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Abstract: Soil moisture is one of the main factors influencing evapotranspiration (ET) under soil water
stress conditions. The TSEBSM model used soil moisture to constrain soil evaporation. However,
the transpiration schemes constrained by soil moisture require greater physical realism and the soil
evaporation schemes parameters usually need calibration. In this study, the TSEBSM model was
enhanced by incorporating Jarvis’s canopy resistance which considered the influence of soil moisture
on transpiration schemes. We assessed the new model (TSEBSM+) in the Heihe and Haihe basins of
China. The TSEBSM+ model displayed a consistency to the TSEB in the ET estimation at the A’rou
site, but approximately 30% and 35% reductions in RMSEs at the Huazhaizi and Huailai sites. It
produced approximately 20% and 10% of the reductions in the ET RMSEs at the Huailai and A’rou
sites compared to the TSEBSM model, but had a similar performance at the Huazhaizi site. Moreover,
the TSEBSM+ model estimated ET in the Heihe River Basin with an RMSE of 0.58 mm·day−1, and it
was sensitive to the soil moisture, particularly when the soil moisture was below 30%. In conjunction
to soil moisture, the TSEBSM+ model could potentially be a more effective tool for monitoring the ET.

Keywords: evapotranspiration; soil water stress; TSEB; canopy resistance

1. Introduction

Evapotranspiration (ET), which includes soil evaporation (E) and plant transpiration
(T), is an essential part of the global water cycle and a vital connection between the surface
energy, carbon, and water on land [1,2]. About 60% of the global annual mean precip-
itation returns to the atmospheric system in the form of ET, and more than half of the
surface-available energy is released in the form of ET [3,4], especially in arid and semi-arid
regions, where the proportion has reached 90% [5]. Therefore, accurately estimating the ET
distribution at the temporal and spatial scales is highly significant for studies on climate,
hydrology, drought monitoring, especially for crop yield prediction [6].

Remote sensing (RS) observations can provide information on land surfaces in connec-
tion with the water and energy fluxes across broad regions at multiple scales, which makes
it possible to apply traditional hydrologic ET estimation methods at the regional and global
scales [7]. Compared to traditional ET point measurements, RS-based algorithms have been
recognized as an effective way to derive the ET across an extensive range at the temporal
and spatial scales over the last few decades [8], and many RS-based methods have been
developed to quantify the ET and surface fluxes using remotely sensed data. According
to their different mechanisms, the methods can be classified into temperature–vegetation
index characteristic space methods [9,10], surface energy balance (SEB) models [11,12],
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traditional ET approaches combined with remotely sensed data [13,14], and data-driven
methods [15–20]. The SEB model, which searches for an optimal compromise between the
parameters derived from physical observations without a lot of data inputs and those de-
rived from the energy balance equation, is an especially prevalent method used to estimate
the ET through remotely sensed data, including the radiometric surface temperature, soil
moisture (SM), and vegetation cover, at the regional and global scales [21,22].

The Two-Source Energy Balance (TSEB) model [12] and its revisions [23–25] partition
the ET into E and T to overcome the limitations of the large-leaf model assumed by the
single-source energy balance model [11,26], and it is more reliable than models that rely on
a single source when applied to complicated and complex landcover and climatic condi-
tions [21,27]. This model utilizes the radiometric surface temperature as a crucial boundary
condition for the accurate calculation of the daytime sensible and latent heat fluxes of the
soil and canopy components for land surfaces that are partially covered with vegetation.
In the TSEB model, the latent heat flux (LE) of the plant transpiration is approximated via
the Priestley–Taylor (PT) approach, and then the observation of the composite radiometric
temperature is used to separate the temperatures of the canopy and soil components by a
simple linear unmixing method. Finally, the energy conservation principle is used to infer
the E and T. The TSEB model is useful for estimating the ET in various landscapes [28,29],
and is superior to other thermal-based models [30,31]. However, previous studies have
shown that the sensible heat flux (H) and LE are related to the soil moisture under water
stress conditions, which causes the TSEB model to overestimate the ET [32–34]. Kustas
et al. [35], Li et al. [36] and Feng et al. [37] recommend that reasonable vegetation inputs
and the proper parameterization of the soil resistance or heat transfer resistance used in the
original TSEB model can lead to reliable results for semiarid regions. However, we still do
not fully comprehend the requirement for radiometric surface temperature measurements,
which cannot be obtained under cloudy conditions and the estimation of the continuous
daily ET from instantaneous values [38].

Soil moisture is one of the main factors affecting the ET [39] under water stress condi-
tions, and SM fluctuations are significantly correlated with the ET [40]. Many researchers
have introduced the SM as a limiting factor in RS-based evapotranspiration models (e.g.,
SEBS [41], PT [13,42] and PM [15,43]). Kustas et al. [38,44,45] developed an alternate form
of the TSEB model named the TSEBSM model, in which passive microwave observations of
soil moisture for the soil surface are used to replace the radiometric surface temperature.
This new model applies a constraint on the soil evaporation using soil moisture data ac-
cording to two coefficients that depend on the soil texture [46]. Li et al. [47] compared the
TSEBSM model with the original TSEB model and found that the former performed better
under medium vegetation cover and water-stressed conditions. However, the PT coefficient
αPT cannot be easily adjusted to accommodate a range of environmental conditions in
these models [48], and larger differences are produced in the measured fluxes for dense
vegetation cover conditions [47]. Because plant transpiration is frequently the dominant
form of ET, it is important to consider the soil moisture constraint on the plant transpiration.
The transpiration of the TSEB model may be more tightly constrained if the soil moisture
and radiometric surface temperature are combined with the transpiration schema [49–51].
Therefore, the focus of many studies has been on the modification of PT formulation and
its αPT coefficient based on soil moisture in the TSEB model. Ait Hssaine et al. [49,52,53]
developed an innovative calibration approach in which radiometric surface temperature,
SM, and vegetation cover are used to determine the soil resistance and αPT parameters
for soil evaporation and plant transpiration. Zhuang et al. [54] used plant moisture and
temperature constraints which depend on the PT-JPL model [13], to obtain a better canopy
latent heat flux. Song et al. [50,51] and Tao et al. [55] used the PT formulation to calculate
the E and T simultaneously, and coupled the soil moisture to calculate the temperatures
of the soil and canopy components and the LE in a variety of plant cover and surface soil
moisture situations. Nevertheless, the drawbacks still exist under dry and water deficient
conditions [49].
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Canopy resistance plays a key role in plant transpiration, constraining the transfer
of root zone water to vapor [15]. In order to describe plant transpiration using a more
physically realistic model, the canopy conductance (Gc) has been widely used to estimate
the ET in many RS-based Penman–Monteith (PM) models [14,43]. Gan et al. [48,56] and Bu
et al. [57] used the canopy conductance model instead of the PT formulation in the original
TSEB model to estimate the plant transpiration, and established a complete resistance net-
work to estimate the ET. However, the influence of soil moisture on canopy conductance is
not considered in these methods when establishing the canopy resistance. Previous studies
have shown that the stomatal conductance decreases with a decrease in soil moisture [58].
Moreover, plant transpiration is usually dominant in the ET in dense vegetation cover
conditions, and is therefore used to obtain more accurate ET estimations when the influence
of soil moisture on the canopy conductance under water stress conditions is considered in
arid and semi-arid regions.

In this study, the Jarvis canopy resistance model [59,60], in which the soil water stress is
considered, was coupled to the TSEBSM model instead of the PT formulation in the original
model (denoted as the TSEBSM+ model) to compensate for the effect of soil moisture on
vegetation transpiration under soil water stress in arid and semi-arid regions. The unknown
soil surface resistance (rss) and canopy resistance (rc) parameters in the TSEBSM+ model
were fitted using in situ measurement flux data. We used the TSEBSM+ model to calculate
the energy fluxes and ET at three sites with different soil moisture and vegetation covers
under water-limited conditions, and we assessed the new model using half-hour EC flux
data and the predictions from the TSEBSM and TSEB models as references. In addition,
we estimated the ET and latent heat fluxes over the time series via the TSEBSM+ model
and compared them with the measured values. In addition, the model was also verified at
the Heihe River Basin. Finally, we analyzed the sensitivity of the TSEBSM+ model to soil
moisture according to its performance for various soil moisture levels.

2. Materials and Methods
2.1. Study Areas and Datasets

To run the models and evaluate their performances, meteorological and surface heat
flux measurements from three flux towers over Huazhaizi (2019–2021), Huailai (2019–2021),
and A’rou (2019–2021) were chosen according to different underlying surface, vegetation
coverage, and soil moisture levels. The Huazhaizi and A’rou sites are located in the Heihe
River Basin of China and have a temperate continental climate, and the Huailai site is
located in the Hai River Basin of China and has a temperate monsoon climate (Figure 1).
Detailed descriptions of the three sites are presented in Table 1.

The landcover of the Huazhaizi site is desert steppe with a heterogeneous sparse/low
grass distribution, and that of the A’rou site is cold grassland with a dense and homoge-
neous distribution. The landcover at Huailai Station is maize, which ran throughout the
entire maize growing period during the study period. The three sites are located in an area
with little annual precipitation and large potential evaporation, and the soil moisture is
often unsaturated for most of the year.

We collected the in situ measurement data of the three sites, which included the
observations of the automatic weather station and eddy covariance system (Table 2). The
datasets for the Huailai site came from the multi-scale surface flux and meteorological
element observation dataset for the Hai River Basin. The datasets for the Huazhaizi and
A’rou sites came from the dataset for the Heihe integrated observatory network. Eddy
covariance (EC) systems with a 10 Hz sampling frequency were utilized to measure the
sensible (H) and latent (LE) heat fluxes which were mainly used for the model calibration
and verification [61,62]. The ancillary meteorological observations, G and soil moisture
were measured at the weather stations. In this paper, soil moisture measurements at a
4 cm depth were used to estimate the soil surface and canopy resistances. The in situ
measurements were taken at 30 min intervals and either instantaneous measurements or an
average of the measurements from 30 min before the specified observation time. According
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to the EC systems, the total LE and H were often lower than the available energy (Rn-G).
Therefore, the Bowen ratio method was used to make closure modifications to the sensible
and latent heat fluxes from the EC systems [63] before the flux measurements were used.
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Table 1. Detailed descriptions of the sites used in this study.

Site Huazhaizi Huailai A’rou

Study period 2019–2021 2019–2021 2019–2021

Latitude, longitude 100◦19′12.36′′ E,
38◦45′57.24′′ N

115◦47′16.80′′ E,
40◦ 20′ 56.76′′ N

100◦27′51.48′′ E,
38◦2′50.28′′ N

Elevation 1731 m 480 m 3033 m
Annual precipitation 130 mm 392 mm 450 mm
Mean air temperature 7.3 ◦C 9.5 ◦C 1 ◦C

Land cover type Desert steppe Cold grassland Maize
Mean soil moisture content 1 13.27% (5.73–21.03%) 16.23% (12.03–26.25%) 34.20% (21.40–44.57%)

1 Soil volumetric water content. The ranges of the soil water variation during the study period are shown
in parentheses.

For each site, we selected the time from DOY 122 to DOY 274 every year when the
vegetation was in the growing period and a half-hour scale from 8:00 to 17:00 for each day.
All the records of good quality were selected for the simulations. In addition, we excluded
the data when the LE, H, and S↓ were less than 0. The parameter-fitting dataset, which
included the LAI, meteorological data, soil moisture, and energy flux observations, was
taken from 2019 for the three sites. The validation dataset, which included the same types
of inputs except for the observed fluxes, was from 2020 and 2021.
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Table 2. Description of data for model validation at three sites.

Data Measurement Measuring Height Resolution

Meteorological measurements

Air temperature (Ta) 5 m 10 min 1

Surface radiation temperature (Trad) 6 m 10 min 1

Specific humidity (RH) 5 m 10 min 1

Wind speed (u) 5 m/10 m 3 10 min 1

Air pressure (p) 10 m 10 min 1

Precipitation (Rain) 10 m 10 min 1

Incoming radiation (L↓/S↓) 5 m/6 m 3 10 min 1

Subsurface measurements
Soil moisture (SM) −2 cm/−4 cm/−10 cm 10 min 1

Soil temperature (Ts) −2 cm/−4 cm/−10 cm 10 min 1

Flux measurements
Soil heat flux (G) −6 cm 30 min 1

Sensible heat flux (H) 5 m 30 min 1

Latent heat flux (LE) 5 m 30 min 1

Remote sensing data GLASS products (LAI) - 500 m 2/8 days 1

1 Temporal resolution. 2 Spatial resolution. 3 The measurement heights for the wind speed and incoming radiation
at the Huazhaizi and A’rou sites were 5 m and 6 m, respectively, and those at the Huailai site were 10 m and
5 m, respectively.

We also collected the in situ measurement data of the automatic weather station and
eddy covariance system for the Jingyangling, Yakou, Dashalong, Daman and Desert sites
from 2019 to 2020, which have a similar landcover type to that of the A’rou site, while the
Daman site has a landcover type that is similar to that of the Huailai site, and the Desert
site has a landcover type that is similar to that of the Huazhaizi site. These data were used
to verify the model’s performance at the regional scale together with the Huazhaizi and
A’rou sites.

We also needed the meteorological data, surface radiometric temperature, LAI, and
SM of the Heihe River Basin to generalize the model to the regional scale. We collected
the GLASS (Global Land Surface Satellite) LAI products with a temporal resolution of
8 days and spatial resolution of 1 km (http://www.glass.umd.edu/LAI/, accessed on
19 December 2024). The meteorological data were produced by using the Weather Research
and Forecasting (WRF) model over the Heihe River Basin hourly with a spatial resolution
of 0.05◦ [64], which needed to be downscaled to a 1 km spatial resolution. A machine
learning based method was developed to generate a global spatiotemporal continuous
surface soil moisture dataset with a 1 km resolution based on the ESA Climate Change Ini-
tiative (ESA-CCI) dataset [65]. The Western China daily 1 km spatial resolution all-weather
land surface temperature dataset was collected to provide the surface radiometric tempera-
ture [66]. The SM, meteorological data, and surface radiometric temperature datasets are all
from the Central Tibetan Plateau Data Center (https://www.tpdc.ac.cn/en/, accessed on
19 December 2024).

2.2. Enhanced Two-Source Energy Balance Model (TSEBSM+)

The TSEB model [12] often overestimates the ET under soil moisture-stressed condi-
tions and the input parameter (radiometric surface temperature) often cannot be obtained
under cloudy conditions [32–34,38]. Kustas et al. [38,44,45] modified the TSEB model
using the surface soil moisture derived from passive microwave sensors instead of the
radiometric surface temperature to estimate the latent heat flux of the soil. In practice, the
new TSEBSM model has the same energy balance for the canopy and soil as that of the
original TSEB model

Rn = Rns + Rnc (1)

Rns = Hs + LEs + G (2)

Rnc = Hc + LEc (3)

http://www.glass.umd.edu/LAI/
https://www.tpdc.ac.cn/en/
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where H is the sensible heat flux, LE is the latent heat flux, Rn is the net radiation, and G is
the soil heat flux (all in W·m−2). The components of the soil and canopy are denoted by the
subscripts s and c, respectively. G can be parameterized as a fraction of Rns and expressed
as the function G = cGRns, where cG is an empirical coefficient that remains unchanged for
several hours during solar noon [67].

However, the soil evaporation is now explicitly represented as a function of the soil
moisture via a soil resistance term, and the formulation for LEs is expressed as follows:

LEs =
ρCp

γ

hre(T s)− ea

ra + rs + rss
(4)

Hs = ρCp
Ts − Ta

ra + rs
(5)

where ρ is the air density (kg·m−3); Cp is the specific heat of the air (J·kg−1·K−1); γ is
the psychrometric constant (0.667 hPa·K−1); hr is the relative humidity of the air adjacent
to the soil moisture which can be computed via the surface soil moisture content [68];
Ta and Ts are the temperature of the air at the reference height and the soil temperature
(K), respectively; ea is the air vapor pressure (hPa); e (Ts) is the saturated vapor pressure
at temperature Ts (hPa); ra is the aerodynamic resistance to the turbulent heat transport
between the height of the canopy source (s·m−1); rs is the resistance to heat flow in the
boundary layer immediately above the soil surface (s·m−1) [8,35]; rss is the surface soil
resistance to latent heat transfer and can be estimated using an exponential function of the
soil moisture at the surface (s·m−1):

rss = exp
(

b0 − b1
SM
SMs

)
(6)

where b0 and b1 are the empirical coefficients that were given 8.2 and 4.3 in earlier stud-
ies [38] and were refitted in this study; the SM is the soil moisture content of the near surface
and SMs is the saturated soil moisture content (%). When the soil moisture is saturated, the
soil surface is the evaporating surface and the water vapor is directly transported between
it and the air through turbulence, which is mainly governed by aerodynamic resistance.
When the soil moisture is unsaturated, the evaporating surface is below the soil surface
and the diffusion of water vapor is hindered by the capillary action of the soil pores, which
manifests as soil surface resistance and is related to the soil texture and moisture.

In the TSEBSM model, the PT formulation is used to estimate the plant transpiration,
which cannot be adapted to the change in transpiration under different soil moisture condi-
tions. The parameter αPT could not be described with a constant value under large diurnal
variation in a vapor pressure deficit in semiarid and arid regions [69]. Therefore, we used
the canopy resistance model related to soil moisture to replace the PT formulation and built
the new TSEBSM+ model to estimate the LE of the canopy to simulate the evapotranspiration
under soil water stress in dry regions. The LEc formulation is expressed as follows:

LEc =
ρCp

γ

es(T c)− ea

ra + rc
(7)

Hc = ρCp
Tc − Ta

ra + rx
(8)

where Tc is the canopy temperature (K); es (Tc) is the saturated vapor pressure at tempera-
ture Tc (hPa); rx is the total boundary layer resistance of the complete canopy leaves (s·m−1);
rc is the canopy resistance which can be expressed via the Jarvis canopy resistance model,
which considers various environmental factors (s·m−1), such as the Ta, vapor pressure
deficit (D, kPa), Rn, and water stress of the root zone (SM, %). The Jarvis canopy resistance
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model is an empirical multi-factorial approach that includes the effective leaf area index
(LAIa) and meteorological factors, in which the soil moisture is also considered [59,70,71]:

rc =
rmin

LAIa f (Rn) f (D) f (Ta) f (SM)
(9)

LAIa = LAI/(0.3LAI + 1.2) (10)

where LAI is the leaf area index; rmin is the minimum stomatal resistance; f (Rn), f (D), f (Ta)
and f (SM) are the weighting functions that show the influence of the Rn, D, Ta, and SM on
the plant, respectively.

f (Rn) = 1 − exp(−Rn/a1) (11)

f (D) = 1 − a2D (12)

f (Ta) = 1 − a3(25 − Ta)
2 (13)

f (SM) =

(
SM − SMr

SMs − SMr

)a4

(14)

where SMs and SMr are the saturated and wilting soil moistures which are determined by
the soil properties, and a1, a2, a3 and a4 are the empirical parameters and can be calibrated
via the measured surface fluxes.

We first set the initial Ts and Tc and obtained the initial net radiative fluxes of the
soil and canopy (Rns and Rnc, respectively). Then, the new Ts and Tc were calculated by
solving the corresponding energy balance equation using the Newton-Raphson iteration
approach. We repeated the iterative procedures using the updated Ts and Tc, and the final
Ts and Tc results were obtained when they had stable values (the difference between the
two iterations was less than 0.1 K). The energy fluxes were derived after the Ts and Tc
were obtained.

2.3. The Evaluation Metrics

We used the Mean Bias Error (BIAS), Root Mean Squared Error (RMSE), Wilmott
Adjustment Index (WAI) and Coefficient of Determination (R2) as the error metrics to
evaluate the TSEBSM+ model, which are defined as follows:

BIAS =
N

∑
i=1

(sim i−obsi)/N (15)

RMSE =

√√√√ N

∑
i=1

(sim i−obsi)

2

/N (16)

WAI = 1 −
∑N

i=1 (sim i−obsi

)2

∑N
i=1

(∣∣∣simi − obs
∣∣∣+ ∣∣∣obsi − obs

∣∣∣)2 (17)

R2 = 1 −
∑N

i=1 (sim i−obsi

)2

∑N
i=1

(
obsi − obs

)2 (18)

where sim and obs are the mean simulated and observed values, respectively, and N is the
number of data points. The Bias provides the magnitude of the deviation of the simulated
value from the measured value, the RMSE reflects the deviation of the actual difference
between the simulated and observed values. The WAI and R2 indicate the goodness of fit
between the simulated and observed values of the model. Better estimations are produced
when the RMSE value is smaller, the Bias value is closer to 0, and the WAI and R2 values
are closer to 1.
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3. Results
3.1. Parameter Fitting and Validation

The parameter values are different under varying underlying surface and soil proper-
ties in the TSEBSM+ model and should be fitted for each site. In this study, the sum of the
RMSEs for the H and LE estimations were used as the penalty function, and the unknown
parameters were optimized via the simulated annealing method. Considering that a single
fit could cause contingencies for unknown parameters in the model, the parameter fitting
procedure was repeated more than 20 times, and we chose the best one as the final result.
Moreover, the parameters of the TSEBSM model fitted according to the same method.

According to the results of the parameter fitting (Table 3), the Rn, D and SM had a
considerable influence on the canopy resistance in the TSEBSM+ model. The a2 and a3
coefficients have similar values for the three sites, which means that the D and T had
an approximate effect on the canopy resistance at the different sites. However, there is
a substantial difference in the a1 and a4 coefficients for the different sites. The canopy
resistance was most affected by the SM at the Huazhaizi site and by the Rn at A’rou site,
which could be related to the vegetation type, SM, and meteorological conditions at the
different sites. In the TSEBSM model, the more severe the soil water stress, the smaller
the αPT value. The b0 and b1 parameters, which are related to the soil surface resistance,
are different from those of previous studies, which have values of 8.2 and 4.3 [46] for the
TSEBSM model and change according to the soil types.

Table 3. Parameter fitting via EC measurements in the TSEBSM+ and TSEBSM models at the
three sites.

Model Site αPT a1 a2 a3 a4 b0 b1

TSEBSM+

Huazhaizi - 90.42 0.23 0.0027 2.13 8.86 3.33
Huailai - 516.52 0.19 0.0026 0.37 10.04 5.56
A’rou - 987.03 0.25 0.0025 0.45 8.34 3.21

TSEBSM

Huazhaizi 0.75 - - - - 14.01 14.99
Huailai 0.93 - - - - 8.32 3.09
A’rou 1.26 - - - - 7.46 1.12

3.2. Validation of Instantaneous Flux Estimated from the Model

The optimal parameters obtained via the parameter fitting were used to estimate the
fluxes and were evaluated via EC observations at the different sites. Here, the RMSE, Bias,
WAI, and R2 were used to quantify the performance of the model, and the flux estimations
for the TSEBSM and original TSEB models were also used as references.

As illustrated in Figures 2–4, the consistency of the estimated and measured fluxes
from the TSEBSM+ model was obviously better than that for the TSEB model for the
Huazhaizi and Huailai sites. The RMSEs of the estimated LE and H were basically halved
for the Huazhaizi site and decreased by about 24 W·m−2 and 42 W·m−2 for the Huailai
site, respectively, and the WAI and R2 also showed significant improvement. Moreover,
the estimation of the H and LE via the TSEB model were severely underestimated and
overestimated for both sites, which could be because the low soil moisture restrained the
soil evaporation via the dry soil layer on the soil surface [72] at both the sites and affected
the stomatal conductance of the canopy [73] at the Huailai site. The other is because the
soil resistance term in the TSEB model was not appropriately parameterized for the sparse
cover conditions at the Huazhaizi site, where the LAI was lower than 1 over the whole
growing season. However, the TSEB model performed as well as the TSEBSM+ model
for the A’rou site, where there was higher cover and soil moisture, although the slight
overestimation trend for the LE was still found under low soil moisture.
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Figure 3. Scatterplots of estimated half-hour Rn, G, H and LE over the study period from the
TSEB, TSEBSM and TSEBSM+ models in comparison to the measurements from the EC system at the
Huailai site.

The flux agreement between the estimations from the TSEBSM and TSEBSM+ mod-
els and observed were appropriate during the study period for all the sites, but better
performance was obtained from the TSEBSM+ model for the Huailai and A’rou sites with
high canopy cover conditions. The TSEBSM+ model produced the LE with RMSEs of
52 W·m−2 and 44 W·m−2 versus 57 W·m−2 and 50 W·m−2 from TSEBSM model for
the Huailai and A’rou sites, respectively, and the H RMSEs were 45 W·m−2 in place of
58 W·m−2 and 53 W·m−2 in place of 63 W·m−2 for both sites, respectively. The WAI and
R2 also improved, except for the R2 in the H estimation at the A’rou site, which is likely
because both models incorporate soil surface resistance, which is related to the soil moisture
for the soil evaporation schemes, which is the main evapotranspiration component under
the low vegetation cover condition for the Huazhaizi site. The difference in the fluxes



Agriculture 2024, 14, 2362 10 of 20

between the estimations from the TSEBSM and TSEBSM+ models and observed became
larger as the soil moisture and LAI increased. The TSEBSM+ model performed better than
the TSEBSM model under high canopy cover conditions when they were used in arid and
semi-arid regions with soil water stress.
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In addition, the accuracy of the G estimated via the TSEBSM+ model was also improved
for the three sites. The estimations of the G for the three models are slightly different even
though the same method was used in them, which depended on the decomposition of the
Ts. Moreover, the G, which was derived from three plates under the ground, had a very
small geographic sample related to the heterogeneity of the landscape, which also caused
the inconformity of the G from its estimated and measured values.

3.3. Validation of Daily ET Estimated from Model

Many applications connected to water can benefit from the LE at daylight scales and
its daily fluctuations. We used the TSEB, TSEBSM, and TSEBSM+ models to estimate the
daily ET (actual evapotranspiration) from DOY122-274 for 2020 and evaluated it via the
measured ET (Figures 5–7 and Table 4).
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Figure 7. Comparison of daily ET between estimations via the TSEB, TSEBSM, and TSEBSM+ models
and observed from the EC system at the A’rou site from DOY122-274 for 2020.

Table 4. Errors between daily ET estimations via the TSEB, TSEBSM, and TSEBSM+ models and the
EC system measured at the Huazhaizi, Huailai and A’rou sites.

Models Sites BIAS
(mm·day−1)

RMSE
(mm·day−1) WAI R2

TSEB
Huazhaizi 0.84 1 0.78 −0.17

Huailai 0.88 1.12 0.87 0.48
A’rou −0.20 0.56 0.95 0.84

TSEBSM

Huazhaizi −0.30 0.68 0.87 0.46
Huailai −0.14 0.90 0.91 0.66
A’rou −0.47 0.62 0.94 0.80

TSEBSM+

Huazhaizi −0.31 0.69 0.79 0.43
Huailai −0.26 0.72 0.95 0.79
A’rou −0.44 0.56 0.96 0.83

There was low and constant daily ET during the study period for the Huazhaizi site,
except after rain events, and the average ET was 1.24 mm·day−1 during DOY 122-274.
For the Huailai and A’rou sites, the daily ET begins to gradually increase in early May
(DOY 150) and then increases quickly along with the maize and grass growth, and then it
gradually decreases beginning at the end of August (DOY 240), when the plants grow and
enter the senescent period. The average ET values were 3.06 mm·day−1 and 3.28 mm·day−1

during DOY 122-274 for the Huailai and A’rou sites, respectively.
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The TSEB model often overestimated the ET under water-limited conditions, especially
for the Huazhaizi and Huailai sites, where the soil moisture is always lower than 30%. The
RMSE between the observed and estimated ETs was more than 1 mm·day−1. In addition,
larger errors were always found for the study period for the Huazhaizi site. For the Huailai
site, larger errors were found at the beginning and end of the study period, when the corn
was in the sowing and ripening stage. When the corn was in the growing period, the error
of the model was relatively small because plant transpiration from the TSEBSM+ model
was also improved when compared to those of the TSEB model. When the soil moisture
increased, the soil and canopy resistance weakened, and a higher ET was estimated via the
TSEBSM+ model. For the A’rou site, the ET estimation via the TSEB and TSEBSM+ models
produced better results than the TSEBSM model, even though the ET estimate errors via the
TSEBSM model were acceptable. In summary, the TSEB model is suitable for conditions of
sufficient soil moisture and high vegetation coverage, while the TSEBSM model is suitable
for conditions of soil moisture deficiency and sparse vegetation coverage. However, the
TSEBSM+ model could be adapted to the conditions of dry or moist soil surfaces and sparse
or high vegetation coverage.

However, the TSEBSM and TSEBSM+ models underestimated the ET after precipitation
events. In addition, there were negative biases for the ET estimated via the TSEBSM and
TSEBSM+ models for the Huazhaizi and Huailai sites, which is likely because it is difficult to
measure the amount of evaporation from plant intercepted water after precipitation events.
In addition, these discrepancies due to the soil moisture decouple at different depths [72],
and the soil surface energy balance is more closely correlated with the surface soil moisture
conditions compared to deeper layers [32]. The three models were able to follow the annual
ET dynamics recorded by the EC systems for the A’rou site; however, negative biases were
found due to the frequent precipitation events.

3.4. Application of the Model at the Regional Scale

The TSEBSM+ model had a distinct advantage for the estimation of the LE/ET under
soil water stress conditions at the Huazhaizi, Huailai, and A’rou sites. To further verify the
practical value of the TSEBSM+ model, we used it to estimate the daily ET at the regional
scale. The Heihe River Basin was chosen as the study area, because it is a typical arid
and semi-arid area with a dry climate and scarce precipitation. The upstream region is
predominantly alpine meadows, the midstream region mainly consists of artificial oases
and irrigated land, and the downstream region is largely covered by the Gobi Desert, with
the exception of a narrow band of riparian forests along the Heihe River.

We extracted the areas covered by alpine meadows, croplands with corn, and desert
steppes in the Heihe River Basin, and the TSEBSM+ model with fitted parameters for the
three vegetation cover types was used to estimate the daily ET. Validation was performed
using in situ measurements from the EC systems, for which the energy balance closure had
already been applied at seven sites, including the Huazhaizi and A’rou sites. We selected
11 days from 2019 (DOY163, DOY185, DOY206, DOY212, DOY223 and DOY227) and 2020
(DOY183, DOY208, DOY214, DOY232, and DOY239) with favorable weather conditions
and estimated the daily ET using the TSEBSM+ model (Figure 8).

We compared the daily ET measured via the EC system with the estimation of the
TSEBSM+ model at seven sites (Figure 9) to verify the model’s performance at the regional
scale. The RMSE of the estimated daily ET is 0.62 mm·day−1 which is similar to the average
performance of the model at the Huazhaizi, Huailai and A’rou sites, and the index of the
WAI and R2 is almost close to 1. We also statistically analyzed the model performance
under the different landcover types separately, and the RMSEs of the estimated daily ET are
0.67 mm·day−1, 0.50 mm·day−1 and 0.56 mm·day−1 for the alpine meadows, croplands,
and desert steppes, respectively. The daily ET estimated via the TSEBSM+ model is higher
than the measured daily ET on alpine meadows and desert steppes, which is contrary
to the results obtained at the A’rou and Huazhaizi sites. This is likely caused by the SM
products, which are higher than the measured values for the alpine meadow and desert
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steppe regions. In general, the TSEBSM+ model can be effectively applied to the estimation
of the ET at the regional scale in arid and semi-arid regions.
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4. Discussion
4.1. Comparison of TSEB, TSEBSM, and TSEBSM+ Models

The TSEB, TSEBSM, and TSEBSM+ models have similar concepts according to the energy
balance equation. However, the radiometric surface temperature is used in the TSEB model,
which is applied as the model’s boundary condition to separate the vegetation and soil
temperatures, while the surface soil moisture is used in the TSEBSM and TSEBSM+ models
instead of the radiometric surface temperature to avoid the lack of radiometric surface
temperature observations obtained from remote sensing under cloudy conditions. In other
words, the radiometric surface temperature is an input parameter that plays a key role in
the relationship between the Ts and Tc for the TSEB model, while it is an output parameter
for the TSEBSM and TSEBSM+ models.

The PT formulation is used in the TSEBSM model to estimate the plant transpiration,
which lacks sensitivity for the accommodation of varying vegetation stress levels [47]
because canopy conductance controls the loss of water through transpiration and the
uptake of carbon via photosynthesis and is also affected by soil water stress [73]. When
the area was dry, the fg and αPT values were frequently low, making it challenging to
distinguish the component temperatures from the radiometric surface temperature [35].
We incorporated the canopy conductance model, in which the effect of soil water stress was
considered, into the TSEBSM model instead of the PT formulation from the original model.
The TSEBSM+ model coupled the resistances from the soil and canopy to constrain the T
and E components, which aligned more closely with the plant physiology and soil surface
characteristics. Compared to the TSEBSM model, such improvements not only improved
the estimation accuracy for the TSEBSM+ model under sparse vegetation cover or soil water
stressed conditions, but also significantly improved the model’s performance in dense
vegetation cover or moist soil surface environments.

4.2. A Analysis of Model Performances Sensitivity to Soil Moisture

The soil moisture is one of the main input parameters for the TSEBSM+ model. We first
segmented the data from the three sites based on the soil moisture and assessed the LE
estimation accuracy from the TSEB, TSEBSM, and TSEBSM+ models for different intervals to
analyze the model performance under different soil moisture conditions. The soil moisture
was divided into five levels: <10%, 10–20%, 20–30%, 30–40%, and >40%. The LE errors
from the three models for different intervals are shown in Figure 10.
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Figure 10. Scatterplots and tables of the comparison of the half-hour LE measured by the EC system
and the estimation from the TSEB, TSEBSM and TSEBSM+ models for the Huazhaizi, Huailai, and
A’rou sites.

We found a good agreement when comparing the estimations via the TSEB and
TSEBSM models with the observed LE for the Huazhaizi and Huailai sites, especially for
the Huazhaizi site, where the soil moisture was almost below 20% during the study period.
The TSEBSM model had a worse LE estimation when the soil moisture was in the range of
20–30%; however, the TSEB and TSEBSM+ models had the opposite result. This is likely
due to the higher LAI caused by the corn growing season, when the soil moisture was
in the range of 20–30%. For the A’rou site, the LE RMSEs estimated via the TSEBSM+
and TSEB models became similar with the increase in the soil moisture. The TSEBSM+
model always had a better LE estimation performance than the TSEB model, and the TSEB
model’s performance became better with the increase in the soil moisture. In contrast,
the LE estimation of the TSEBSM model was relatively poor, which may indicate that the
TSEBSM+ model has a better performance than the TSEBSM and TSEB models under high
vegetation cover and water stress conditions.

To assess the sensitivity of the model to the soil moisture for different underlying
surfaces, we also changed the soil moisture at intervals of 1% from 12% to 45% and analyzed
the change in the LE. First, we ran the model with different soil moistures, which were
used for the rc or rss at the three sites, and then the different soil moistures which were used
for the rc and rss to run the model at the three sites (Figure 11).

The evaporation fraction (defined as the LE/(LE + H)) increased from 0.27 to 0.68
when modifying the soil moisture affecting the rss at the Huazhaizi site, which has low
vegetation cover and where the soil evaporation constitutes the primary evapotranspiration
component, while the fluctuation of the evaporation fraction remained relatively small
when altering the soil moisture affecting the rc. However, the evaporation fraction increased
significantly from 0.39 to 0.82 and from 0.39 to 0.71 when modifying the soil moisture
affecting the rc at the Huailai and A’rou sites, which have high vegetation cover and where
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the plant transpiration is the main evapotranspiration component. In contrast, the increase
in the soil moisture for the rss led to a relatively negligible change in the evaporation
fraction. The relationship between the LE and soil moisture had a similar pattern to that
observed for the evaporation fraction. Moreover, the variation in the LE at the Huailai site
was greater than that at the A’rou site when the soil moisture affecting the rss was changed,
which may be attributed to the higher LAI and larger contribution of T to the ET at the
A’rou site. The findings suggest that soil moisture primarily regulates evapotranspiration
by influencing the evaporation in areas with sparse vegetation and the transpiration in
areas with dense vegetation.
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Figure 11. Energy fluxes and evaporation ratios from the TSEBSM+ model with a change in the
soil moisture range from 12 to 45% for the Huazhaizi, Huailai and A’rou sites. The orange dotted
line indicates that the LE growth rate estimated via the model decreases significantly when the soil
moisture is exceeded.

Obvious positive LE and evaporation fraction trends were observed when altering
the soil moisture which simultaneously constrained the rc and rss. This is likely because
both the soil surface and canopy resistances diminish with the increase in the soil moisture,
which weakens the influence on the evapotranspiration. However, the evaporation fraction
has an approximately liner relationship with the soil moisture at the Huazhaizi site, while
the growth rate for the evaporation fraction slowed down with the increase in the soil
moisture at the Huailai and A’rou sites. This may indicate that the vegetation has an effect
on the ET and usually rapidly reduces the impact with the increase in the soil moisture
in high vegetation cover conditions; however, this effect exists persistently under sparse
vegetation cover conditions until the soil is saturated. The evaporation fraction gradually
increased at each site, but the growth rate slowed or even plateaued with the increase in
the soil moisture. When the soil moisture exceeded 35%, the evaporation fraction was
basically stable for the Huailai and A’rou sites and slowly increased for the Huazhaizi
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site. The soil moisture may no longer act as a limiting factor for evapotranspiration once it
reaches saturation.

5. Conclusions

In this study, the Jarvis canopy resistance, for which the influence of the soil mois-
ture on the canopy conductance was considered, was coupled to the TSEBSM model as
substitute for the PT approximation for plant transpiration, and the new TSEBSM+ model
was developed to estimate the ET. The model was assessed at the Huazhaizi, Huailai,
and A’rou sites with different underlying surfaces and was compared with the TSEBSM
and original TSEB models. The TSEBSM+ model exhibited a notable improvement for the
flux/ET estimation in arid and semi-arid regions. It showed better performance than the
TSEB model under soil water stressed conditions and better performance than the TSEBSM
model under high vegetation cover conditions. Moreover, the daily changes in the ET
estimated via the TSEBSM+ model have trends that are more similar to those of the EC
measurements than the ET predicted via the TSEBSM and TSEB models. The TSEBSM+
model could also be effectively applied to the estimation of the daily ET at the regional
scale in arid and semi-arid regions. Finally, the TSEBSM+ model is sensitive to soil moisture,
and its performance improves as the soil moisture decreases. Overall, the TSEBSM+ model
exhibited commendable performance for the cropland with corn, desert steppe, and alpine
meadow environments. Therefore, when combined with vegetation cover and surface soil
moisture data, the TSEBSM+ model is potentially a more effective tool for monitoring the
ET in arid and semi-arid regions. Nonetheless, further validation across diverse landcover
types at flux observation sites is necessary to ascertain its applicability as a conventional
method. However, the absence of parameters that are sensitive to precipitation in the model
resulted in a significant underestimation of the LE during precipitation events. Additionally,
the model primarily relies on soil moisture that can be obtained via microwave satellites,
and the availability of high-resolution soil moisture products enables the TSEBSM+ model
to estimate the daily ET at a more detailed regional scale.
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