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Abstract: The issues of inadequate digital proficiency among agricultural practitioners and the
suboptimal image quality captured using mobile smart devices have been addressed by providing
appropriate guidance to photographers to properly position their mobile devices during image
capture. An application for crop guidance photography was developed, which involved classifying
and identifying crops from various orientations and providing guidance prompts. Three steps were
executed, including increasing sample randomness, model pruning, and knowledge distillation,
to improve the MobileNet model for constructing a smartphone-based orientation detection model
with high accuracy and low computational requirements. Subsequently, the application was realized
by utilizing the classification results for guidance prompts. The test demonstrated that this method
effectively and seamlessly guided agricultural practitioners in capturing high-quality crop images,
providing effective photographic guidance for farmers.

Keywords: guidance prompts; lightweight; mobilenet model; orientation detection

1. Introduction

Algorithms such as target detection [1], crop recognition [2], pest and disease iden-
tification [3], and phenotype analysis [4] in farmland all require the use of crop images.
The clarity and degree of distortion in image capture, the accuracy of brightness and color
tone, the significance of the captured subject in the image [5], and the correct orientation of
the subject within the image [5] all directly impact the recognition performance of these
algorithms. Problems related to image distortion and color accuracy can be addressed
by improving the quality of the camera. However, problems related to shooting distance
and angles are difficult for fixed cameras, while they are easy for movable cameras, as the
former cannot be adjusted once installed. Moreover, in practical agricultural production
environments, fixed cameras are generally not deployed throughout the entire planting
area due to high cost and maintenance difficulties. Therefore, it is challenging to meet the
complex capturing needs with fixed cameras, and using mobile phones to capture crop
images [6] is a more accessible approach for widespread adoption. At present, when using
mobile phones for photography, the angles and distances, based on people’s intuition
and preferences and factors such as low professional skills and a lack of responsibility,
also contribute to issues in the captured images, such as improper orientation, off-center
composition, or size anomalies. As a result, the image quality from mobile devices typically
used by agricultural workers is generally subpar. These lead to a significant decrease in
algorithm recognition accuracy and make it challenging to achieve the desired outcomes.
Improving the way images are captured and their perspectives before using other image
algorithms can lead to the following benefits: first, it can maximize the highlighting of
the main features of crops, thereby enhancing the accuracy of crop classification [7,8] and
detection [9] algorithms. Second, aligning the camera vertically with the measuring plane
can bring the measured length or area closer to the actual values, thus improving the
accuracy of phenotype analysis [10]. Third, standardizing the way agricultural workers
capture data can enhance the image quality in agricultural datasets [11], making it easier
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for models to be trained to achieve better results. In conclusion, guiding the process of
taking photographs is of great significance in improving the effectiveness of image-related
agricultural intelligent algorithms.

This study proposes a crop guidance algorithm that aims to improve the quality of
agricultural photos by providing prompts and instructions on mobile devices. The algo-
rithm is designed to enable agricultural workers to find suitable shooting positions and
angles, while the mobile device captures the crops at the appropriate time, ensuring clear
features, proper size, and correct posture in the captured images. The research focuses on
four key requirements: high accuracy, smooth operation on mobile devices, low latency
with no lag, and the ability to handle high usage pressure. By incorporating these elements,
the algorithm effectively guides agricultural workers in taking photos and enhances the
overall quality of the images captured.

At the current stage, the prompts and intelligent control methods for adjusting cam-
era poses can generally be divided into two categories: human–machine collaborative
control [12] and pure machine control [13,14]. They are often applied in intelligent cam-
era control scenarios such as robot control [14], drone control [13,15], sports and artistic
photography [16], etc. For example, they can be used for tasks like express package sort-
ing [17], moving object monitoring [18], and subject tracking [12,18]. These methods can
automatically track specific targets set by humans or appearing in the field of view, and
guide either machines or humans to adjust the camera poses to keep them within the
field of view. In human–machine collaborative control, machines play the role of guid-
ing operators to adjust the poses and perform semi-automatic locking and fine-tuning.
With predefined targets, machines can be locked through human instructions or existing
algorithms. Wang et al. [12] used a short-focus camera to display the target framing box
and a long-focus camera for preview images, guiding users to quickly lock the target object
within the long-focus lens. Xie et al. [16] designed an aerial photography algorithm that can
complete flight guidance and local camera movement control based on predefined view-
points, constructing the optimal global camera trajectory for observing a series of target
landmarks. In pure machine control, machines take full control of the photography equip-
ment, automatically searching, locking, and tracking targets, and adjusting the position and
posture of the camera in real time to achieve appropriate shooting positions and angles for
capturing, recording, monitoring, and picking up the targets. Wang et al. [15] designed an
unmanned aerial vehicle (UAV) dynamic tracking and positioning system based on object
detection and tracking, realizing the guided control of the UAV using monocular vision.
Feng et al. [19] combined voice stimulation to guide the camera towards the speaker and
perform distance adjustment and real-time tracking. Xie et al. [13] determined the flight
data to guide the camera mounted on the aircraft to adjust its direction to avoid backlight-
ing and ensure the quality of the captured image. Yamanaka [20] developed an intelligent
robotic camera system that automatically tracks and reproduces historical compositions.
In the field of adjusting shooting angles to assist in recognition and detection, facial pose
estimation [21,22] is commonly used to prompt users to align their faces properly before
capturing images for face matching, thereby improving the accuracy of face detection [23].
However, there is limited research on assisting object recognition and detection, particularly
in the agricultural domain.

This study aims to design a set of guided shooting methods and mobile applications
for agricultural crops, based on lightweight CNN models. The goal is to achieve the real-
time recognition and tracking of crop targets on mobile devices such as smartphones.
By controlling the operator, especially for agricultural personnel who use mobile phones for
image data collection and crop detection, or control algorithm of various forms of guiding
devices, the user can move to positions that are suitable for capturing high-quality target
image data. This approach addresses issues such as low accuracy in intelligent algorithms,
difficulties in recognition and detection, and incomplete analysis caused by low image
quality. We will take the classification of assisted crop pot picking as an example, take
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guided photos of round leaf pepper and grass pot picking, and finally evaluate the guidance
method and auxiliary effects.

2. Approach and Dataset Construction
2.1. Guidance Methods and Classification Reduction

To enable the operator to reach a moderate distance and align the object properly
within the limited prompts and steps, the orientation of the object in the photo can be
constrained to 11 types, as shown in Table 1, each corresponding to different guiding cues.
Here, the image frame refers to the rectangular frame formed by the camera viewport
during shooting, while the object frame refers to the rectangular frame in the image that is
tangential to the edges of the target object and parallel to the image frame. The nine-grid
region of the frame refers to the nine regions formed by dividing the frame into three equal
parts horizontally and vertically.

Table 1. Orientation types, constraints, and guiding prompts for objects in photographs.

Direction Meaning Guidance

Center
The object is in the center of the image
frame, with some distance between
the two frames.

None

Oversized The object box encompasses the
image frame, with a length ratio > 2. Move away from the object

Undersized The image frame encompasses the
object box, with a length ratio > 2. Move closer to the object

Up

The center point of the object box is
located in the upper area of the image
frame, with the
two boxes intersecting.

Rotate or move upwards

Down

The center point of the object box is
located in the lower area of the image
frame, with the
two boxes intersecting.

Rotate or move downwards

Right

The center point of the object box is
located in the right area of the image
frame, with the
two boxes intersecting.

Rotate or move towards the right

Upper Right

The center point of the object box is
located in the upper-right area of the
image frame, with the
two boxes intersecting.

Rotate or move towards the upper-right

Lower Right

The center point of the object box is
located in the lower-right area of the
image frame, with the
two boxes intersecting.

Rotate or move towards the lower-right

Left

The center point of the object box is
located in the left area of the image
frame, with the
two boxes intersecting.

Rotate or move towards the left

Upper Left

The center point of the object box is
located in the upper-left area of the
image frame, with the
two boxes intersecting.

Rotate or move towards the upper-left

Lower Left

The center point of the object box is
located in the lower-left area of the
image frame, with the
two boxes intersecting.

Rotate or move towards the lower-left
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To identify the orientation of objects in images, this study will employ an image classi-
fication approach for photo guidance. There are two reasons for this choice: firstly, image
classification algorithms have fast computation speeds and small model sizes, making
them suitable for real-time photo needs while providing accurate orientation indications.
Secondly, image classification techniques have advantages in multi-object scenarios, where
they prioritize larger objects in the image during recognition, ignoring distant or smaller
objects. The following section will introduce the collection and processing methods for the
relevant classification dataset. If there are multiple targets in the image at the same time,
according to the above classification method, they will be classified as "Undersized". In the
guidance process (as in Section 4.3 later), the operator will be prompted to approach until
the situation of having an unclear subject is avoided, preventing the model from having
difficulty in distinguishing which is the primary target that needs guidance.

2.2. Data Collection and Preprocessing

The dataset was collected from the modern glass greenhouse of the East Campus of
China Agricultural University. The collection targets are potted groups of Peppergrass with
round leaves, and the collection took place in the afternoon of 22 March 2022. A regular
mobile phone was used as the collection device, and the image size was 1080 × 1080.
We manually labeled different images using the features described in Table 1. The data
collection process ensured sufficient lighting in the environment, proper growth posture
for potted plants, and the approximate alignment of plants at the same growth stage.
The original dataset comprised a total of 1580 potted plant photos, which were augmented
to 7900 images based on the 11 aforementioned orientation categories. Table 2 and Figure 1
present specific information for each category in the dataset.

Table 2. Categorizing of dataset.

Category Number Orientation Category Number of Images

0 Center 800
1 Oversized 725
2 Undersized 505
3 Up 695
4 Down 925
5 Right 505
6 Upper Right 765
7 Lower Right 820
8 Left 445
9 Upper Left 935

10 Lower Left 780

Total 7900

To highlight the crop features in the image and enhance the generalization capability
of the data augmentation model, as well as to match the input–output requirements of the
model, the following preprocessing steps were performed on the dataset:

Step 1. Resizing the image resolution to 224 × 224 pixels. The advantage of applying
this step this is that it can reduce hardware load and improve network training
speed without significantly reducing accuracy [24].

Step 2. Using Equation (1), individual pixels’ RGB channels are separately processed to
randomly alter the brightness, contrast, and saturation of an image, thereby aug-
menting the dataset. This process enables the trained model to adapt to varying
lighting conditions and color biases. The ‘rand’ function generates floating-point
random numbers within a specific range.

pixel = min(255, max(pixelrand(0.9,1.1) × rand(0.5, 2) + rand(−40, 40), 0)) (1)
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Step 3. Performing normalization on the images, following Equation (2), to ensure that
the pixel values of the images are within the range of −1 to 1. Here, for an
individual pixel, the input grayscale value is represented as grayinput, and the
output grayscale value is represented as grayoutput.

grayoutput = grayinput ÷ 127.5 − 1 (2)

After preprocessing the dataset with the aforementioned steps, it is necessary to split
the dataset into training and testing sets. This is carried out in order to create mutually
exclusive subsets of data to be used during the model training and evaluation processes.
By doing so, a more accurate assessment of the model can be conducted, and the per-
formance of the model on unseen data can be validated. In this study, 30% of the crop
photo dataset will be allocated as the testing set, while the remaining 70% will serve as the
training set. We segment the original images and their augmented counterparts as a single
entity to prevent highly similar images from appearing simultaneously in both the training
and testing datasets, thereby avoiding artificially inflated training accuracy.

(a) Center (b) Oversized (c) Undersized (d) Up

(e) Down (f) Right (g) Upper Right (h) Lower Right

(i) Left (j) Upper Left (k) Lower Left

Figure 1. Dataset samples after Step 2.

3. Orientation Discrimination Model

Due to the requirement of deploying the model on mobile devices, it is necessary to
reduce the parameter size of the model while maintaining its accuracy. This process is
known as model lightweight optimization. In this study, MobileNet V2 [25] was selected
for the optimized design to ensure that the model can be frequently used on smartphones
for orientation discrimination without compromising accuracy.
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3.1. Model Selection

During the process of guiding photography, the mobile phone needs to call this model
in real-time. In order to achieve better guidance effects on mobile devices, the model’s
parameter size and speed need to be appropriately limited. The threshold for human visual
persistence is generally between 15 to 20 Hz, while the inverse of the screen refresh rate
and Flops exhibit an linear relationship, and the explanation is as follows: if the model’s
inference rate is H Hz, then the time for one inference of the model is x = 1

H s. If the
floating-point operations of the model are represented by y Flops, and the mobile device
performs floating-point operations at a frequency of v Hz, the inference time would be
y
v s. Assuming there is a fixed computation time t for other operations in the testing
environment, we have y

v + t = x, which implies y = 1
v · x − b

t .
As shown in Figure 2, which illustrates the relationship between common model Flops

and the screen refresh rate during mobile phone operation. After performing exponential
regression fitting (orange diagonal line) and converting the frequency, the Flops of the
model when running during human visual persistence should be between 75,181,987 and
248,285,473 (indicated by the vertical brown-black line range). The R2 value is greater than
0.95, indicating that the results are reliable. Therefore, the Flops of the model should be less
than 248,285,473 in order to provide a better user guidance experience.

Figure 2. Relationship between model FLOPs and refresh rate during mobile phone operation.

This study aims to improve upon the MobileNet V2 model. Traditional classifica-
tion models such as AlexNet, VGG, and ResNet are known to be large in size and have
slower computational speeds, making them unsuitable for meeting the Flops requirements
and the high-frequency invocation demands of mobile devices. To address the issue of
model execution on embedded devices, researchers have proposed a series of lightweight
models, including SqueezeNet, ShuffleNet, and MobileNet, most of which meet the Flops
requirements. However, the direct use of these models often yields a weaker performance
compared to larger models.

In this experiment, MobileNet V2 exhibits superior performance among the lightweight
models, possibly due to its design strategies such as linear bottlenecks, inverted residu-
als, depthwise convolutions, and multi-scale feature fusion, resulting in higher accuracy.
Specifically, it possesses the following distinctive structures:

• Linear Bottleneck: In each convolutional layer, a 1 × 1 convolutional kernel is used for
feature compression, reducing the number of input channels. Then, a non-linear acti-
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vation function, ReLU6, is applied. This design allows for a reduction in the number
of model parameters while maintaining good feature representation capabilities.

• Inverted Residuals: Traditional residual blocks perform feature expansion followed
by feature compression. Inverted residuals, on the other hand, reverse this process.
Inverted residuals begin with a 1 × 1 convolutional kernel for feature compression,
followed by a 3 × 3 depthwise separable convolution for feature expansion. Finally,
another 1 × 1 convolutional kernel is used for feature compression. This design helps im-
prove the model’s non-linear expressive power while reducing computational complexity.

3.2. Model Architecture and Optimization

Common methods for reducing model complexity and improving the performance
of lightweight models include model pruning, knowledge distillation, sparse constraints,
parameter quantization, and binary weights. Three methods will be employed in this
study—increasing sample randomness, model pruning, and knowledge distillation—to
optimize the model, resulting in a model with very high accuracy and extremely low
computational overhead.

Specifically, as shown in Figure 3, we increased the accuracy of all models through the
method of increasing sample randomness (in green), and selected the high-performance
large model VGG Net and the lightweight model MobileNet V2. Subsequently, we per-
formed sparse training on the latter to produce a more efficient and easily prunable Mo-
bileNet V2-1. Following this, pruning (in yellow) led to the reduced computational load of
MobileNet V2-2, and finally, knowledge distillation (in blue) using AlexNet as the teacher
resulted in the computationally efficient and highly accurate MobileNet V2-3.

Figure 3. MobileNet V2 structure and training optimization overall process.

3.2.1. Increasing Sample Randomness

To enhance the optimization of the model, the training process will incorporate in-
creased sample randomness. This approach involves handling mini-batch data with aug-
mented sample randomness. Due to the enlarged size of the augmented dataset, direct
batch gradient descent becomes impractical. When training with mini-batch gradient
descent without shuffling, the model’s training process may struggle to converge towards
the ideal minimum loss point, as a single batch of samples may not adequately represent
the average characteristics of the entire dataset. Consequently, the model’s performance
may not be fully realized. Including as many different categories as possible in a single
batch of samples, with approximately equal numbers of instances for each category, can, to
some extent, suppress the occurrence of this situation.

The increase in sample randomness will be achieved through the following methods:
at the beginning of each training epoch, the sample order within the training set will be
randomly shuffled and stratified sampled (as shown in Figure 4) to enhance the randomness
of the samples and the representativeness of the batches. In the implementation process,
this segmentation process will be integrated into the data preprocessing stage to avoid
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redundant computations during training. It will involve loading preprocessed variable files
directly when creating data loaders, facilitating the iteration of batch data in the training
and testing sets, providing data support for model training and evaluation, simplifying the
data processing process, and improving training efficiency.

Figure 4. Illustration of the difference between stratified sampling mini-batches and regular mini-batches.

3.2.2. Model Pruning

Model pruning [26] is a commonly used model optimization technique aimed at re-
ducing the size and complexity of deep learning models to improve their storage efficiency,
computational efficiency, and generalization ability. The basic idea of model pruning is to
reduce model complexity by removing redundant connections, reducing the number of
parameters, or decreasing the number of layers while maintaining the model’s performance
on training and test data.

When pruning network weights, it is necessary to iterate through each parameter of
the model and calculate the importance of each parameter based on the selected criteria.
Parameter importance metrics are primarily used to evaluate the significance of each
parameter. Common metrics include gradient magnitude, the sensitivity of parameters to
outputs, and parameter information entropy. These metrics can help determine the extent to
which parameters affect the model’s output. For gradient-related metrics, the gradients of
parameters can be computed through backpropagation and analyzed for their magnitudes.
For other metrics, specific evaluation methods may be required for calculation and analysis.

Finally, based on the evaluation results, sort the parameters to determine their impor-
tance order, and then select whether to keep or prune the parameters based on their level
of importance.

Considering that the Batch Normalization layers account for a significant proportion
in the MobileNet V2 network, the Slimming pruning method is primarily employed for
channel pruning. This method utilizes the scale parameters of the Batch Normalization lay-
ers to assess importance and subsequently prunes the non-important channels. As shown
in Figure 5, the implementation of this method follows the steps outlined below:

• Conduct training on the training set, achieving sparsity by applying L1 regularization
gradients to the Batch Normalization layer.

• Compute the absolute values of the scale parameters for all BN layers, calculate
the average importance per channel, and use it as a metric for the importance of
the channel.

• According to a predetermined proportion, prune the weights associated with channels
of lower importance to obtain the pruned network.

• Due to changes in the network structure, the new network may be in an underfitting
state, so perform secondary training to improve accuracy.

In the implementation process, it is necessary to create a copy of the model first to
ensure that the performance of the original model is not affected when evaluating the
importance of the parameters. The parameters of the copied model will be modified and
analyzed during the evaluation process. The copied model is set to evaluation mode to
ensure that no training is performed during the evaluation process, and only parameter
analysis takes place.
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Figure 5. Pruning steps based on BN layer importance assessment.

3.2.3. Knowledge Distillation

Knowledge distillation [27] is a model compression technique that trains a student
model by leveraging the knowledge from a teacher model, aiming to achieve a performance
close to the teacher model while having a smaller and more lightweight model. The basic
principle is to use the soft targets generated by the teacher model to guide the training
of the student model. Soft targets refer to the class probability distribution outputted by
the teacher model, which contains richer information compared to the one-hot encoded
hard targets. This richer information helps the student model better understand the data.
Through knowledge distillation, the student model can acquire valuable knowledge from
the teacher model, transferring the complexity and performance advantages of the larger
model to the smaller model, thus achieving model compression and optimization. This tech-
nique is particularly valuable in resource-constrained environments such as mobile and
embedded devices, where it can simultaneously meet the requirements of model size and
computational efficiency.

Due to the small size of the dataset and the relatively low difficulty of model training,
we employ the method of knowledge distillation on the pruned MobileNet V2 model
through offline distillation. The process is outlined as follows:

1. Training the large pre-trained model with the training set and retaining the best-
performing model as the teacher model.

2. Fixing the teacher model and conducting one training session for the student model
(same as step 3), while performing a grid search for hyperparameters. The loss calcula-
tion is shown in Equation (3), where the parameters are defined as follows:

(a) “real” represents the actual one-hot label.
(b) “pred” represents the predicted one-hot label.
(c) “CE” denotes the cross-entropy loss function.
(d) “KL” denotes the Kullback–Leibler divergence loss function.
(e) The hyperparameter α serves as a weight to adjust the emphasis of the student

model’s learning toward the teacher model and the real labels.
(f) The hyperparameter “temperature” can soften the probability distribution of

the model output labels. A larger temperature value leads to a more softened
distribution, while a smaller temperature value may amplify the probability of
misclassification and introduce unnecessary noise.

Loss =(1 − α)× CE(real, predstudent) + α×

KL
(

log_so f tmax
(

predstudent
temperature

)
, so f tmax

(
predteacher

temperature

)) (3)

3. Utilizing the optimal hyperparameters obtained from grid search for offline distillation
(as shown in Figure 6).

(a) Making predictions using the teacher model to obtain the soft targets.
(b) Making predictions using the student model to obtain the outputs to be opti-

mized.
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(c) Computing the loss using the soft targets, hard targets (actual labels), and the
outputs to be optimized.

(d) Performing backpropagation of the loss and updating the student model.
(e) Returning to step “a” until the model converges and the training is completed.

4. Conducting a second round of training for the student model directly using the
training set to enhance the model’s learning of the original labels.

Figure 6. Offline distillation loss calculation and model update.

4. Experimental Analysis and Testing
4.1. Overview

In this study, the MobileNet V2 [25] model was used as the base model for actual
training. The model was optimized through three methods: increasing sample randomness,
model pruning, and knowledge distillation. To evaluate the effectiveness of the model
improvement strategies, corresponding ablation experiments were designed and compared
with traditional models. In this experiment, traditional large models, namely AlexNet [28],
VGG16 [29], and ResNet18 [30], were selected as references, along with traditional small
models, SqueezeNet 1.0 [31] and ShuffleNet V2 x1.0 [32]. The MobileNet V2 model was
used to construct the MobileNet V2-1 model, which was trained by increasing sample
randomness. Then, the MobileNet V2-2 model was constructed through model pruning,
and finally, the MobileNet V2-3 model was trained using knowledge distillation. The tradi-
tional models are widely used in image processing in agriculture, with large models mainly
used for fruit and vegetable classification [33], pesticide residue detection [34], and disease
and pest detection [35,36] on the server side, while lightweight models are mainly used in
mobile devices [37,38] and drones [39].

Both the traditional models and their pre-trained weights are from torchvision.models.
The training and improvement results of each model are shown in Table 3. The middle
section of the table shows the Accuracy, Precision, Recall, and F1 score of each model in the
test set under the original conditions, after adding sample randomness, sparse training,
model pruning, and knowledge distillation. The greener the color, the higher the accuracy,
and red indicates values below 90%, with darker shades of red indicating lower values. On
the right side of the table are the computational loads of the models, with values less than
248,285,473 marked in bold. The improvement effects of each step on the accuracy of the
MobileNet model are shown in Figure 7, where the bottom part is an enlarged version of the
top part. Orange represents negative improvement, blue represents positive improvement,
and the red line represents the accuracy of other models optimized through increased
sample randomness during training.
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Table 3. Accuracy, Precision, Recall, F1 score, and FLOPs for different models.

Stage Model Name Accuracy Precision Recall F1 score FLOPs/M

Normal

AlexNet 94.98% 94.97% 94.59% 94.74% 710.15
VGG16 95.82% 95.22% 94.75% 94.92% 1044.45

ResNet18 9.83% 0.59% 9.09% 1.11% 1826.01
SqueezeNet 1.0 21.13% 22.09% 20.59% 19.82% 153.65
ShuffleNet V2 12.89% 1.03% 9.09% 1.85% 733.35
MobileNet V2 12.09% 17.10% 9.39% 2.45% 332.96

Random

AlexNet 97.07% 96.95% 96.67% 96.78% 710.15
VGG16 96.95% 95.95% 95.62% 95.63% 1044.45

ResNet18 92.97% 91.87% 91.33% 91.48% 1826.01
SqueezeNet 1.0 33.72% 29.34% 29.99% 29.15% 153.65
ShuffleNet V2 92.43% 91.68% 91.23% 91.28% 733.35

MobileNet V2

95.10% 95.12% 94.53% 94.77% 332.96
Sparse 95.77% 95.58% 95.46% 95.38% 332.96

Pruning 6.49% 0.59% 9.09% 1.11% 160.35
Re-train 95.65% 95.46% 95.56% 95.46% 160.35

Distillation 96.36% 96.32% 95.99% 96.11% 160.35
Re-train 96.78% 96.44% 96.39% 96.38% 160.35

Figure 7. MobileNet model accuracy improvement waterfall diagram.

Based on Table 3, it is evident that the MobileNet V2 model, optimized through three
steps, demonstrates outstanding performance in terms of accuracy and computational
efficiency, while occupying relatively little storage space. This makes it more suitable
for deployment and usage on resource-constrained mobile devices. Specifically, after
optimizing the training by increasing sample randomness, the accuracy of the small model
has significantly improved, indicating that this method can significantly reduce the training
difficulty of small models and improve accuracy. Among the large models, AlexNet
performs the best, while, among the lightweight models, MobileNet V2 excels, hence the
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selection of the latter for transformation optimization. After sparse training, the accuracy of
the MobileNetV2 model saw a slight improvement, but the computational load did not yet
meet the scene’s requirements. Following pruning, the model parameters reduced sharply
by 30%; however, the accuracy decreased drastically. After retraining, the accuracy saw a
slight improvement compared to the original model. Utilizing AlexNet as the teacher model
for knowledge distillation training and retraining resulted in a significant improvement in
model accuracy, achieving the high accuracy of large models and the low computational
load of the smallest lightweight model.

4.2. Concrete Analysis
4.2.1. Traditional Model Training Results

The accuracy and loss variations of the selected six traditional models on the validation
set during training with our dataset are shown in Figure 8. During training, the batch size
was set to 64, utilizing the SGD optimizer with a learning rate of 0.001 and momentum
of 0.9. In order to ensure the convergence of all models, a total of 65 epochs were trained.
The larger models exhibited notably higher accuracy compared to the lightweight models,
with AlexNet and VGG Net demonstrating the best performance, as AlexNet achieved
lower loss. For the other four model categories, the loss reached its lowest value within
the first 10 epochs, and the accuracy did not improve further, indicating that the models
had already reached their performance limits without optimization. The main reason for
this situation is the high similarity between samples of different categories, with only
spatial differences. If there is a slight deviation in the direction of gradient descent, it is
highly likely to miss the low valley region of the loss function, resulting in difficulty in
reducing the loss. Therefore, increasing the randomness of the samples is necessary, aiming
to include a similar proportion of all categories in each batch, allowing the optimizer to
more accurately provide the direction for reducing the loss.

(a) Epoch−accuracy line chart (b) Epoch−loss line chart

Figure 8. Accuracy and loss variation chart of traditional models in the test set.

4.2.2. Increased Randomness

We increased the randomness of each batch of samples by using random shuffling
and layer-wise sampling, and conducted the same training process as the above-mentioned
experiment. The performance of each model on the validation set is shown in Figure 9.
In particular, the dashed line represents the curve of the ShuffleNet V2 x1.0 model, which
took a total of 150 epochs to converge, whereas the other models converged in 50 epochs.
To clearly compare the differences between the starting and ending points of different
models, we divided the training epoch values of the former by three for plotting in the figure.
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(a) Epoch−accuracy line chart (b) Epoch−loss line chart

Figure 9. Accuracy and loss variation of traditional models after increasing randomness processing
(the true x value of the dashed line is three times that shown in the figure).

It is evident that all models converge normally, with AlexNet achieving the highest
accuracy of 97%. Among the three lightweight models, MobileNetV2 converges rapidly
and achieves high accuracy, while ShuffleNet converges slowly with moderate accuracy,
and SqueezeNet has extremely low accuracy (34%), but still higher than the random classi-
fication level (1/11 ≈ 9%). This may be due to the high proportion of 1 × 1 convolutional
layers in the SqueezeNet model (30–40%), which limits its ability to capture and represent
complex spatial features. In contrast, in the lightweight models, MobileNet and ShuffleNet,
the proportion of 1 × 1 convolutional layers is relatively low (10–20%), resulting in less
loss of spatial information. Additionally, they adopt more complex structures and feature
extraction methods, such as depthwise separable convolution and channel shuffle, which
can more effectively learn and represent global spatial features, thereby demonstrating
stronger performance in object position classification tasks.

4.2.3. Model Pruning

This study implements sparse training, pruning, and retraining operations through
the custom pruner class.

First, we modified the MetaPruner class in the torch_pruning library to achieve sparse
training gradients for all BN layers layer by layer, with a regularization coefficient set
to 1 × 10−5 and a learning rate of 0.001. The Adam optimizer was utilized for training,
and convergence was reached after 20 epochs. The model’s accuracy on the validation set
slightly increased from 95.1% in the original model to 95.77%, while also achieving sparsity
in the BN layers. We refer to the MobileNet model processed in this manner as MobileNet
V2-1. Figure 10 shows the accuracy and loss variation details of sparse training.

By utilizing the Importance class in the torch_pruning library, the significance of each
convolutional layer’s output features, i.e., the absolute values of the scale parameters in
the BN layer, was evaluated. The pruning operation was executed using pruner.step(),
removing 30% of the channels at a time, with the exception of ignoring the final classifica-
tion layer. Simultaneously, the torch_pruning.utils.count_ops_and_params function was
employed to calculate the MACs (multiply–accumulate operations) of the pruned model.
Upon completion of the pruning process, the feature dimension was reduced from 32 to 22.
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(a) Epoch−accuracy line chart (b) Epoch−loss line chart

Figure 10. Accuracy and loss variation graph of MobileNet in sparse training.

As shown in Table 4, compared to MobileNet V2-1, the pruned model achieved a
reduction in computational complexity below the target FLOPs and a decrease in the
number of parameters from 2.239244 M to 1.117966 M. This reduction is advantageous for
deploying the model on mobile devices.

Table 4. Changes in MobileNet V2 model before and after pruning.

State FLOPs/M Param/M Accuracy/%
Before Pruning 332.9616 2.238 95.77
After Pruning 160.3491 1.117 6.49

Due to pruning, the model structure changed, resulting in a loss of certain expressive
capabilities, thus making it unable to adapt well to training and testing data, leading
to a significant decrease in model accuracy. Therefore, retraining was necessary, with
parameters set the same as during sparse training. We refer to this retrained MobileNet
model as MobileNet V2-2. As shown in Figure 11, after the second training, the optimal
model accuracy was 95.65%, which was slightly lower compared to MobileNet V2-1.
To further improve the model’s performance, knowledge distillation training is required.

(a) Epoch−accuracy line chart (b) Epoch−loss line chart

Figure 11. Accuracy and loss variation graph of MobileNet during retraining.
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4.2.4. Knowledge Distillation

Based on the results of training with increased sample randomness, the model AlextNet
with the highest accuracy was chosen as the teacher model to conduct offline knowledge
distillation training on MobileNet V2-2. In order to select the involved hyperparameters
alpha and temperature, we fixed the batch size, set the learning rate to 0.001, momentum
to 0.9, weight decay to 5 × 10−4, used the SGD optimizer, and performed grid search for
one epoch on the same model. Ultimately, regarding the optimal hyperparameters, alpha
was determined to be 0.6 and temperature to be 2, resulting in an accuracy of 96.11% after
one training session. The grid search results are shown in Figure 12.

Figure 12. Knowledge distillation hyperparameter grid search accuracy heatmap.

Using the same optimizer, the model underwent 50 epochs of offline distillation
training, and the corresponding accuracy and loss changes are shown in Figure 13.
It can be observed that the model’s accuracy experienced a small leap, increasing
from 95.65% to 96.36%. This represents that the model has learned more accurate data
features through distillation training.

(a) Epoch−accuracy line chart (b) Epoch−loss line chart

Figure 13. Accuracy and loss variation chart of MobileNet in offline distillation.



Agriculture 2024, 14, 271 16 of 21

Finally, the model was fine-tuned using the original dataset directly, employing cross-
entropy loss for the final adjustment of the model. The optimizer and other parameters
remained consistent with the aforementioned distillation training, resulting in the ultimate
model, MobileNet V2-3. It is evident from Figure 14 that the model’s accuracy steadily
increased from 96.36% to 96.78%, indicating that fine-tuning the model using the original
dataset after distillation had a positive effect.

(a) Epoch−accuracy line chart (b) Epoch−loss line chart

Figure 14. Accuracy and loss variation of MobileNet during distillation and retraining.

4.3. Real Machine Testing

To further validate the effectiveness of the guidance method, tests were conducted
with actual devices in similar times and scenes as during the data collection process.
The mobile devices used are shown in Table 5, covering different levels of devices, the
most popular chipsets, various versions of the Android operating system, and different
camera configurations. The efficiency and performance of the algorithm were extensively
tested. During testing, we found that the model was unable to be guided under low-light
conditions. To address this issue, we employed the data augmentation method as described
earlier and turned on the flashlight of the mobile phone.

Table 5. Devices used in the experiment and their main parameters.

Device Android Processor RAM Camera Announced

Xiaomi Redmi
Note 9 4 G 12

Qualcomm SM6115
Snapdragon 662
(11 nm/2.0 GHz)

6 GB
48 MP, f/1.8, 26 mm
(wide), 1/2.0′′,
0.8 µm, PDAF

26 November 2020

Xiaomi Redmi
Note 12 T
Pro

13
Mediatek Dimensity
8200 Ultra
(4 nm/3.1 GHz)

8 GB
64 MP, f/1.8, 23 mm
(wide), 1/2′′,
0.7 µm, PDAF

29 May 2023

Huawei
Enjoy
20 SE

10 Kirin 710 A
(14 nm/2.0 GHz) 4 GB 13 MP, f/1.8, 26 mm

(wide), PDAF 23 December 2020

Vivo
iQOO Z5 13

Qualcomm SM7325
Snapdragon 778 G 5 G
(6 nm/2.4 GHz)

8 GB
64 MP, f/1.8, 26 mm
(wide), 1/1.97′′,
0.7 µm, PDAF

23 September 2021

Vivo
Pad 13

Qualcomm
SM8250-AC
Snapdragon 870 5 G
(7 nm/ 3.2 GHz)

8 GB
13 MP, f/2.2, 112◦

(ultrawide),
1.12 µm, AF

11 April 2022

The operational effect on the Redmi Note 9 4 G device is shown in Figure 15, with the
interface using a combination of simple text and icons to guide the photography process,
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thus reducing the level of difficulty in understanding. During testing, agricultural workers
were able to correctly comprehend the guidance prompts and adjust the device to the
specified position as per the given instructions. The consistency observed between the
guidance prompts and the images indicates a good guidance effect, enabling accurate
directional guidance for users to adjust to the specified orientation. In Figure 15a, the target
is too small, and the interface prompts the user to move the phone closer to the target.
In Figure 15b, the target is located in the top right corner of the image, and the interface
prompts the user to move the phone towards the upper right direction. In Figure 15c, the
target is located at the top of the image, and the interface prompts the user to move the
phone upwards. In Figure 15d, after a series of operations, the target moves to the center of
the image, with an appropriate size. The interface prompts the user that the operation is
correct, and the guided process is concluded.

(a) (b) (c) (d)

Figure 15. Screenshot of real machine-guided testing and frame rate box diagram. (a) Target: small.
(b) Target: upper right. (c) Target: top. (d) Target: center.

Figure 16 displays a violin plot of the frame rates when running on different devices,
where the curved lines on both sides represent the density distribution, the white dots in
the middle indicate the median, the black boxes represent the quartiles, and the red line
at the bottom corresponds to 15 FPs. It can be observed that the main part of the model’s
operating frame rates (the black boxes) remains above 15 FPs, indicating very smooth
model operation without lagging, which meets the user’s experiential requirements.

Figure 16. FPs violin plot.
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4.4. Effect Inspection

To better assess the auxiliary effect of guidance on other crop image detection algo-
rithms, a dataset of various crop images was collected in both normal scenes (Before) and
guided assistance scenes (After). The latter utilizes the application mentioned earlier. The
MobileNet V2 model was utilized for crop classification training and testing. Figure 17
shows examples of the small-scale binary dataset with a total of 640 images. Figure 18
displays the changes in loss (Figure 18a) and accuracy (Figure 18b) of the model when
differentiating between normal scenes and guided assistance scenes during the iterations.
In Figure 18, blue represents the effects in general scene acquisition, while red represents
the effects under guided photo assistance. As for loss, although the performance of both
approaches ultimately converges in the training set, in the testing set, the loss under guided
assistance is significantly lower by an order of magnitude compared to that in the general
scene. Regarding accuracy, the dataset acquired through guidance enables the model to
converge faster during training, saving nearly two-fifths of the iteration time compared
to the general scene convergence speed. In particular, under the guided scene, when the
training set reaches 100% accuracy, the testing set accuracy continues to improve, while in
the general scene, the testing set exhibits early signs of overfitting. This indicates that, under
guided photo assistance, similar samples will have higher consistency, and the number
of samples that are difficult to distinguish between different classes is greatly reduced,
providing a scenario with more distinct features for training and application and thereby
enhancing the detection effectiveness of agricultural intelligent algorithms related to image
data quality.

(a) (b) (c) (d)

Figure 17. Crop classification dataset in normal scenes (Before) and guided assistance scenes (After).
(a) (Before) negative. (b) (Before) positive. (c) (After) negative. (d) (After) positive.
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(a) Loss variation (b) Accuracy variation

Figure 18. Crop classification in normal (Before) and guided assistance (After) scenes.

5. Summary and Outlook

Due to the direct correlation between the effectiveness of agricultural image intelli-
gence algorithms and the positive and significant presence of target objects, coupled with
the limited digital proficiency of agricultural practitioners, the image quality captured using
mobile smart devices is often subpar. Therefore, it is necessary to provide relevant guidance
to instruct agricultural practitioners to adjust the camera pose during image capture. The ap-
plication of guided photography techniques can facilitate the collection of well-defined and
proper angled crop images. These provide a more distinct and accurate dataset for training
agricultural image intelligence algorithms, including target detection, crop identification,
pest/disease recognition, and phenotypic analysis. By leveraging guided photography,
the dataset collected benefits the practical implementation of the follow-up algorithms by
providing easily detectable image data, including effectively enhancing the upper limit
of accuracy for these algorithms and being beneficial for their practical deployment in
the agricultural sector. In this study, based on the MobileNet V2 model, we constructed a
smartphone-based orientation detection model with high accuracy and low computational
requirements by incorporating three steps: increasing sample randomness, model pruning,
and knowledge distillation. Building upon the classification results, we implemented a
guidance system for image capture. The experimental results demonstrate that this method
provides accurate and smooth guidance, enabling farmers to capture high-quality photos
of crops, and effectively improves the performance of intelligent algorithms for agricultural
images, including crop classification.

The contributions of this study are as follows: first, it provides a feasible guidance
solution for adjusting camera poses during image capture, which can effectively guide
agricultural workers to capture high-quality agricultural images, thus providing a clearer
and more accurate dataset for training agricultural image intelligent algorithms. In addition,
this study has developed a smartphone-based orientation detection model with high
accuracy and low computational requirements, making it possible to guide the shooting
process on mobile phones. Finally, this study has implemented a guided photography
system, enabling farmers to capture high-quality crop photos using their smartphones,
which can effectively improve the performance of agricultural image intelligent algorithms,
including crop classification.

There are still several areas for improvement in this study. Firstly, further optimiza-
tion of the deep learning model can be explored to enhance the accuracy and speed of
orientation classification, allowing it to accommodate a wider range of crop types and
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shooting scenarios. Secondly, expanding the dataset to include a greater variety of crop
species and pest/disease conditions can improve the model’s generalization ability and
accuracy. Thirdly, integrating the guidance model with target detection, crop recognition,
pest/disease classification, and phenotype analysis techniques can facilitate the design
of more fine-grained guidance models tailored to specific scenario requirements, thereby
advancing the practical implementation and application of this technology. Fourthly, fur-
ther testing and analysis could be conducted on a wider range of mobile phone models
and diverse systems (such as the iOS system) to enhance the coverage and universality of
this technology. Fifthly, considering the testing environment, which is generally open and
characterized by orderly and distinct plant growth, potential obstacles such as occlusions,
difficulty in reaching designated positions, and curved or inclined plants may be encoun-
tered in other scenarios. Therefore, a detailed analysis of feasible guiding paths is required,
along with the collection of occluded images for testing. Further research is needed for
more extensive testing and optimization.
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