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Abstract: Artificial intelligence (AI) can revolutionize agriculture by enhancing genomic research and
promoting sustainable crop improvement. AI systems integrate machine learning (ML) and deep
learning (DL) with big data to identify complex patterns and relationships by analyzing vast genomic,
phenotypic, and environmental datasets. This capability accelerates breeding cycles, improves
predictive accuracy, and supports the development of climate-resilient, high-yielding crop varieties.
Applications such as precision agriculture, automated phenotyping, predictive analytics, and early
pest and disease detection demonstrate AI’s ability to optimize agricultural practices while promoting
sustainability. Despite these advancements, challenges remain, including fragmented data sources,
variability in phenotyping protocols, and data ownership concerns. Addressing these issues through
standardized data integration frameworks, advanced analytical tools, and ethical AI practices will be
critical for realizing AI’s full agricultural potential. This review provides a comprehensive overview
of AI-powered genomic research, highlights the role of big data in training robust AI models, and
explores ethical and technological considerations for sustainable agricultural practices.

Keywords: artificial intelligence; machine learning; deep learning; crop improvement; genomic study;
big data

1. Introduction

Artificial intelligence (AI) is revolutionizing genomic selection and agriculture by
enhancing the efficiency and precision of breeding programs. This integration of AI en-
compasses machine learning (ML) and deep learning (DL) techniques, which analyze
vast datasets to identify patterns and relationships between genotypes and phenotypes.
The advent of high-throughput genotyping technologies allows for collecting extensive
genetic information across numerous markers, facilitating the development of predictive
models that can significantly improve the selection of superior genotypes [1,2]. Genomic
selection (GS) leverages these advancements by utilizing data from many genetic markers
to estimate breeding values without pinpointing specific gene locations. This method, first
articulated by Meuwissen et al. [3] in 2001, has gained traction as a powerful tool in crop
improvement, particularly in response to the challenges posed by population growth and
climate change [4]. By accurately predicting genetic potential, AI reduces the number of
breeding cycles needed to develop new crop varieties, saving time, labor, and resources [3].
AI-driven genomic selection not only accelerates the breeding process but also enhances
prediction accuracy, thereby addressing complex agricultural traits more effectively than
traditional methods. As AI continues to evolve, its applications in agriculture promise to
bridge the gap between food production demands and sustainable practices, ultimately
leading to more resilient agricultural systems capable of meeting future challenges [5].
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AI significantly enhances the efficiency of crop improvement techniques through vari-
ous innovative applications that leverage data analysis, machine learning, and predictive
modeling. Here are some key ways in which AI contributes to this field, like precision
agriculture, accelerated breeding processes, predictive analytics, early disease and pest
detection, and integration of genomics and phenomics. Researchers have used AI models
to analyze genomic data and identify heat-tolerance genes in wheat, leading to the devel-
opment of varieties that maintain yield under high temperatures [6]. AI techniques, such
as Random Forest and Convolutional Neural Networks, have been employed to predict
drought resilience in maize by integrating genomic and environmental datasets. These
models have enabled the selection of drought-tolerant lines with a 30% yield improvement
under water-scarce conditions [7]. In India, AI-driven genomic studies have identified
salt-tolerance genes in rice, leading to the development of varieties capable of thriving
in saline soils. This innovation has benefited farmers in coastal regions, improving food
security and livelihoods [8]. AI facilitates precision agriculture by analyzing large datasets
related to weather patterns, soil conditions, and crop health. This allows farmers to make
informed decisions about irrigation, fertilization, and pest management, ultimately opti-
mizing resource use and maximizing yields [9]. AI-driven tools used in rice and wheat
breeding have reduced water usage by 20% while maintaining or increasing yields [10].
AI technologies also accelerate the breeding process by automating phenotyping, which
involves observing and selecting the most promising crop varieties based on their growth
characteristics. For instance, AI systems can analyze thousands of images of crops to
identify traits that contribute to resilience and productivity [1,9]. AI-powered predictive
analytics enable farmers to forecast crop yields and assess the impact of various factors
on production. This capability helps in planning sowing and harvesting schedules more
effectively, thereby enhancing overall productivity and profitability [1,2]. AI improves early
disease and pest detection through image recognition and real-time monitoring, enabling
proactive crop protection to minimize yield losses [11]. Moreover, AI links genomic data
with phenotypic traits, allowing for rapid identification of genes associated with desirable
traits. This integration accelerates the development of improved crop varieties adapted to
specific environmental conditions [9]. AI-driven studies on wild relatives of staple crops,
such as wild wheat and barley, have identified genes for disease resistance and abiotic
stress tolerance. For instance, genes from wild barley have been used to improve resistance
to leaf rust in cultivated varieties, safeguarding yields against fungal diseases [12]. Overall,
the incorporation of AI into crop improvement techniques not only enhances efficiency
but also contributes to sustainable agricultural practices by optimizing resource use and
minimizing waste.

The aim of this review article is to provide a comprehensive overview of the integration
of AI in genomic research for sustainable agriculture. This paper examines the role of big
data in training robust AI models that enhance crop improvement and discusses the ethical
implications of using AI.

2. Principles of AI—Predictive Modeling

Predictive modeling has evolved from simple statistical tools into a sophisticated
field powered by machine learning and deep learning. Beginning with foundational
methods like linear and logistic regression, the discipline matured through the advent
of decision trees, ensemble methods, and deep neural networks. These advancements
have expanded the ability to analyze complex, high-dimensional datasets, leading to
genomic selection and agricultural application breakthroughs. By understanding the
historical context and examining the principles, strengths, and limitations of various
predictive algorithms, readers can appreciate how each method contributes to the broader
tapestry of data-driven decision-making. The progression of predictive modeling—from
early statistical methods to advanced machine learning and deep learning frameworks—
highlights the field’s transformative potential. Today’s algorithms can handle diverse data
types, identify intricate patterns, and offer more accurate predictions. Techniques like
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cross-validation ensure that models are reliable and generalizable, while methods such as
autoencoders and VAEs facilitate data exploration and hypothesis generation. Ultimately,
this chapter underscores how predictive modeling is a key driver in modern research,
enabling more informed decisions in agriculture, genomics, and beyond and setting the
stage for further innovation.

2.1. Advanced Predictive Algorithms

The concept of predictive modeling traces its origins to early statistical techniques
developed in the 20th century, such as linear regression and logistic regression [13]. These
methods laid the foundation for predictive analytics by establishing relationships between
variables to forecast outcomes. The concept of decision trees can be traced back to earlier
statistical methods, such as discriminant analysis proposed by Ronald Fisher in 1936 [14].
However, it was not until the late 1970s that researchers began formalizing decision tree
methodologies. In the 1960s, advancements in computing enabled the development of
decision tree algorithms, such as the Classification and Regression Tree (CART) introduced
by Breiman et al. in 1984, which became an important moment in predictive modeling [15].
CART utilizes a binary tree structure where each internal node represents a decision based
on a predictor variable, leading to branches that represent possible outcomes. The terminal
nodes (or leaves) contain the predicted outcomes for classification or regression tasks. This
recursive partitioning approach helps create models that can effectively capture complex
relationships within data. The emergence of ML in the late 1990s marked a significant
leap forward. Algorithms such as Support Vector Machines (SVMs) [16] and ensemble
learning techniques like Random Forest [17] introduced a level of predictive accuracy and
robustness previously unattainable with traditional methods. SVMs are designed to find
the optimal hyperplane that separates data points of different classes in a high-dimensional
space. The algorithm focuses on maximizing the margin between the closest data points of
each class, known as support vectors. Random Forest is an ensemble learning method that
constructs multiple decision trees during training and outputs the mode of their predictions
(for classification) or the mean prediction (for regression). Machine learning models, such
as Random Forest and deep learning architectures, have demonstrated their potential to
revolutionize crop yield prediction. These models offer significantly more accurate forecasts
by analyzing diverse factors like soil properties, climate, and historical yield data than
traditional methods like regression trees [18,19]. This approach helps improve accuracy
and control overfitting, making it particularly effective for complex datasets. The 2010s
saw the rise in deep learning powered by advances in computational capabilities and the
availability of large datasets. Neural networks evolved into multi-layered architectures
capable of capturing intricate patterns in complex datasets, revolutionizing predictive
modeling. Techniques like Convolutional Neural Networks (CNNs) for image data [20]
and Recurrent Neural Networks (RNNs) for sequential data [21] emerged, paving the way
for applications in genomics, healthcare, and beyond. CNNs were designed for hand-
written digit recognition. This model utilized convolutional layers to preserve the spatial
structure of images, allowing for more effective feature extraction compared to traditional
neural networks that flattened input data. RNNs are a solution for processing sequential
data. Unlike traditional feedforward networks, RNNs maintain a hidden state that cap-
tures information from previous inputs, allowing them to consider temporal dependencies.
AI has fundamentally transformed predictive modeling by enabling the analysis of vast,
high-dimensional datasets. Unlike traditional methods, AI models can learn non-linear
relationships, interactions between features, and hierarchical structures, which are partic-
ularly useful in fields like genomics and agriculture [22]. Machine learning algorithms,
including Random Forest, Gradient Boosting Machines (GBMs), and XGBoost (Extreme
Gradient Boosting), have become staples in predictive modeling due to their ability to
handle missing data, non-linear relationships, and feature importance ranking [23]. GBMs
build models sequentially, where each new tree corrects errors made by previously trained
trees. This technique focuses on minimizing the loss function by optimizing the model
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iteratively. XGBoost is an advanced implementation of gradient boosting that enhances
speed and performance. It incorporates regularization techniques to prevent overfitting
and optimize model performance. These models are widely applied in genomic selection to
predict plant traits, such as drought resistance or yield, based on genetic markers [3]. Deep
learning has further advanced predictive modeling by handling complex relationships that
were previously difficult to model. Architectures like CNNs excel in processing spatial
data, such as genomic sequences, while RNNs are adept at modeling time-series data, such
as environmental fluctuations. Deep learning, in particular, excels at processing time series
data and integrating various environmental and soil parameters [24]. This capability has
led to promising results in predicting crop yields [25]. Accurately anticipating crop yields is
crucial for optimizing agricultural practices and ensuring food security. Autoencoders and
Variational Autoencoders (VAEs) are now being employed to reduce dimensionality and
generate new hypotheses about genetic and phenotypic traits [26]. Autoencoders are neural
network architectures that learn to compress data into a lower-dimensional latent space
and then reconstruct the original data. This ability to reduce dimensionality is particularly
useful in genomics, where datasets often contain a vast number of features, such as single
nucleotide polymorphisms [27]. VAEs extend the concept of autoencoders by introducing
a probabilistic approach to encoding data. They learn a distribution over the latent space
rather than a fixed representation, enabling the generation of new samples that resemble
the training data. This capability is particularly advantageous for generating hypotheses
about genetic traits and simulating potential phenotypic outcomes based on genetic varia-
tions [28]. VAEs have been shown to capture population structures and genetic diversity
effectively. They can identify clusters of samples with similar genetic compositions, facil-
itating the exploration of genotype-phenotype relationships across diverse populations.
For example, VAEs have been applied to analyze genomic data from various populations,
providing insights into how genetic variations correlate with phenotypic traits [29]. The
information on the main predictive algorithms has been compiled in Table 1.

Table 1. The features, principles, advantages, and limitations of key predictive algorithms.

Algorithm Principle Key Features Advantages Limitations

CART (Classification
and Regression Trees)

Recursive binary
splitting of data based
on feature thresholds.

Decision tree structure
with internal nodes
representing feature
splits and leaf nodes

with predictions.

Simple, interpretable,
and useful for

categorical and
continuous outcomes.

Prone to overfitting
and sensitive to small
changes in the data.

SVM (Support Vector
Machine)

Maximizes the margin
between data classes
using a hyperplane in

high-dimensional
space.

Utilizes support vectors
(critical data points) to

define the optimal
hyperplane.

Effective in
high-dimensional

spaces and works well
for both classification

and regression.

Computationally
expensive for large

datasets, sensitive to
kernel choice, and

challenging to
interpret.

RF (Random Forest)

Ensemble method that
builds multiple

decision trees and
aggregates their

predictions.

Uses bootstrapping and
random feature

selection to reduce
variance and
overfitting.

Handles large datasets,
robust to overfitting,
and provides feature

importance.

Slower prediction time
compared to single
trees, and reduced

interpretability.

CNN (Convolutional
Neural Network)

Extracts spatial
hierarchies from

grid-like data (e.g.,
images) using

convolutional and
pooling layers.

Employs convolutional,
pooling, and fully

connected layers for
feature extraction.

Excellent for image,
spatial, and sequential
data. Automatic feature

extraction.

Computationally
intensive, requires large
datasets, and often acts

as a “black box”.



Agriculture 2024, 14, 2299 5 of 17

Table 1. Cont.

Algorithm Principle Key Features Advantages Limitations

RNN (Recurrent
Neural Network)

Processes sequential
data with loops that
allow information to

persist through
“hidden states”.

Captures temporal
dependencies and

processes data with
order dependencies.

Ideal for time-series,
sequential, and text

data. Effective in
capturing

time-dependent
relationships.

Suffers from
vanishing/exploding
gradient issues, and

training can be slow for
long sequences.

VAE (Variational
Autoencoder)

Encodes data into a
probabilistic latent

space and decodes to
generate synthetic

samples.

Probabilistic
encoder-decoder model
with a latent variable

space.

Generates new data
samples, useful for

dimensionality
reduction, and

unsupervised learning.

Requires careful tuning
of latent space size, and
reconstructions may be
blurry for image data.

2.2. Cross-Validation and Optimization

Cross-validation is a crucial technique in machine learning that enhances model
evaluation and optimization by providing a robust framework for assessing how well a
model generalizes to unseen data. While cross-validation and optimization are widely used
in machine learning, they are not exclusive to this field. These techniques are also employed
in other computational and statistical disciplines, such as bioinformatics, econometrics,
and operations research. It involves partitioning the dataset into multiple subsets, allowing
for iterative training and testing of the model. Using different subsets for training and
testing provides a better understanding of how the model will perform on unseen data. It
reduces the risk of overfitting, where a model performs well on training data but poorly
on new data. Cross-validation ensures that the model is tested on various data points,
leading to a more reliable estimate of its generalization capabilities. A common form
of cross-validation is k-fold cross-validation. The dataset is divided into k equal-sized
folds. The model is trained k times, each time using k − 1 folds for training and 1-fold for
testing [30]. In a genomic prediction study on maize (Zea mays L.), researchers employed a
5-fold cross-validation approach to assess the performance of statistical learning methods
that used genome-wide molecular marker data to predict genetic values of target traits [31].
Each model was trained on four folds of data (training set) and validated on the remaining
one-fold (test set). This process was repeated five times, with each fold serving as the test
set once. By comparing prediction accuracy across all folds, the study demonstrated the
robustness of the methods and gained insights into how well these models generalized
to unseen data. However, common challenges are encountered when applying k-fold
cross-validation in machine learning, especially in the context of genomic research. Uneven
distribution of phenotypic classes can affect model training and validation. Repeating
the training and validation process k times increases computational demands, especially
with large genomic datasets. If proper partitioning protocols are not followed, information
may leak from the training set to the testing set, leading to overly optimistic performance
estimates. Overfitting may still occur if hyperparameters are tuned using information from
multiple folds, requiring careful separation of training, validation, and testing datasets.

3. AI in Genomic Research

ML is a field of computer science that aims to develop algorithms that allow computers
to learn and draw conclusions from available data without being directly programmed [32].
In the context of genomic data analysis, ML makes it possible to automate complex com-
putational processes, such as identifying patterns in DNA sequence data, significantly
accelerating the development of plant genomics research.

3.1. Types of Machine Learning in Genomic Study

Machine learning algorithms are generally divided into two main types: supervised
and unsupervised learning [33] (Figure 1). Supervised learning involves algorithms such
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as random forests, support vector machines, and k-nearest neighbors, which use labeled
data to classify instances or predict numerical values (regression). In contrast, unsuper-
vised learning algorithms like principal component analysis, k-means clustering, and
self-organizing maps do not require labeled data and are mainly used for clustering and
feature extraction. Examples of applications include the prediction of regulatory and non-
regulatory regions in the maize genome [34], prediction of mRNA expression levels [35],
polyadenylation sites identification in Arabidopsis [36], classification of macronutrient
deficiencies on development in tomato [37].
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Additionally, machine learning methods can be categorized based on their approach
into feature-based methods and artificial neural networks (ANNs). Feature-based methods,
such as random forests and SVMs, require predefined features and are effective with smaller
datasets. ANNs, including convolutional and recurrent neural networks, automatically
learn features from large datasets, making them suitable for tasks requiring substantial
amounts of data. When ANNs consist of multiple interconnected layers of neurons, they
form a deep learning model, widely used in complex applications such as image and speech
recognition [38]. Deep neural networks (DNNs), an extension of ANNs, contain multiple
hidden layers, allowing them to analyze more complex patterns in the data. However, their
greater predictive power requires more data resources and computing power. A subset
of DNNs are CNNs, which automatically extract features from continuous data such as
plant images or DNA/RNA sequences. By using spliced layers, CNNs are applied to
tasks such as identifying phenotypic features of plants from images or analyzing motifs in
genomic sequences. Examples include predicting regulatory sites in genomes with large
numbers of repetitive sequences, such as maize [39,40]. The introduction of advanced
machine learning techniques, such as CNNs and DNNs, opens up new possibilities in
plant genomics (Table 2). Using these methods makes it possible to better understand the
relationship between DNA sequences and phenotypes, which helps improve research into
improving crop yield and resistance.
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Table 2. The overview of the AI-powered tools in genomic research discussed in this review.

Task AI Application

Genome assembly AI improves accuracy in assembling complex genomes
Gap filling in genome assembly AI better predicts missing genome fragments

Genome size estimation AI defines the computational assessment of genome size
Structural variant detection AI indicates large genomic variations

Functional annotation of plant genes AI predicts and compiles coding domains and TFBS
Cis-regulatory element prediction AI analyses of gene expression flanking regions

Prediction of TF binding sites AI determines TFBS * prediction and cell-specific interactions
Annotation of regulatory regions AI models long-range DNA sequence relationships

Genetic variation analysis AI links phenotypic traits with genetic markers
CRISPR target site optimization AI design of gRNAs for gene editing

* TFBS—Transcription Factor Binding Site.

3.2. Genome Assembly, Structure and Function

Next-generation sequencing technologies have significantly deepened our knowledge
of genomes as it has become possible to sequence them. The sequencing results had to
be assembled into a continuous genome. Genome assembly, the process of assembling
short DNA fragments into complete genomic sequences, is crucial to understanding the
genome structure of organisms [41]. It enables the identification of genes, regulatory
elements, and genetic variants, with applications in medicine, agriculture, and biodiversity
conservation [42]. AI greatly improves this process by providing more accurate and
faster data analysis methods. AI algorithms can predict gene function, identify regulatory
elements, and optimize genome assembly. For example, AI enables the better interpretation
of sequencing data and integration of different types of biological data for more accurate
genome mapping [43]. The use of AI in genome assembly increases the efficiency and
accuracy of genetic element identification and enables the analysis of large and complex
genomes, such as plant genomes and highly repetitive organisms. It is a groundbreaking
tool for basic and applied research [44]. The use of neural networks and k-mers in plant
genome assembly is an advanced method used in genomics to analyze large biological
datasets. K-mers are commonly used in bioinformatics to analyze genomic data. They are
obtained by sliding a window of length k over a sequence and recording all the overlapping
subsequences. K-mers are essential for tasks such as sequence alignment, genome assembly,
and error correction [45]. A k-mer is a substring of a given sequence of length k, where
k refers to the number of characters (or nucleotides) in the substring. For example, in a
DNA sequence, if k = 3, then a possible k-mer from the sequence “AGCT” would be “AGC”
and “GCT” [45,46]. The size of k affects the specificity of the analysis, with smaller k-mers
being more general and larger k-mers being more specific, helping to distinguish between
different sequences or species [46].

K-mers in assembly are used to construct de Bruijn graphs, which help in assembling
DNA sequences by identifying overlapping genome fragments. This technique facilitates
accurate mapping of the plant genome containing repetitive sequences and a large number
of regulatory elements [47,48]. In cucumber B10 v3, the genome was first assembled from
PacBio reads and then corrected using the short Illumina reads from P1. The BBnorm Ecc
Linux from the BBTools v35.82 suite was used to correct the quality of the Illumina reads
by k-mer distribution count-based modification [49]. K-mer-based GWAS has emerged as
a method to assess genetic variation in plants without the need for a reference genome.
For example, a study on Aegilops tauschii, which lacks a reference genome, used k-mers
derived from sequencing data enriched for nucleotide-binding/leucine-rich repeat (NLR)
genes. Significant k-mers were mapped to local assemblies of NLR genes, identifying
candidate genes associated with resistance to wheat stem rust. This method demonstrated
the efficiency of k-mers in linking genetic variations directly to phenotypic traits [46]. K-
mer distributions have been employed to estimate genome sizes across various organisms,
including cultivated potatoes and agricultural pests. In one study, researchers compared k-
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mer methods with traditional flow cytometry measurements and found that k-mer analysis
could provide accurate estimates of genome size when applied correctly. They noted that
using different values of k (e.g., 21) offered a balance between computational efficiency and
accuracy in estimating genome sizes [50]. K-mers can also be used to detect genetic variants
such as single nucleotide polymorphisms (SNPs), insertions, deletions, and structural
variations without prior knowledge of these variants. This capability is particularly useful
for species lacking comprehensive genomic information, enabling researchers to identify
significant genetic markers associated with traits of interest [46]. Algorithms based on
k-mers and ML enable the classification of genomic elements such as LTR retrotransposons.
This technique has been successfully applied to the analysis of plant genomes, allowing
for a better understanding of their structure [47]. DNN-based tools, such as GapFiller, use
k-mer techniques to identify and fill missing fragments in the genome. The model analyzes
sequence reads and predicts the most likely sequences in gap areas [51]. These technologies
facilitate the analysis of highly complex plant genomes and open the way to more precise
molecular studies. The combination of neural networks and K-mer analysis represents
a significant advancement in genome assembly methodologies. Researchers can achieve
more accurate and complete genome reconstructions by leveraging the strengths of both
approaches—neural networks for complex pattern recognition and K-mers for efficient
data representation. As these technologies continue to evolve, they promise to further
transform our understanding of genomic structures and functions across diverse species. A
comparison of CNN and k-mer methods shows that CNNs are more efficient at extracting
sequence features, but their interpretation remains difficult, and the computational cost
is high. Although powerful, CNNs are often criticized as ‘black boxes’, limiting their use
when biological rules need to be elucidated. Alternatively, k-mer-based methods, which
rely on frequency analysis of short sequence segments, are fast, accurate, and easy to
interpret. They are particularly effective in identifying sequence signatures and allow
quantitative comparison of sequence similarity. Examples of combining k-mer approaches
with deep learning demonstrate the potential for synergy between predictive performance
and interpretability of results [52]. ML and neural networks are widely used in the analysis
of plant gene structures, contributing to the advancement of plant genomics and a better
understanding of their biological mechanisms. Deep learning models predict plant gene
expression patterns by analyzing the cis-regulatory code, e.g., flanking regions of genes.
This allows the identification of key regulatory elements that affect gene expression, as
it was conducted in A. thaliana, S. lycopersicum, S. bicolor, and Z. mays [53]. ML enables
the identification of structural regions in the plant genome, such as coding domains or
transcription regulators, supporting the functional annotation of genes [54]. ML supports
the precise design of gene editing target sites in plants, which is useful in the design of
gRNAs for CRISPR-Cas9 techniques [51]. Deep learning is used to analyze the structure
of crop genomes to improve their phenotypic traits, such as resistance to environmental
stresses and increased crop yield [22]. Neural networks analyze DNA sequencing data
to detect and classify large structural variants in the plant genome, allowing for a better
understanding of genetic diversity [55]. Neural networks combined with k-mer analysis,
such as the kmerPMTF model, are used to analyze the interactions of miRNAs and their
targets, which supports the interpretation of regulatory functions in the plant genome [56].
These technologies are crucial for studying plant genomes, predicting plant gene expression
from regulatory sequences, characterizing gene function using ML, recognizing key genetic
locations for gene editing, genomics modeling for crop improvement, and discovering
structural genetic variants. AI will revolutionize breeding technologies, especially for those
crop species with complex genomic structures [57,58].

3.3. Transcription Factor Binding Sites Studies

To analyze large datasets in plant genomics, several deep learning-based methods
have been developed to model the specificity of transcription factor (TF) binding to DNA.
For example, DeepBind allows the identification of multiple sequence motifs to predict
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the binding sites of DNA accurately- and RNA-binding proteins [59]. TFImpute optimizes
the prediction of cell-specific TF interactions [60], while algorithms such as DeepSEA [61],
DeFind [62], and DFIM [63] assess the impact of functional non-coding variants, which is
crucial in the context of genome regulatory functions. In particular, DRNApred effectively
distinguishes between DNA and RNA binding residues [64]. ML plays a key role in model-
ing TF binding sites in plant genomics. These models can be trained using different types of
sequencing data, either alone or in combination with other sources, such as DNase I hyper-
sensitivity data, significantly improving the prediction of TFBS binding in vivo [60]. Plant
genomes have numerous repetitive elements and large intergenic regions, the identification
of key regulatory regions is more challenging. To overcome these difficulties, approaches
based on k-mer grammar and natural language processing have been used to accurately
and cost-effectively annotate regulatory regions [34]. Further advances in this area include
integrating methods that will, in the future, be able to model long-range relationships in
DNA sequences, which could prove critical in studies of plants with large genomes, such
as wheat or soybean. Initiatives such as PlantENCODE are attempting to address these
issues by collecting extensive data on regulatory regions and TF binding, which will enable
the training of more comprehensive AI models [65,66].

To sum up, next-generation sequencing has revolutionized genome analysis, enabling
deeper insights into genome structure, gene identification, and regulatory elements. AI
has further transformed genome assembly by enhancing the accuracy and efficiency of
sequencing data interpretation, especially for complex genomes like plants. Deep learning
models have advanced genome mapping, gene function prediction, and structural variant
identification, transcription factor binding site prediction. This fusion is particularly im-
pactful in agriculture, where it supports crop improvement, resilience, and phenotypic trait
optimization. The AI-based methods are key to unraveling plant genome regulation, with
continuous advancements enhancing precision, scalability, and applicability to large and
complex genomes.

4. Data Challenges

As agricultural data’s scale, complexity, and diversity continue to grow, integrating big
data into AI model training becomes both a critical opportunity and a formidable challenge.
In crop breeding programs, massive genomic, phenotypic, and environmental datasets
can potentially transform how we develop high-yielding, stress-resilient varieties. By
effectively harnessing these data, stakeholders can gain deeper insights, enhance predictive
accuracy, and make more informed decisions. However, achieving this vision requires
overcoming technical, infrastructural, and ethical hurdles. The following sections explore
the power of big data in AI model training and the barriers that must be addressed to
realize its full benefits in sustainable agriculture. This chapter underscores that while big
data offers unparalleled opportunities for advancing AI-driven crop breeding programs, it
also introduces complex challenges. From integrating heterogeneous datasets and ensuring
data quality to establishing ethical guidelines and improving infrastructure, each step in
harnessing big data demands careful attention. Researchers can unlock valuable genetic
insights by adopting FAIR data principles, investing in high-throughput phenotyping
platforms, and fostering open-access collaborations. Ultimately, overcoming these obstacles
will pave the way for more robust, reliable, and responsive AI models—driving innova-
tion in crop breeding, meeting global food demands, and contributing to the long-term
sustainability of agriculture.

4.1. The Role of Big Data in AI Model Training

The integration of big data into artificial intelligence model training is essential for
advancing the capabilities of AI systems. Big data’s unique characteristics enable AI models
to achieve greater performance, accuracy, and applicability across diverse fields. Big data
encompasses vast amounts of information generated from diverse sources such as genomic
sequences, phenotypic records, environmental data, and agricultural management prac-
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tices. For instance, genomic datasets such as those from the International Wheat Genome
Sequencing Consortium (IWGSC) [67] allow researchers to train AI models for identifying
yield-enhancing genotypes across different environments [68]. The integration of heteroge-
neous datasets helps AI systems uncover complex gene-environment interactions critical
for breeding climate-resilient crops. These extensive datasets allow AI systems to train
on a wide array of scenarios, capturing nuances in patterns that improve generalizabil-
ity and predictive performance. For instance, the use of multi-omics data in AI-driven
genomics has enabled more accurate identification of gene-disease associations and trait
prediction [69]. The availability of big data allows AI algorithms to recognize intricate
and non-linear relationships that may be overlooked in smaller datasets. AI algorithms
trained on big data can identify intricate patterns and correlations often missed in smaller
datasets. This is particularly valuable in genomics, where understanding subtle genetic
relationships can lead to breakthroughs in disease resistance and stress tolerance. Deep
learning models, such as CNNs, have been used to analyze genomic sequences for motif
detection and structural variations that influence crop traits [61]. Big data improves the
robustness of AI models by exposing them to diverse scenarios, including rare and extreme
conditions. This exposure is particularly important in agriculture, where environmental
variability and uncertainty demand resilient models. Multi-environment trials (METs),
which capture data from diverse agro-climatic zones, provide the foundation for training
robust AI systems to predict crop performance in different conditions [70]. The accuracy of
AI models is highly dependent on the quality and quantity of training data. In genomics,
high-throughput phenotyping and genotyping generate large, high-quality datasets that
enable precise predictions of complex traits such as yield, flowering time, and disease
resistance. AI models, such as Random Forest and GBM, have demonstrated significant
improvements in predicting polygenic traits in crop breeding programs [7]. Big data tech-
nologies, combined with AI, enable real-time analysis and decision-making. For example,
AI-driven platforms analyze sensor and satellite data to monitor crop health, predict pest
outbreaks, and recommend timely interventions. Real-time insights are vital in applica-
tions such as irrigation scheduling and pest control, where immediate actions can prevent
significant yield losses [71]. By improving big data analytics, agricultural stakeholders
can make data-driven decisions that optimize resource use and enhance productivity. For
example, AI models that integrate climate and soil data with genomic information can
recommend site-specific crop varieties and management practices, maximizing yield and
sustainability [22]. The combination of big data and machine learning allows continuous
model improvement and adaptability. Machine learning models thrive on large datasets,
learning to handle variability and complexity without explicit programming. In genomic se-
lection, AI models trained on big datasets can predict breeding values more effectively than
traditional statistical methods [3]. The integration of AI with big data enables advanced
analytics, moving beyond descriptive insights to predictive and prescriptive solutions.
Predictive analytics helps forecast future agricultural outcomes, such as yield potential
and disease risk, while prescriptive analytics provides actionable recommendations for
achieving optimal results.

4.2. Addressing Data Challenges in Crop Breeding Programs

Data collection and quality are foundational for success in crop breeding programs,
significantly influencing the ability to develop high-yielding, stress-resilient crop vari-
eties. However, several limitations impede the effective utilization of data, presenting
challenges to discovering the full potential of big data and AI-powered genomic research
for sustainable crop improvement. Crop breeding programs generate vast datasets from
diverse sources, including genomic sequencing, field trials, and environmental monitoring.
However, these datasets are often siloed across disparate platforms, limiting the ability to
integrate and analyze them comprehensively [70]. The lack of unified data management
systems hinders decision-making processes and restricts insights that could otherwise
inform breeding strategies. Adopting FAIR (Findable, Accessible, Interoperable, and
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Reusable) data principles to improve interoperability and streamline data integration [72].
Cloud-based platforms like CyVerse provide scalable solutions for integrating and ana-
lyzing fragmented datasets, enabling breeders to access comprehensive information in
real time [73]. Accurate phenotypic data are critical for genomic selection and advanced
breeding techniques, yet many crops lack high-quality phenotypic datasets. Variability
in phenotyping protocols, inconsistent methodologies, and high labor costs impede the
standardization and scalability of phenotyping processes [74]. High-throughput pheno-
typing platforms, such as drones and automated imaging systems, are revolutionizing
data collection by enabling precise, scalable, and consistent measurements [75]. Machine
learning models are being employed to analyze phenotypic data, reducing the reliance on
manual assessment and increasing reproducibility. Many crops, particularly underutilized
species and minor crops, lack comprehensive genomic resources. This scarcity limits breed-
ers’ ability to perform genomic selection or identify valuable traits [76]. Initiatives such
as the African Orphan Crops Consortium (AOCC) and the CGIAR Excellence in Breeding
Platform are addressing these gaps by developing genomic databases for neglected crops,
expanding the scope of breeding programs [10,76]. Advances in next-generation sequenc-
ing and genotyping-by-sequencing have reduced the cost and time required to generate
genomic data, accelerating the development of these resources [77]. The rise in digital
agriculture has heightened concerns about data ownership, intellectual property rights,
and accessibility. Breeders often face legal and ethical challenges when sharing or utilizing
data collected from multiple sources, creating barriers to collaboration [78]. Establishing
clear guidelines and agreements for data sharing to promote cooperation while respecting
intellectual property rights. Open-access initiatives like the International Maize and Wheat
Improvement Center (CIMMYT) [79] provide freely accessible genomic and phenotypic
datasets, fostering global collaboration [7]. Modern breeding programs generate enormous
volumes of data, requiring sophisticated analytical tools for integration and interpretation.
Many programs lack the necessary infrastructure, computational power, or expertise to
handle big data effectively. AI-powered platforms like DeepTools and TensorFlow en-
able the analysis of large-scale datasets, improve the accuracy of predictions, and reduce
time-to-insight [80,81]. Investments in training programs for researchers and breeders are
critical to building capacity for handling and interpreting big data. Environmental factors
play a significant role in phenotypic expression, yet capturing this variability accurately
in datasets is challenging. Variations in climate, soil, and management practices across
trials can obscure genotype-phenotype relationships, complicating analysis [82]. Incor-
porating multi-environment trials (METs) into breeding programs to account for diverse
agro-climatic conditions. AI models trained on integrated datasets that combine genomic,
phenotypic, and environmental data can better account for variability, leading to more
reliable predictions [7].

To summarize the above, big data integration is crucial for advancing AI-driven
crop breeding and ensuring agricultural sustainability. Leveraging FAIR data principles,
high-throughput phenotyping platforms, and collaborative initiatives enable researchers
to overcome challenges like data fragmentation, limited genomic resources, and ethical
concerns. By improving data quality and infrastructure, researchers can unlock complex
gene-environment interactions and develop robust AI models for precise predictions and
adaptive solutions. This synergy between big data and AI accelerates innovation, driving
productivity, resilience, and sustainability in agriculture.

5. Future Perspectives
5.1. Addressing Ethical Concerns and the Role of AI in Sustainable Agriculture

AI represents a transformative force in agriculture, integrating various techniques such
as DL, reinforcement learning, and ML. This evolution, particularly pronounced from the
1950s to the present, has significantly impacted agricultural practices, enhancing productiv-
ity and sustainability [83]. However, the integration of AI also brings forth critical ethical,
social, and economic concerns that necessitate careful consideration to ensure sustainable
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agricultural practices. Jobin et al. [84] highlighted the significant debates that persist re-
garding the definition of ethical AI and the specific standards and practices required for
its implementation. The five key ethical principles are privacy, transparency, justice and
fairness, non-maleficence, and responsibility. The ongoing discourse around ethical AI
aims to establish universal principles while also developing practical frameworks to ensure
the effective implementation of these principles. Aldoseri et al. [85] draw attention to
the vast volume and diversity of data sources, making it difficult to ensure that relevant
and representative samples are gathered and, moreover, may encompass personal and
sensitive information. Additionally, robust data management practices are necessary to
maintain data integrity and security, including implementing version control and efficient
storage systems [85]. Moreover, farmers must have full control over their data, including
how it is collected, who can access it, and how it is utilized. This control is essential for
protecting their privacy and ensuring their information is used responsibly. In the United
States, farmers have formed cooperatives to collectively own and control their data from
various applications. The Farmers Business Network (FBN) allows farmers to share data
while retaining ownership rights, prioritizing privacy, and ensuring farmers control how
their data are used. The Ag Data Transparent certification outlines FBN’s principles on
data ownership and privacy, stating that it will not sell or disclose non-aggregated farm
data without a legally binding commitment to protect farmers’ rights [86]. Transparency
is another fundamental principle of ethical AI that fosters trust among stakeholders by
promoting openness about policies, actions, and laws. In agriculture, a lack of transparency
can hinder farmers’ willingness to adopt AI solutions or share their data with technology
providers. There is a need for clear communication regarding how AI models operate
and make decisions. This transparency is crucial for building trust among farmers and
consumers alike [87]. IBM’s Watson Decision Platform enhances transparency by showing
farmers how AI models make decisions based on data inputs. For example, when recom-
mending crop management practices, it explains the algorithms and data used, helping
farmers understand the reasoning behind these recommendations. This fosters trust and
encourages greater adoption of AI technologies [88]. Fairness, justice, and equity issues
in AI-driven agriculture are critical to ensuring equitable access to technology and pre-
venting bias that can disadvantage marginalized farmers. As AI applications expand, it is
essential to monitor and mitigate biases in data and algorithms, which can lead to unequal
opportunities and exacerbate existing inequalities. Implementing diverse training data
and inclusive design practices can help create fairer AI systems that cater to the unique
needs of smallholders and underrepresented communities [89]. Non-maleficence, which
means “do no harm”, is a vital principle in the use of AI technologies in agriculture. It
emphasizes the importance of minimizing any potential negative impacts on individuals,
communities, and ecosystems. This requires conducting thorough risk assessments, ad-
dressing biases in AI models, and ensuring that those implementing these technologies
have the necessary expertise. By prioritizing non-maleficence, AI applications can improve
agricultural practices while protecting environmental integrity and food safety. Ultimately,
this principle helps build trust among farmers and consumers and supports sustainable
agricultural development [90]. In terms of the application of AI in agriculture responsibility,
(accountability) is a term used for establishing frameworks that clarify who is responsible
for decisions made by AI systems, which is vital. Without clear legal agreements out-
lining the responsibilities of developers, users, and stakeholders, it becomes difficult to
hold anyone accountable for financial or reputational losses that may arise from errors.
Additionally, oversight by legal entities is essential to ensure that the terms of use and
data agreements are ethical and protect all parties involved [87]. Analyzing human and
social issues, the use of AI in agriculture can automate (and already does) certain tasks,
which may impact the labor force by displacing jobs. It is essential to recognize the social
consequences of this displacement and to implement reskilling and upskilling initiatives
to help workers transition smoothly and reduce negative effects [91]. In response to job
displacement caused by automation, initiatives such as the Farmworker Jobs Program in
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California aim to reskill agricultural workers for new roles arising from AI technologies.
These programs offer training in areas like data analytics and machine operation, enabling
workers to transition smoothly into new positions and helping to mitigate the negative
social impacts of job loss [92]. AI can greatly improve agriculture by enhancing efficiency
and sustainability. However, it is critical to address the ethical implications associated with
its use. By focusing on privacy, transparency, fairness, and responsibility, stakeholders can
ensure that AI contributes positively to agriculture while upholding ethical standards and
social equity.

5.2. Prospects for Integrating AI Across Large-Scale Breeding Programs Worldwide

The integration of AI into large-scale breeding programs represents a transformative
opportunity to enhance agricultural productivity and sustainability. This advancement is
particularly relevant in light of the increasing global food demand, human population, and
the challenges posed by climate change. By streamlining processes, enhancing precision,
and accelerating the development of superior cultivars, AI holds immense potential to rev-
olutionize the agricultural industry. AI is revolutionizing modern crop breeding, providing
significant opportunities for advancements in plant science. AI technologies are remark-
ably useful because they enable the analysis of vast datasets generated from genomic,
phenomic, and environmental sources. For instance, AI can facilitate high-throughput
phenotyping, which allows breeders to rapidly assess plant traits and link them to genetic
information [11]. This capability is essential for overcoming longstanding obstacles in
breeding, particularly the challenge of connecting genotype to phenotype. By leveraging
AI to automate data collection and analysis, breeders gain the ability to make informed
decisions rapidly [93–95]. This not only accelerates the development of new crop varieties
but also ensures these varieties are robust and resilient to environmental stresses, meeting
the demands of a changing world [94]. Interestingly, the combination of speed breeding
techniques with AI can dramatically shorten breeding cycles. Speed breeding involves
growing plants under controlled conditions to accelerate their life cycles. AI enhances this
process by efficiently managing complex datasets from various omics disciplines (genomics,
transcriptomics, etc.), understanding the biological mechanisms that influence plant func-
tions, and facilitating the successful implementation of speed breeding protocols aimed at
improving crop yield and adaptability [94]. The prospects for integrating AI into large-scale
breeding programs appear promising. Continued advancements in machine learning algo-
rithms and computational power will likely lead to even more sophisticated applications
in crop improvement. Additionally, as consumer demand shifts towards transparency and
sustainability in food production, AI-driven approaches will be critical in developing breed-
ing strategies that meet these expectations while addressing environmental concerns [96].
The integration of AI into agricultural breeding programs not only enhances productivity
but also supports sustainability efforts in response to global challenges. By embracing these
technological advancements, the agricultural sector can better equip itself to meet future
food demands while ensuring environmental stewardship.

6. Conclusions

In conclusion, incorporating AI into genomic research and agricultural practices is
not merely an enhancement of existing methods. It is a revolutionary shift that holds the
potential to redefine food security and sustainability in agriculture. Continued research and
development in this domain will be crucial for maximizing the benefits of AI technologies,
ensuring that they are effectively harnessed to meet future agricultural challenges while
promoting ecological balance and resource conservation.

As AI technology continues to evolve, its role in sustainable agriculture will likely
expand, bridging the gap between food production demands and sustainable practices.
Combining big data with AI enables robust model training that captures intricate gene-
environment interactions essential for breeding climate-resilient crops. This synergy im-
proves crop yield predictions, optimizes resource use, and minimizes waste.
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