Unveiling the Impact of Growth Traits on the Yield of Bread Wheat Germplasm Subjected to Waterlogging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Experimental Design and Waterlogging Implementation
2.3. Plant Evaluation and Measurements
2.4. Statistical Analysis
3. Results
3.1. Number of Spikes per Plant
3.2. Kernel Number per Plant
3.3. Kernel Number per Spike
3.4. Single Kernel Weight (SKW)
3.5. Main Culm and Tiller Contribution to the Final Yield
3.6. Changes in Phenotypic Development during Waterlogging
3.7. Principal Component Analysis of the Studied Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wei, M.; Li, X.; Yang, R.; Li, L.; Wang, Z.; Wang, X.; Sha, A. Novel insights into genetic responses for waterlogging stress in two local wheat cultivars in Yangtze river basin. Front. Genet. 2021, 12, 681680. [Google Scholar] [CrossRef]
- Herzog, M.; Striker, G.G.; Colmer, T.D.; Pedersen, O. Mechanisms of waterlogging tolerance in wheat—A review of root and shoot physiology. Plant Cell Environ. 2016, 39, 1068–1086. [Google Scholar] [CrossRef] [PubMed]
- Nóia Júnior, R.S.; Asseng, S.; García-Vila, M.; Liu, K.; Stocca, V.; dos Santos Vianna, M.; Weber, T.K.D.; Zhao, J.; Palosuo, T.; Harrison, M.T. A call to action for global research on the implications of waterlogging for wheat growth and yield. Agric. Water Manag. 2023, 284, 108334. [Google Scholar] [CrossRef]
- Pais, I.P.; Reboredo, F.H.; Ramalho, J.C.; Pessoa, M.F.; Lidon, F.C.; Silva, M.M. Potential impacts of climate change on agriculture—A review. Emir. J. Food Agric. 2020, 32, 397–407. [Google Scholar] [CrossRef]
- Bailey-Serres, J.; Lee, S.C.; Brinton, E. Waterproofing crops: Effective flooding survival strategies. Plant Physiol. 2012, 160, 1698–1709. [Google Scholar] [CrossRef] [PubMed]
- Langan, P.; Bernád, V.; Walsh, J.; Henchy, J.; Khodaeiaminjan, M.; Mangina, E.; Negrão, S. Phenotyping for waterlogging tolerance in crops: Current trends and future prospects. J. Exp. Bot. 2022, 73, 5149–5169. [Google Scholar] [CrossRef] [PubMed]
- Pais, I.P.; Moreira, R.; Semedo, J.N.; Ramalho, J.C.; Lidon, F.C.; Coutinho, J.; Maçãs, B.; Scotti-campos, P. Wheat Crop under Waterlogging: Potential Soil and Plant Effects. Plants 2023, 12, 149. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Harrison, M.T.; Yan, H.; Liu, D.L.; Meinke, H.; Hoogenboom, G.; Wang, B.; Peng, B.; Guan, K.; Jaegermeyr, J.; et al. Silver lining to a climate crisis in multiple prospects for alleviating crop waterlogging under future climates. Nat. Commun. 2023, 14, 765. [Google Scholar] [CrossRef]
- Tian, L.X.; Zhang, Y.C.; Chen, P.L.; Zhang, F.F.; Li, J.; Yan, F.; Dong, Y.; Feng, B.L. How does the waterlogging regime affect crop yield? A global meta-analysis. Front. Plant Sci. 2021, 12, 1–9. [Google Scholar] [CrossRef]
- Striker, G.G.; Insausti, P.; Grimoldi, A.A.; Vega, A.S. Trade-off between root porosity and mechanical strength in species with different types of aerenchyma. Plant Cell Environ. 2007, 30, 580–589. [Google Scholar] [CrossRef]
- Loreti, E.; van Veen, H.; Perata, P. Plant responses to flooding stress. Curr. Opin. Plant Biol. 2016, 33, 64–71. [Google Scholar] [CrossRef]
- Collaku, A.; Harrison, S.A. Losses in wheat due to waterlogging. Crop Sci. 2002, 42, 444–450. [Google Scholar] [CrossRef]
- Pais, I.P.; Moreira, R.; Semedo, J.N.; Reboredo, F.H.; Lidon, F.C.; Maçãs, B.; Scotti-Campos, P. Effects of waterlogging on growth and development of bread wheat genotypes. Biol. Life Sci. Forum 2022, 11, 38. [Google Scholar] [CrossRef]
- de San Celedonio, R.P.; Abeledo, L.G.; Brihet, J.M.; Miralles, D.J. Waterlogging affects leaf and tillering dynamics in wheat and barley. J. Agron. Crop Sci. 2016, 202, 409–420. [Google Scholar] [CrossRef]
- de San Celedonio, R.P.; Abeledo, L.G.; Miralles, D.J. Physiological traits associated with reductions in grain number in wheat and barley under waterlogging. Plant Soil 2018, 429, 469–481. [Google Scholar] [CrossRef]
- Malik, A.I.; Colmer, T.D.; Lambers, H.; Schortemeyer, M. Wheat in response to different depths of waterlogging. Austr. J. Plant Physiol. 2001, 28, 1121–1131. [Google Scholar]
- Araki, H.; Hossain, M.A.; Takahashi, T. Waterlogging and hypoxia have permanent effects on wheat root growth and respiration. J. Agron. Crop Sci. 2012, 198, 264–275. [Google Scholar] [CrossRef]
- Ding, J.; Liang, P.; Wu, P.; Zhu, M.; Li, C.; Zhu, X.; Gao, D.; Chen, Y.; Guo, W. Effects of waterlogging on grain yield and associated traits of historic wheat cultivars in the middle and lower reaches of the Yangtze River, China. Field Crop Res. 2020, 246, 107695. [Google Scholar] [CrossRef]
- Ashraf, M.A. Waterlogging stress in plants: A review. Afr. J. Agric. Res. 2012, 7, 1976–1981. [Google Scholar] [CrossRef]
- Shao, G.C.; Lan, J.J.; Yu, S.E.; Liu, N.; Guo, R.Q.; She, D.L. Photosynthesis and growth of winter wheat in response to waterlogging at different growth stages. Photosynthetica 2013, 51, 429–437. [Google Scholar] [CrossRef]
- Hossain, A.; Uddin, S.N. Mechanisms of waterlogging tolerance in wheat: Morphological and metabolic adaptations under hypoxia or anoxia. Aust. J. Crop Sci. 2011, 5, 1094–1101. [Google Scholar]
- Yu, M.; Chen, G.-H. Conditional QTL mapping for waterlogging tolerance in two RILs populations of wheat. SpringerPlus 2013, 2, 245. Available online: http://springerplus.com/content/2/1/245 (accessed on 14 December 2023). [CrossRef]
- Burgos, M.S.; Messmer, M.M.; Stamp, P.; Schmid, J.E. Flooding tolerance of spelt (Triticum spelta L.) compared to wheat (Triticum aestivum L.)—A physiological and genetic approach. Euphytica 2001, 122, 287–295. [Google Scholar] [CrossRef]
- Ballesteros, D.; Mason, R.E.; Addison, C.K.; Acuña, M.A.; Arguello, M.N.; Subramanian, N.; Miller, R.G.; Sater, H.; Gbur, E.E.; Miller, D.; et al. Tolerance of wheat to vegetative stage soil waterlogging is conditioned by both constitutive and adaptive QTL. Euphytica 2014, 201, 329–343. [Google Scholar] [CrossRef]
- Xu, L.; Zhao, C.; Pang, J.; Niu, Y.; Liu, H.; Zhang, W.; Zhou, M. Genome-wide association study reveals quantitative trait loci for waterlogging-triggered adventitious roots and aerenchyma formation in common wheat. Front. Plant Sci. 2022, 13, 1066752. [Google Scholar] [CrossRef]
- Li, T.; Ma, J.; Zou, Y.; Chen, G.; Ding, P.; Zhang, H.; Yang, C.; Mu, Y.; Tang, H.; Jiang, Q.; et al. Quantitative trait loci for seeding root traits and the relationships between root and agronomic traits in common wheat. Genome 2020, 63, 27–36. [Google Scholar] [CrossRef]
- Ding, F.; Tong, J.; Xu, R.; Chen, J.; Xu, X.; Nadeem, M.; Wang, S.; Zhang, Y.; Zhu, Z.; Wang, F.; et al. Identification of stable quantitative trait loci underlying waterlogging tolerance post-anthesis in common wheat (Triticum aestivum). Crop J. 2023, 11, 1163–1170. [Google Scholar] [CrossRef]
- de San Celedonio, R.P.; Abeledo, L.G.; Miralles, D.J. Identifying the critical period for waterlogging on yield and its components in wheat and barley. Plant Soil 2014, 378, 265–277. [Google Scholar] [CrossRef]
- Wu, X.; Tang, Y.; Li, C.; Wu, C.; Huang, G. Chlorophyll fluorescence and yield responses of winter wheat to waterlogging at different growth stages. Plant Prod. Sci. 2015, 18, 284–294. [Google Scholar] [CrossRef]
- Pais, I.P.; Moreira, R.; Semedo, J.N.; Reboredo, F.H.; Coutinho, J.; Lidon, F.C.; Maçãs, B.; Scotti-Campos, P. Waterlogging effects in adventitious roots, tillering and yield of bread wheat germplasm. Agric. Res. Technol. Open Access J. 2023, 27, 556383. [Google Scholar] [CrossRef]
- Pampana, S.; Masoni, A.; Arduini, I. Grain yield of durum wheat as affected by waterlogging at tillering. Cereal Res. Commun. 2016, 44, 706–716. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, H.; Hu, W.; Wang, S.; Wang, Y.; Snider, J.L.; Zhou, Z. Combined elevated temperature and soil waterlogging stresses inhibit cell elongation by altering osmolyte composition of the developing cotton (Gossypium hirsutum L.) fiber. Plant Sci. 2017, 256, 196–207. [Google Scholar] [CrossRef]
- Lin, H.H.; Lin, K.H.; Syu, J.Y.; Tang, S.Y.; Lo, H.F. Physiological and proteomic analysis in two wild tomato lines under waterlogging and high temperature stress. J. Plant Biochem. Biotechnol. 2016, 25, 87–96. [Google Scholar] [CrossRef]
- Lin, C.; Sauter, M. Control of adventitious root architecture in rice by darkness, light, and gravity. Plant Physiol. 2018, 176, 1352–1364. [Google Scholar] [CrossRef]
- Jimenez, J.C.; Moreno, L.P.; Magnitskiy, S. Respuesta de las plantas a estres por inundacion. Rev. Colomb. Cienc. Hort. 2012, 6, 96–109. [Google Scholar] [CrossRef]
- Pais, I.P.; Moreira, R.; Semedo, J.N.; Reboredo, F.H.; Lidon, F.C.; Coutinho, J.; Maçãs, B.; Scotti-campos, P. Phenotypic diversity of seminal root traits in bread wheat germplasm from different origins. Plants 2022, 11, 2842. [Google Scholar] [CrossRef]
- Arduini, I.; Pellegrino, E.; Ercoli, L. Contribution of main culm and tillers to grain yield of durum wheat: Influence of sowing date and plant traits. Ital. J. Agron. 2018, 13, 235–247. [Google Scholar] [CrossRef]
- de Vita, P.; Nicosia, O.L.D.; Nigro, F.; Platani, C.; Riefolo, C.; Di Fonzo, N.; Cattivelli, L. Breeding progress in morpho-physiological, agronomical and qualitative traits of durum wheat cultivars released in Italy during the 20th century. Eur. J. Agron. 2007, 26, 39–53. [Google Scholar] [CrossRef]
- Fischer, R.A. The effect of duration of the vegetative phase in irrigated semi-dwarf spring wheat on phenology, growth and potential yield across sowing dates at low latitude. Field Crop Res. 2016, 198, 188–199. [Google Scholar] [CrossRef]
- Elhani, S.; Martos, V.; Rharrabti, Y.; Royo, C.; García del Moral, L.F. Contribution of main stem and tillers to durum wheat (Triticum turgidum L. var. durum) grain yield and its components grown in Mediterranean environments. Field Crop Res. 2007, 103, 25–35. [Google Scholar] [CrossRef]
- Dreccer, M.F.; Chapman, S.C.; Rattey, A.R.; Neal, J.; Song, Y.; Christopher, J.T.; Reynolds, M. Developmental and growth controls of tillering and water-soluble carbohydrate accumulation in contrasting wheat (Triticum aestivum L.) genotypes: Can we dissect them? J. Exp. Bot. 2013, 64, 143–160. [Google Scholar] [CrossRef]
- Fioreze, S.L.; Michelon, L.H.; Turek, T.L.; Drun, R.P.; Dalorsaleta, J.C.S. Role of nonproductive tillers as transient sinks of assimilates in wheat. Bragantia 2020, 79, 180–191. [Google Scholar] [CrossRef]
- Valério, I.P.; Carvalho, F.I.F.; Oliveira, A.C.; Machado, A.D.A.; Benin, G.; Scheeren, P.L.; Souza, V.Q.; Hartwig, I. Desenvolvimento de afilhos e componentes do rendimento em genótipos de trigo sob diferentes densidades de semeadura. Pesqui Agropecu Bras 2008, 43, 319–326. [Google Scholar] [CrossRef]
- Condon, A.G.; Giunta, F. Yield response of restricted-tillering wheat to transient waterlogging on duplex soils. Aust. J. Agric. Res. 2003, 54, 957–967. [Google Scholar] [CrossRef]
- Yaduvanshi, N.P.S.; Setter, T.L.; Sharma, S.K.; Singh, K.N.; Kulshreshtha, N. Influence of waterlogging on yield of wheat (Triticum aestivum), redox potentials, and concentrations of microelements in different soils in India and Australia. Soil Res. 2012, 50, 489–499. [Google Scholar] [CrossRef]
- Malik, A.I.; Colmer, T.D.; Lambers, H.; Setter, T.L.; Schortemeyer, M. Short-term waterlogging has long-term effects on the growth and physiology of wheat. New Phytol. 2002, 153, 225–236. [Google Scholar] [CrossRef]
- Alizadeh-Vaskasi, F.; Pirdashti, H.; Cherati Araei, A.; Saadatmand, S. Waterlogging effects on some antioxidant enzymes activities and yield of three wheat promising lines. Acta Agric. Slov. 2018, 111, 621–631. [Google Scholar] [CrossRef]
- Olgun, M.; Kumlay, A.M.; Adiguzel, M.C.; Caglar, A. The effect of waterlogging in wheat (T. aestivum L.). Acta Agric. Scand. Sect. B Soil Plant Sci. 2008, 58, 193–198. [Google Scholar] [CrossRef]
- Ferrante, A.; Savin, R.; Slafer, G.A. Floret development and grain setting differences between modern durum wheats under contrasting nitrogen availability. J. Exp. Bot. 2013, 64, 169–184. [Google Scholar] [CrossRef] [PubMed]
- Slafer, G.A.; Savin, R.; Sadras, V.O. Coarse and fine regulation of wheat yield components in response to genotype and environment. Field Crop Res. 2014, 157, 71–83. [Google Scholar] [CrossRef]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Vasconcelos, J.C. Trigos portugueses desde há muito cultivados no país. Sep. Bolt. Agr. 1933, 150p. [Google Scholar]
- Almeida, A.; Maçãs, B.; Rodrigues, V.; Torrão, M. Wheat breeding: Country perspectives. The History of Wheat Breeding in Portugal. In The World Wheat Book: A History of Wheat Breeding; Bonjean, A.P., Angus, W.J., Van Ginkel, M., Eds.; Lavoisier S.A.S.: Cachan, France, 2016; Volume 3, pp. 93–125. [Google Scholar]
- Sanchez-Garcia, M.; Álvaro, F.; Martín-Sánchez, J.A.; Sillero, J.C.; Escribano, J.; Royo, C. Breeding effects on the genotype×environment interaction for yield of bread wheat grown in Spain during the 20th century. Field Crop Res. 2012, 126, 79–86. [Google Scholar] [CrossRef]
- Robertson, D.; Zhang, H.; Palta, J.A.; Colmer, T.; Turner, N.C. Waterlogging affects the growth, development of tillers, and yield of wheat through a severe, but transient, N deficiency. Crop Pasture Sci. 2009, 60, 578–586. [Google Scholar] [CrossRef]
- Almeida, M.L.; Sangoi, L.; Ender, M.; Trentin, P.S. Determinação do momento da emissão de afilhos de trigo usando suplementação com luz vermelha e luz vermelha extrema. Pesq. Agrop. Gaucha 2000, 6, 89–96. [Google Scholar]
- Sharma, R.C. Tiller mortality and its relationship to grain yield in spring wheat. Field Crop Res. 1995, 41, 55–60. [Google Scholar] [CrossRef]
- Acevedo, E.S.P.S.H. Wheat growth and physiology. In Bread Wheat Improvement and Production. FAO Plant Production and Protection, 1st ed.; Curtis, B.C., Rajaram, S., Macpherson, H., Eds.; FAO: Rome, Italy, 2002; Volume 30, p. 32. [Google Scholar]
- Marashi, S.K.; Chinchanikar, G.S. Effect of waterlogging periods on kernel yield and yield components of wheat (Triticum aestivum L.) cultivars. Res. Crop 2010, 5, 561–567. [Google Scholar]
- Amri, M.; El Ouni, M.H.; Salem, M.B. Waterlogging affect the development, yield and components, chlorophyll content and chlorophyll fluorescence of six bread wheat genotypes (Triticum aestivum L.). Bulg. J. Agric. Sci. 2014, 20, 647–657. [Google Scholar]
- Marti, J.; Savin, R.; Slafer, G.A. Wheat yield as affected by length of exposure to waterlogging during stem elongation. J. Agron. Crop Sci. 2015, 201, 473–486. [Google Scholar] [CrossRef]
- Fischer, R.A. Yield potential in a dwarf spring wheat and the effect of shading. Crop Sci. 1975, 15, 607–613. [Google Scholar] [CrossRef]
- Hawkesford, M.J.; Araus, J.L.; Park, R.; Calderini, D.; Miralles, D.; Shen, T.; Zhang, J.; Parry, M.A.J. Prospects of doubling global wheat yields. Food Energy Secur. 2013, 2, 34–48. [Google Scholar] [CrossRef]
- Zhang, H.; Turner, N.C.; Poole, M.L.; Simpson, N. Crop production in the high rainfall zones of southern Australia—Potential, constraints and opportunities. Aust. J. Exp. Agric. 2006, 46, 1035–1049. [Google Scholar] [CrossRef]
- González, F.G.; Miralles, D.J.; Slafer, G.A. Wheat floret survival as related to pre-anthesis spike growth. J. Exp. Bot. 2011, 62, 4889–4901. [Google Scholar] [CrossRef] [PubMed]
- González, F.G.; Slafer, G.A.; Miralles, D.J. Floret development and spike growth as affected by photoperiod during stem elongation in wheat. Field Crop Res. 2003, 81, 29–38. [Google Scholar] [CrossRef]
Germplasm Group | Genotype | ||
---|---|---|---|
Portuguese landraces (Vasconcelos ancient collection) | PL | Alentejano | PL-1 |
Ardito | PL-2 | ||
Mocho Cabeçudo | PL-3 | ||
Mocho de Espiga Quadrada | PL-4 | ||
Mocho de Espiga Branca | PL-5 | ||
Varieties with introduced Italian germplasm (developed by the Portuguese Cereal Breeding Program and released between 1950 and 1970) | IT | Restauração | IT-1 |
Chaimite | IT-2 | ||
Mara | IT-3 | ||
Pirana | IT-4 | ||
Post-Green Revolution cultivars with introduced CIMMYT germplasm (developed by the Portuguese Cereal Breeding Program and released between 1980 and 1989) | GR | Caia | GR-1 |
Nabão | GR-2 | ||
Roxo | GR-3 | ||
Mondego | GR-4 | ||
Advanced lines obtained through the Portuguese Cereal Breeding Program or CIMMYT | AdvL | Ducula/Gondo//Sokol 1 | AdvL-1 |
Katunga × (Centauro/Vega) 2 | AdvL-2 | ||
Kennedy × Roxo 3 | AdvL-3 | ||
KLDR/Pewit1//Milan/Ducula 1 | AdvL-4 | ||
GUS/3/Prl/Sara/Tsi/Vee#5/… 1 | AdvL-5 | ||
Australian germplasm | Austrl | BT-Schomburgk | Austrl-1 |
Excalibur | Austrl-2 | ||
Sunvale | Austrl-3 | ||
Sunlin | Austrl-4 | ||
Trident | Austrl-5 |
Soil Properties | ||
---|---|---|
Texture | Sand (%) | 40 |
Clay (%) | 35 | |
Silt (%) | 25 | |
Organic matter (%) | 1.15 | |
Phosphorus (%) | 0.05 | |
Potassium (%) | 0.95 | |
Nitrogen (%) | 0.03 | |
EC (μS cm−1) | 334.93 | |
pHCa | 6.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pais, I.P.; Moreira, R.; Coelho, A.R.; Semedo, J.N.; Reboredo, F.H.; Coutinho, J.; Lidon, F.C.; Maçãs, B.; Scotti-Campos, P. Unveiling the Impact of Growth Traits on the Yield of Bread Wheat Germplasm Subjected to Waterlogging. Agriculture 2024, 14, 241. https://doi.org/10.3390/agriculture14020241
Pais IP, Moreira R, Coelho AR, Semedo JN, Reboredo FH, Coutinho J, Lidon FC, Maçãs B, Scotti-Campos P. Unveiling the Impact of Growth Traits on the Yield of Bread Wheat Germplasm Subjected to Waterlogging. Agriculture. 2024; 14(2):241. https://doi.org/10.3390/agriculture14020241
Chicago/Turabian StylePais, Isabel P., Rita Moreira, Ana Rita Coelho, José N. Semedo, Fernando H. Reboredo, José Coutinho, Fernando C. Lidon, Benvindo Maçãs, and Paula Scotti-Campos. 2024. "Unveiling the Impact of Growth Traits on the Yield of Bread Wheat Germplasm Subjected to Waterlogging" Agriculture 14, no. 2: 241. https://doi.org/10.3390/agriculture14020241
APA StylePais, I. P., Moreira, R., Coelho, A. R., Semedo, J. N., Reboredo, F. H., Coutinho, J., Lidon, F. C., Maçãs, B., & Scotti-Campos, P. (2024). Unveiling the Impact of Growth Traits on the Yield of Bread Wheat Germplasm Subjected to Waterlogging. Agriculture, 14(2), 241. https://doi.org/10.3390/agriculture14020241