)

α

+ τα(B, Bgt) (2)

LossCIoU = 1 − WiHi
Su

+
ρ2(B, Bgt)

W2
g + H2

g
+ βv (3)

Combining Equations (2) and (3), the alpha-CIoU loss function can be summarized
as follows:

Lossα−CIoU = 1 − (
WiHi

Su
)

α

+
ρ2α(B, Bgt)

(W2
g + H2

g)
α + (βv)α (4)

where B and Bgt represent the center point of the prediction box and the real box, respec-
tively; τ represents the penalty term; ρ is the Euclidean distance; and α ∈ N(N = 1, 2, 3, . . .).
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β represents the balance proportion coefficient, and v is the parameter considering the
proportion consistency of the two frames:

β =
v

(1 − IoU) + v
(5)

v =
4

π2 (arctan
w
h
− arctan

wgt

hgt )
2

(6)

where w, wgt, h and hgt represent the width and length of the two boxes, respectively. In
the specific training process, alpha-IoU shows robustness for different models and datasets.
In most cases, if the value of alpha-IoU is 3, excellent performance can be maintained in
the training.

2.2.5. Network Structure of SEA-YOLOv5

In this study, the architecture of the YOLOv5 version was established as the basis for
model improvement. The goal was to address issues related to accuracy, size of model, and
detection speed to develop a more appropriate model for detecting peanut kernel-category
targets at the primary processing stage. The backbone network in YOLOv5 comprises mul-
tiple deep convolutional modules, which serve to enhance the model’s feature extraction
capability while simultaneously increasing the model’s size, complexity, and the difficulty
of terminal device deployment. Accordingly, lightweight ShuffleNetV2 building blocks
are employed to supplant the backbone network, thereby reducing the model’s overall
complexity. We also introduced the convolutional attention module ECA in the backbone
network layer to compensate for the loss of detection accuracy caused by lightweight
feature-extraction networks. Finally, the alpha-IoU loss function is used as a measure of
the prediction box-regression loss term to improve inference accuracy. This adjustment
is made to improve the input-specific data distribution and ultimately enhance feature
detection at different image scales. The comprehensive, augmented network configuration
is illustrated in Figure 8. CBRM represents a convolutional module comprising convolution,
batch normalization, rectifying linear unit (ReLU), and maximum pooling. SN_Block_X
represents a network structure in which a subsampled unit is connected in series with X
repeating base units from the ShuffleNetV2 building block.
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3. Results
3.1. Test Environment and Parameter Setting

The computer test environment adopted in this study was as follows: the operating
system was Windows10 (64 bit), the processor model was the 12th generation Intel Core
i7-12700F, the working frequency was 2.10 GHz, the graphics card model was NVIDIA
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GeForce RTX3060Ti, the graphics memory was 8 GB, and the programming language was
Python3.8. The deep learning framework was PyTorch1.9.0, and a CUDA 11.1 parallel
computing framework was adopted; the CUDNN version was 8.05. Starting from the initial
learning rate of 0.01, the cosine annealing technique was used for subsequent reduction.
The parameter optimization of the neural network adopted the stochastic gradient descent
(SGD) algorithm, the momentum parameter was set to 0.937, the weight attenuation factor
was set to 0.0005, the batch size used in each iteration training was set to 16, and the epoch
of training was set to 200, so as to avoid over-fitting and reducing the training time. The
subsequent comparison tests remained unchanged, and the input image was adjusted to
640 × 640 pixels.

3.2. Evaluation Index

The classification and recognition model can be evaluated with accuracy (A), precision
(P), recall (R), confusion matrix, etc. Target detection network-evaluation indicators also
include PR (precision–recall) curve, average precision (AP), and mAP, etc. The A, P, and R
rate are calculated as follows:

A =
TP + TN

TP + TN + FP + FN
(7)

P =
TP

TN + FP
(8)

R =
TP

TP + TN
(9)

where TP (true positive) means that the prediction result of the positive sample is positive;
Tn (true negative) indicates that the negative sample result is predicted to be negative;
FP (false positive) indicates that the prediction result of negative samples is positive; and
Fn (false negative) indicates that the prediction result of the positive sample is negative.
Accuracy represents the proportion of correctly identified samples in all samples, precision
represents the proportion of positive samples in all positive samples in the prediction
result, and recall rate represents the proportion of correctly identified positive samples in
all positive samples in the test set.

The PR curve represents the relationship between precision and recall rate. In the PR
curve, recall is the horizontal coordinate and precision is the vertical coordinate. The AP
value is the area enclosed by the PR curve and coordinate axis, which is used to measure
the detection performance of a single target in the model. The better the performance of
the classifier, the higher the AP value. In multi-class target detection tasks, mAP is used for
evaluation. mAP is the average AP of each detection class, which is used to measure the
performance of the whole model. The formula is as follows:

AP =
∫ 1

0
P·(R)dR (10)

mAP =
1
N

N

∑
i=1

APi (11)

where N represents the number of detection categories, and the value in this study is 7.

3.3. Performance Comparison of Different Backbone Networks

To demonstrate the advantages of using the ShuffleNetV2 module over other improved
backbone networks, several comparative tests were carried out. As shown by the test results
in Table 2, the reduction in the number of convolutions resulting from the lightweight
nature of the backbone network leads to a corresponding reduction in model depth. This,
in turn, has the effect of slightly reducing the feature extraction capability of the network,
which is manifested in a reduction in mAP0.5 for all segmentation models with lightweight
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backbones in comparison to the original YOLOv5s model. Nevertheless, the mAP0.5 decline
was no greater than 4 percentage points. In the lightweight approach, the ShuffleNetv2
building block is employed to enhance the backbone network, thereby achieving the
optimal lightweight performance. When the precision, recall, and mAP0.5 exhibit minimal
discrepancy in comparison to other lightweight methodologies, the number of parameters is
diminished, exhibiting a reduction of 93.7% in comparison to the initial segmentation model.
Additionally, the size of the model is reduced to merely 9.7% of the original segmentation
model, thereby fulfilling the requisite criteria for lightweight implementation.

Table 2. Performance comparison of different backbone networks.

YOLOv5s YOLOv5-
Shuffle Netv2

YOLOv5-
Mobile Netv3

YOLO-
Ghost Net

Parameters/M 7.07 0.45 3.55 5.1

FLOPs/G 16.3 6.1 6.3 10.8

Size of
model/MB 14.4 1.4 7.4 10.5

FPS/(s − 1) 158.73 169.49 140.85 149.25

Precision/% 96.1 95.4 89.5 95.3

Recall/% 96.5 95.2 92.3 95.2

mAP0.5/% 98.4 97.6 94.3 97.5

3.4. Performance Comparison of Attention Mechanisms
3.4.1. Performance Comparison of Various Attention Mechanisms

To evaluate multiple attention mechanisms, the backbone network of YOLOv5s was
used as the baseline model, with different attention mechanisms introduced into the model
separately, to prove their effectiveness by comparing their respective evaluation metrics.
The ECA mechanism achieves efficient computation of channel attention, while reducing
the complexity of the model by avoiding fully connected layers and utilizing adaptive
1D convolution. ECA can adaptively adjust the size of the convolution kernel, thereby
enabling the efficient capture of cross-channel dependencies, while reducing redundant
computation. The results demonstrate that the mAP0.5 and FPS of the models with distinct
attention mechanisms are improved. The model with an ECA module exhibits the most
pronounced increase in mAP0.5, with a 0.7 percentage point enhancement relative to the
original model. The modified model of YOLOv5s achieves an mAP0.5 of 99.1%, exhibiting
the most significant improvement in this metric. Additionally, the FPS value demonstrates
the highest increase, reaching 6.8% higher than that of the original model. The results of
the comparison test are presented in Table 3.

Table 3. Comparison of performance of different attention mechanisms.

YOLOv5s YOLOv5-
ECA YOLOv5-SE YOLOv5-CA YOLOv5-

CBAM

Parameters/M 7.07 7.22 7.29 7.28 7.29

FLOPs/G 16.3 16.3 16.8 16.7 16.9

Size of
model/MB 14.4 14.7 14.9 14.8 14.9

FPS/(s − 1) 158.73 169.49 135.14 142.85 158.73

Precision/% 96.1 97.1 96.6 96.7 94.8

Recall/% 96.5 98.3 96.9 96.9 97.1

mAP0.5/% 98.4 99.1 98.7 98.8 98.6



Agriculture 2024, 14, 2273 12 of 19

3.4.2. Comparison of Performance at Different Locations of the Attention Mechanism

In order to investigate the effect of adding ECA mechanism to different network
modules in YOLOv5 on the model performance, this paper introduces the ECA mechanism
into the Backbone and Neck networks of YOLOv5, respectively, and compares the perfor-
mance metrics of the models in the two cases. The key metrics for the comparison include
Parameters, FLOPs, Size of model, FPS, Precision, Recall, and mAP@0.5. The experimental
results are shown in Table 4:

Table 4. Comparison of performance of different locations.

Parameters/M FLOPs/G Size of
Model/MB

FPS
/(s − 1) Precision/% Recall/% mAP0.5/%

YOLOv5s 7.07 16.3 14.4 158.73 96.1 96.5 98.4
YOLOv5s-Backbone 7.22 16.3 14.7 169.49 97.1 98.3 99.1

YOLOv5s-Neck 7.37 16.8 14.9 155.56 97.5 98.9 99.3

From the results, it can be seen that the performance improvement brought by the
ECA mechanism is greater than the computational overhead it brings; the increase in
computation by adding the ECA mechanism in the backbone network is slightly lower
than in the neck network, and adding ECA in the backbone network is more effective than
in the neck network. Since the model is intended to be used in embedded devices, it is
finally chosen to be added in the backbone network.

3.5. Performance Comparison of Various Loss Functions

To assess the influence of disparate bounding box loss functions on the accuracy of
network detection, the CIoU functions adopted by EIoU, SIoU, alpha-IoU, focal-EIOU, and
YOLOv5s were compared to determine the most effective loss function, and the results are
shown in Table 5.

Table 5. Performance comparison of different loss functions.

YOLOv5 YOLO-
EIOU

YOLO-
Alpha-IoU

YOLO-
SIOU

YOLO-
Focal-EIOU

Parameters/M 7.07 7.07 7.07 7.07 7.07

FLOPs/G 16.3 16.3 16.3 16.3 16.3

Size of
model/MB 14.4 14.4 14.4 14.4 14.4

FPS/(s − 1) 158.73 166.67 172.41 169.49 166.67

Precision/% 96.1 97.3 97.9 98.5 97.5

Recall/% 96.5 97.1 98.2 97.6 98.1

mAP0.5/% 98.4 98.6 99.1 98.9 98.8

The test results show that the alpha-IoU loss function model has the best detection
performance. Compared to the original model, the accuracy improves by 1.8% and the
recall rate increases by 1.7%. Each loss function of mAP0.5 and FPS has increased, but the
alpha-IoU loss function is more prominent. Accordingly, the incorporation of the alpha-IoU
loss function can markedly enhance the precision of the network’s detection capabilities.

3.6. Ablation Experiments

With peanut kernel quality detection as the goal, to test the performance improvement
of the original YOLOv5s model via the above three improvement strategies, different
numbers of improvement factors were added separately, and 10 groups of networks were
combined for the ablation test.
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To verify the impact of each improvement on the network model, the feasibility and
effectiveness of the ShuffleNetv2 lightweight network, the ECA mechanism, and the alpha-
IoU loss function were analyzed in detail, and tests were carried out on the test set. The
comparison results of the mAP values for each combined model are shown in Table 6.

Table 6. Results of performance evaluation indices in ablation test.

ShuffleNet v2
Lightweight

Network

ECA
Attention
Module

Alpha-
IOU Loss
Function

mAP-
0.5/%

Parameters/
M FLOPs/G FPS

/(s − 1)
Precision

P/%
Recall
R/%

Size of
Model/MB

- - - 98.4 7.07 16.3 158.73 96.1 96.5 14.4
√

- - 97.6 0.45 6.1 169.49 95.4 95.2 1.4

-
√

- 99.1 7.22 16.3 166.96 97.1 98.3 14.4

- -
√

98.9 7.07 16.3 157.77 98.1 98.2 14.4
√ √

- 98.3 0.47 6.3 188.63 96.8 95.2 1.5
√

-
√

98.6 0.45 6.1 180.33 94.8 97.1 1.5

-
√ √

99.5 7.21 16.1 175.4 99.5 98.8 14.7
√ √ √

99.4 0.47 6.3 185.67 98.8 99.4 1.3

In this study, through a comprehensive ablation test, the ShuffleNet v2, ECA mecha-
nism, and alpha-IoU loss function were innovated to optimize the YOLOv5s model and
build a SEA-YOLOv5s network to detect the appearance quality of peanut kernels under
the principle of both model lightweight and recognition accuracy. The network signif-
icantly reduces the parameters and computational requirements, reducing the number
of parameters to 6.7% of the original model and the computation requirements to 38.7%,
while achieving a significant increase in FPS of 117% compared to the original model. In
terms of performance, the accuracy and average accuracy of SEA-YOLOv5s reach 98.8%
and 99.4%, respectively, which are 2.7 and 1 percentage points higher than the original
YOLOv5s, effectively realizing the dual improvement of the model’s lightweight quality
and recognition accuracy.

3.7. Comparison of Different Detection Models

To further verify the improved model performance, this study conducted a comparison
test between the improved model SEA-YOLOv5 and commonly used models for target
detection: Faster R-CNN, SSD, YOLOv5, YOLOv7, YOLOV7-tiny, and YOLOv8. The test
results are shown in Table 7.

Table 7. Comparison of different detection models.

VGG 16 Faster
R-CNN SSD YOLOv5 YOLOv7 YOLOv7-

Tiny YOLOv8 SEA-
YOLOv5

Parameters/M 55.65 47.24 23.57 7.07 9.15 6.02 11.13 0.47

FLOPs/G 158.26 134.6 147.56 16.3 26 13.1 28.5 6.3

Size of
model/MB 668.26 567.3 94.6 14.4 19 11.7 21.4 1.3

FPS/(s − 1) 55.26 42.53 98.76 158.73 149.25 129.87 190.76 185.67

Precision/% 84.5 98.5 96.6 96.1 96.1 95.9 98.7 98.8

Recall/% 97.04 97.6 96.9 96.5 96.2 96.3 97.3 99.4

mAP0.5/% 89.63 98.9 98.7 98.4 98.3 97.9 98.9 99.4
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The improved model is superior to the other detection models in terms of detection
performance. SEA-YOLOv5 has only 0.47 M parameters and 6.3 G floating-point computa-
tion. Compared with other models, SEA-YOLOV5 has obvious advantages, indicating that
the strategy adopted to address the model complexity plays an effective role. Compared
with Faster R-CNN, SSD, YOLOv5, YOLOv7, YOLOV7-tiny, and YOLOv8, the detection
accuracy P of the model is increased by 0.3%, 2.3%, 2.7%, 2.7%, 2.9%, and 0.1%, respectively,
which proves that the detection performance is significantly improved. Compared with
other models, the average accuracy value is also increased by 0.5%, 0.7%, 1%, 1.1%, 1.5%,
and 0.5%, and the detection speed reaches 185.67 FPS, which can meet the real-time detec-
tion requirements. The final size of the lightweight model is 1.3 MB, which is only 9.02% of
the original YOLOv5s model, and the number of parameters is about 6.68% of the original
model, which is more suitable for embedded devices.

3.8. Tests Deployed on Raspberry Pi 4B

The Raspberry Pi 4B hardware configuration is shown in Table 8.

Table 8. Raspberry Pi 4B hardware configuration.

Names Specifications

CPU ARM Cortex-A72 1.5 GHz (quad-core)

GPU Broadcom VideoCore IV, OpenGL ES 2.0, 1080p
30 h.264/MPEG-4 AVC HD decoder

Memory 64 GB microSDXC

Raspberry Pi 4B environment build: using the Raspberry Pi OS operating system,
configure the model runtime environment as Python 3.8, Pytorch 1.9.0, CUDA 11.1 and
CUDNN 8.05. The Raspberry Pi 4B device is shown in Figure 9. The Raspberry Pi 4B test
sample is shown in Figure 10.
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Figure 10. Raspberry Pi 4B test sample.

To ascertain the efficacy of the SEA-YOLOv5 model in discerning the quality of peanut
kernels, the improved model was put into the Raspberry Pi 4B in this experiment, and the
actual test was carried out in the self-constructed small-scale simulation test bed. It was
observed that the Raspberry Pi 4B possesses limited computational resources. It is essential
to consider the computational load of the model, which is 6.3 GFLOPs for the proposed
algorithm, a figure that is 10.0 lower than that of YOLOv5s. In addition, the number of
parameters and the size of the model are greatly reduced from the original model, which
makes the computation reduced and more suitable for embedded devices; the average
number of recognized FPS is also better than other YOLO series models, and the average
detection time per image is only 11.2 ms. Figure 11 shows the results of the actual detection
in Raspberry Pi 4B, which shows the excellent performance of the improved peanut kernel
detection model.
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4. Discussion

In the comprehensive examination of a peanut kernel appearance quality-detection
model, the SEA-YOLOv5 model was developed, and its high efficiency and accuracy were
validated. This successful demonstration of the model’s potential for wide application and
excellent performance in this field provides compelling evidence of its value. This model
integrates cutting-edge data processing and analysis technology and considers the core
factors that may affect the appearance quality of peanut kernels. These factors include
soil, stone, and other impurities introduced by field harvesting; breakage and damage
caused by husking; insect erosion; mold; and germination caused by long-term storage.
The experimental results demonstrate that the model is capable of accurately identifying
and quantifying the influence of these complex factors on the appearance quality of peanut
kernels, thereby providing substantial support for the realization of efficient and accurate
quality assessment.

Despite the implementation of data augmentation techniques to mitigate the risk of
overfitting, the model may still be susceptible to this issue if the training dataset lacks
sufficient diversity or is of a limited size. To address this issue, it is essential to con-
tinuously collect a more diverse range of peanut kernel samples and conduct rigorous
cross-validation and testing, to assess the model’s generalization capacity. Furthermore, in
practical applications, peanut kernels may be presented in complex backgrounds, such as
mixtures with other impurities, backgrounds with colors similar to peanut kernels, and
so forth. These complex backgrounds may result in the model erroneously identifying
background objects as peanut kernels or failing to detect the actual peanut kernels. To
reduce the false detection rate, the background suppression capability of the model can be
enhanced and more sophisticated post-processing algorithms can be employed to filter out
the false detection results.

The current model is capable of detecting the presence of pests and diseases in peanut
kernels. However, it lacks the capacity to assess the extent of infestation. To address
this limitation, a larger dataset comprising peanut kernels exhibiting varying degrees
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of pest and disease infestation will be collected in the future. This will facilitate the
refinement of the algorithm to grade the severity of peanut kernel infestation. Furthermore,
more rigorous threshold settings and post-processing algorithms will be employed to
minimize the occurrence of false alarms. Additionally, data cleaning and pre-processing
techniques will be utilized to mitigate the impact of noise on the detection outcomes.
Concurrently, we will reinforce our collaboration with the agricultural sector, facilitate the
expeditious transition of research outcomes, and endeavor to deploy this sophisticated
quality assessment technology in the production of peanut kernels and other agricultural
commodities with minimal delay. This will facilitate the enhancement of agricultural
product quality and the assurance of food safety.

5. Conclusions

This study presents an enhanced method for peanut kernel appearance quality de-
tection based on the YOLO v5 algorithm. The model was trained using images of the
Qinghua 308 variety peanut kernels, with the original dataset expanded to 10,000 images
through five data augmentation techniques. After comparing different versions of YOLO
v5, YOLO v5s was chosen as the base model, showing an initial accuracy of 96.1%. The
model was then optimized through three key improvements: incorporating ShuffleNet
v2 as the backbone network, which reduced the model volume by 90% and floating-point
operations by 63%; integrating the ECA mechanism in the C3 module, which improved
accuracy to 98.3%; and implementing the alpha-IoU loss function, which further enhanced
detection accuracy by 1.8%. Ablation tests confirmed the effectiveness of these improve-
ments, with the optimized model achieving 98.8% precision, while requiring only 0.47 MB
in parameters. The enhanced SEA-YOLOv5 model demonstrated superior performance
metrics compared to alternative deep learning algorithms, while maintaining a compact
size of 1.4 MB, making it suitable for embedded device deployment.

While our improved method shares commonalities with existing studies, it makes
unique contributions to peanut kernel appearance quality detection. Our approach compre-
hensively addresses the challenges encountered during detection, particularly in handling
similar targets and small objects. The model’s enhanced ability to accurately classify similar
peanut kernels demonstrates improved generalization capabilities. This research not only
provides an innovative technical solution for peanut kernel appearance quality detection,
but also establishes a valuable reference for the development of specialized detection hard-
ware. The combination of high accuracy, compact size, and robust performance makes a
significant contribution to the practical application in the field of agriculture.
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