Standardized Decision-Making for the Selection of Calf and Heifer Rearing Using a Digital Evaluation System
Abstract
:1. Introduction
1.1. Current State of Art for Adult Dairy Cows
1.2. Data Gap during the Calf- and Heifer-Rearing Periods
1.3. Decision-Making for Selection
2. Materials and Methods
2.1. Research Stables and Initial Data Aquisition
2.2. Evaluation of Animal Development
2.2.1. Colostrum Intake
2.2.2. Milk Intake
2.2.3. Weight Development
2.2.4. Disease History
2.2.5. Data Storage and Transfer
2.3. Selection Recommendation for the Livestock Owner/Caretaker
3. Results and Discussion
3.1. Evaluation of the Core Areas
3.2. Established Standardized Evaluation Scheme
3.3. Rearing Recommendation for the User
3.4. Further Scientific Research
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barkema, H.W.; von Keyserlingk, M.A.; Kastelic, J.P.; Lam, T.J.; Luby, C.; Roy, J.P.; LeBlanc, S.J.; Keefe, G.P.; Kelton, D.F. Invited review: Changes in the dairy industry affecting dairy cattle health and welfare. J. Dairy Sci. 2015, 98, 7426–7445. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Qi, J.; An, X.; Wang, Y. A Review on Information Technologies Applicable to Precision Dairy Farming: Focus on Behavior, Health Monitoring, and the Precise Feeding of Dairy Cows. Agriculture 2023, 13, 1858. [Google Scholar] [CrossRef]
- Lovarelli, D.; Bacenetti, J.; Guarino, M. A review on dairy cattle farming: Is precision livestock farming the compromise for an environmental, economic and social sustainable production? J. Clean. Prod. 2020, 262, 121409. [Google Scholar] [CrossRef]
- Chizzotti, M.L.; Machado, F.S.; Valente, E.E.L.; Pereira, L.G.R.; Campos, M.M.; Tomich, T.R.; Coelho, S.G.; Ribas, M.N. Technical note: Validation of a system for monitoring individual feeding behavior and individual feed intake in dairy cattle. J. Dairy Sci. 2015, 98, 3438–3442. [Google Scholar] [CrossRef] [PubMed]
- Ruuska, S.; Kajava, S.; Mughal, M.; Zehner, N.; Mononen, J. Validation of a pressure sensor-based system for measuring eating, rumination and drinking behaviour of dairy cattle. Appl. Anim. Behav. Sci. 2016, 174, 19–23. [Google Scholar] [CrossRef]
- Schäffler, M.; Harms, J. Möglichkeiten der Digitalisierung Nutzen: Futter und Fütterung/Tierhaltung; Schriftenreihe 1/2018, Grub, 2018; Bayerische Landesanstalt für Landwirtschaft: Freising, Germany, 2018; Available online: https://www.lfl.bayern.de/mam/cms07/publikationen/daten/schriftenreihe/fachveranstaltung-nutztzierhaltung-basis-landwirtschaft-bayern-100-jahre-grub_lfl-schriftenreihe.pdf (accessed on 1 September 2023).
- Zehner, N.; Niederhauser, J.; Nydegger, F.; Grothmann, A.; Keller, M.; Hoch, M.; Haeussermann, A.; Schick, M. Validation of a New Health Monitoring System (RumiWatch) for Combined Automatic Measurement of Rumination, Feed Intake, Water Intake and Locomotion in Dairy Cows. 2012. Available online: https://www.researchgate.net/profile/nils-zehner/publication/308507116_zehner_et_al_2012_validation_of_rumiwatch_cigr-ageng-2012/links/57e50ed408ae7c90cefc2594/zehner-et-al-2012-validation-of-rumiwatch-cigr-ageng-2012.pdf (accessed on 1 September 2023).
- Vázquez Diosdado, J.A.; Barker, Z.E.; Hodges, H.R.; Amory, J.R.; Croft, D.P.; Bell, N.J.; Codling, E.A. Classification of behaviour in housed dairy cows using an accelerometer-based activity monitoring system. Anim. Biotelemetry 2015, 3, 15. [Google Scholar] [CrossRef]
- Pavlovic, D.; Czerkawski, M.; Davison, C.; Marko, O.; Michie, C.; Atkinson, R.; Crnojevic, V.; Andonovic, I.; Rajovic, V.; Kvascev, G.; et al. Behavioural Classification of Cattle Using Neck-Mounted Accelerometer-Equipped Collars. Sensors 2022, 22, 2323. [Google Scholar] [CrossRef] [PubMed]
- Stygar, A.H.; Gómez, Y.; Berteselli, G.V.; Dalla Costa, E.; Canali, E.; Niemi, J.K.; Llonch, P.; Pastell, M. A Systematic Review on Commercially Available and Validated Sensor Technologies for Welfare Assessment of Dairy Cattle. Front. Vet. Sci. 2021, 8, 634338. [Google Scholar] [CrossRef]
- Simitzis, P.; Tzanidakis, C.; Tzamaloukas, O.; Sossidou, E. Contribution of Precision Livestock Farming Systems to the Improvement of Welfare Status and Productivity of Dairy Animals. Dairy 2022, 3, 12–28. [Google Scholar] [CrossRef]
- Huzzey, J.M.; Weary, D.M.; Tiau, B.Y.F.; Keyserlingk, M.A.G. von. Short communication: Automatic detection of social competition using an electronic feeding system. J. Dairy Sci. 2014, 97, 2953–2958. [Google Scholar] [CrossRef]
- Grinter, L.N. Validation of an Automated Behavior Monitoring Collar, and Evaluation of Heat Stress on Lactating Dairy Cow Behavior with Access to a Free Choice Soaker. Master’s Thesis, University of Kentucky, Lexington, KY, USA, 2019. [Google Scholar] [CrossRef]
- Wobschall, A.S. Sensorbasierte Analyse des Fress- und Wiederkauverhaltens von Kühen. 2018. Available online: https://edoc.hu-berlin.de/bitstream/handle/18452/19902/dissertation_wobschall_annabell.pdf?sequence=5&isAllowed=y (accessed on 10 August 2022).
- Gengler, N. Symposium review: Challenges and opportunities for evaluating and using the genetic potential of dairy cattle in the new era of sensor data from automation. J. Dairy Sci. 2019, 102, 5756–5763. [Google Scholar] [CrossRef] [PubMed]
- De Vries, M.; Bokkers, E.A.M.; Van Schaik, G.; Engel, B.; Dijkstra, T.; De Boer, I.J.M. Exploring the value of routinely collected herd data for estimating dairy cattle welfare. J. Dairy Sci. 2014, 97, 715–730. [Google Scholar] [CrossRef] [PubMed]
- Kaniyamattam, K.; De Vries, A. Agreement between milk fat, protein, and lactose observations collected from the Dairy Herd Improvement Association (DHIA) and a real-time milk analyzer. J. Dairy Sci. 2014, 97, 2896–2908. [Google Scholar] [CrossRef]
- Alsaaod, M.; Fadul, M.; Steiner, A. Automatic lameness detection in cattle. Vet. J. 2019, 246, 35–44. [Google Scholar] [CrossRef]
- Poursaberi, A.; Bahr, C.; Pluk, A.; van Nuffel, A.; Berckmans, D. Real-time automatic lameness detection based on back posture extraction in dairy cattle: Shape analysis of cow with image processing techniques. Comput. Electron. Agric. 2010, 74, 110–119. [Google Scholar] [CrossRef]
- Mullins, I.L.; Truman, C.M.; Campler, M.R.; Bewley, J.M.; Costa, J.H.C. Validation of a Commercial Automated Body Condition Scoring System on a Commercial Dairy Farm. Animals 2019, 9, 287. [Google Scholar] [CrossRef] [PubMed]
- Forsbäck, L.; Lindmark-Månsson, H.; Andrén, A.; Akerstedt, M.; Andrée, L.; Svennersten-Sjaunja, K. Day-to-day variation in milk yield and milk composition at the udder-quarter level. J. Dairy Sci. 2010, 93, 3569–3577. [Google Scholar] [CrossRef] [PubMed]
- Goodger, W.J.; Theodore, E.M. Calf Management Practices and Health Management Decisions on Large Dairies. J. Dairy Sci. 1986, 69, 580–590. [Google Scholar] [CrossRef]
- McGuirk, S.M. Disease management of dairy calves and heifers. Vet. Clin. N. Am. Food Anim. Pract. 2008, 24, 139–153. [Google Scholar] [CrossRef]
- Costa, J.H.C.; Cantor, M.C.; Neave, H.W. Symposium review: Precision technologies for dairy calves and management applications. J. Dairy Sci. 2021, 104, 1203–1219. [Google Scholar] [CrossRef]
- Roland, L.; Schweinzer, V.; Kanz, P.; Sattlecker, G.; Kickinger, F.; Lidauer, L.; Berger, A.; Auer, W.; Mayer, J.; Sturm, V.; et al. Technical note: Evaluation of a triaxial accelerometer for monitoring selected behaviors in dairy calves. J. Dairy Sci. 2018, 101, 10421–10427. [Google Scholar] [CrossRef]
- Trénel, P.; Jensen, M.B.; Decker, E.L.; Skjøth, F. Technical note: Quantifying and characterizing behavior in dairy calves using the IceTag automatic recording device. J. Dairy Sci. 2009, 92, 3397–3401. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, M.A.; Lowe, G.L.; Huddart, F.J.; Waas, J.R.; Stewart, M. Measurement of dairy calf behavior prior to onset of clinical disease and in response to disbudding using automated calf feeders and accelerometers. J. Dairy Sci. 2018, 101, 8208–8216. [Google Scholar] [CrossRef]
- Knauer, W.A.; Godden, S.M.; Dietrich, A.; Hawkins, D.M.; James, R.E. Evaluation of applying statistical process control techniques to daily average feeding behaviors to detect disease in automatically fed group-housed preweaned dairy calves. J. Dairy Sci. 2018, 101, 8135–8145. [Google Scholar] [CrossRef] [PubMed]
- Robles, V.; González, L.A.; Ferret, A.; Manteca, X.; Calsamiglia, S. Effects of feeding frequency on intake, ruminal fermentation, and feeding behavior in heifers fed high-concentrate diets. J. Anim. Sci. 2007, 85, 2538–2547. [Google Scholar] [CrossRef] [PubMed]
- Larson, R.L. Heifer Development. AABP Proc. 2000, 33, 98–111. [Google Scholar] [CrossRef]
- Le Cozler, Y.; Brachet, E.; Bourguignon, L.; Delattre, L.; Luginbuhl, T.; Faverdin, P. Three-Dimensional (3D) Imaging Technology to Monitor Growth and Development of Holstein Heifers and Estimate Body Weight, a Preliminary Study. Sensors 2022, 22, 4635. [Google Scholar] [CrossRef] [PubMed]
- Le Cozler, Y.; Allain, C.; Xavier, C.; Depuille, L.; Caillot, A.; Delouard, J.M.; Delattre, L.; Luginbuhl, T.; Faverdin, P. Volume and surface area of Holstein dairy cows calculated from complete 3D shapes acquired using a high-precision scanning system: Interest for body weight estimation. Comput. Electron. Agric. 2019, 165, 104977. [Google Scholar] [CrossRef]
- Rutten, C.J.; Steeneveld, W.; Oude Lansink, A.G.J.M.; Hogeveen, H. Delaying investments in sensor technology: The rationality of dairy farmers’ investment decisions illustrated within the framework of real options theory. J. Dairy Sci. 2018, 101, 7650–7660. [Google Scholar] [CrossRef]
- Wathes, D.C.; Brickell, J.S.; Bourne, N.E.; Swali, A.; Cheng, Z. Factors influencing heifer survival and fertility on commercial dairy farms. Animal 2008, 2, 1135–1143. [Google Scholar] [CrossRef]
- Johnson, K.F.; Chancellor, N.; Burn, C.C.; Wathes, D.C. Analysis of pre-weaning feeding policies and other risk factors influencing growth rates in calves on 11 commercial dairy farms. Animal 2018, 12, 1413–1423. [Google Scholar] [CrossRef]
- Akins, M.S. Dairy Heifer Development and Nutrition Management. Vet. Clin. Food Anim. Pract. 2016, 32, 303–317. [Google Scholar] [CrossRef] [PubMed]
- Lensink, B.J.; Veissier, I.; Florand, L. The farmers’ influence on calves’ behaviour, health and production of a veal unit. Anim. Sci. 2001, 72, 105–116. [Google Scholar] [CrossRef]
- Palczynski, L.J.; Bleach, E.C.L.; Brennan, M.L.; Robinson, P.A. Youngstock Management as “The Key for Everything”? Perceived Value of Calves and the Role of Calf Performance Monitoring and Advice on Dairy Farms. Front. Anim. Sci. 2022, 3, 835317. [Google Scholar] [CrossRef]
- Regler, F.; Ziegler, K.; Förster, T.; Hemmert, K.; Koch, C.; Sauerwein, H.; Bernhardt, H. Closing data-gaps between calves and cows: Conceptualization of a specified sensor system for data acquisition in calf and heifer husbandry. In Proceedings of the AgEng-Land.Technik 2022: International Conference on Agricultural Engineering, Berlin, Germany, 22–23 November 2022; VDI Verlag GmbH: Düsseldorf, Germany, 2022; pp. 387–395, ISBN 978-3-18092406-9. [Google Scholar]
- Cole, J.B.; Dürr, J.W.; Nicolazzi, E.L. Invited review: The future of selection decisions and breeding programs: What are we breeding for, and who decides? J. Dairy Sci. 2021, 104, 5111–5124. [Google Scholar] [CrossRef]
- Bubble Group Inc. bubble.io; Bubble Group Inc.: New York, NY, USA, 2024. [Google Scholar]
- Förster-Technik GmbH. CalfCloud; Förster-Technik GmbH: Gerwigstrasse, Germany, 2024. [Google Scholar]
- Hammon, H.M.; Liermann, W.; Frieten, D.; Koch, C. Review: Importance of colostrum supply and milk feeding intensity on gastrointestinal and systemic development in calves. Animal 2020, 14, s133–s143. [Google Scholar] [CrossRef] [PubMed]
- Besser, T.E.; Gay, C.C. The importance of colostrum to the health of the neonatal calf. Vet. Clin. N. Am. Food Anim. Pract. 1994, 10, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Cantor, M.C.; Pertuisel, C.H.; Costa, J.H.C. Technical note: Estimating body weight of dairy calves with a partial-weight scale attached to an automated milk feeder. J. Dairy Sci. 2020, 103, 1914–1919. [Google Scholar] [CrossRef]
- Förster-Technik GmbH. CalfApp-VITAL; Förster-Technik GmbH: Gerwigstrasse, Germany, 2024. [Google Scholar]
- Biesheuvel, M.M.; Santman-Berends, I.M.; Barkema, H.W.; Ritter, C.; Berezowski, J.; Guelbenzu, M.; Kaler, J. Understanding Farmers’ Behavior and Their Decision-Making Process in the Context of Cattle Diseases: A Review of Theories and Approaches. Front. Vet. Sci. 2021, 8, 687699. [Google Scholar] [CrossRef]
- van Arendonk, J.A. Management Guides for Insemination and Replacement Decisions. J. Dairy Sci. 1988, 71, 1050–1057. [Google Scholar] [CrossRef]
- van Arendonk, J. Studies on the replacement policies in dairy cattle. II. Optimum policy and influence of changes in production and prices. Livest. Prod. Sci. 1985, 13, 101–121. [Google Scholar] [CrossRef]
- Záhradník, M.; Pokrivčák, J. Decision support tool for replacement heifer management: A strategy comparison. In Proceedings of the International Scientific Days 2016: The Agri-Food Value Chain: Challenges for Natural Resources Management and Society: Proceedings, Nitra, Slovakia, 19–20 May 2016; Slovak University of Agriculture: Nitra, Slovakia, 2016; pp. 1002–1008, ISBN 9788055215037. [Google Scholar]
- Arnade, C.A.; Jones, K.G. Modeling the Cattle Replacement Decisions. 2003. Available online: https://ageconsearch.umn.edu/record/21960/ (accessed on 10 August 2022).
- Regler, F. CHN—Auswertungsmatrix; Bubble Group Inc.: New York, NY, USA, 2023. [Google Scholar]
- Collier, R.J.; Beede, D.K.; Thatcher, W.W.; Israel, L.A.; Wilcox, C.J. Influences of Environment and Its Modification on Dairy Animal Health and Production. J. Dairy Sci. 1982, 65, 2213–2227. [Google Scholar] [CrossRef] [PubMed]
- van Os, J.; Reuscher, K.; Dado-Senn, B.; Laporta, J. Thermal stress impacts on calf welfare. JDS Commun. 2023. [Google Scholar] [CrossRef]
- Dunn, T.R.; Ollivett, T.L.; Renaud, D.L.; Leslie, K.E.; LeBlanc, S.J.; Duffield, T.F.; Kelton, D.F. The effect of lung consolidation, as determined by ultrasonography, on first-lactation milk production in Holstein dairy calves. J. Dairy Sci. 2018, 101, 5404–5410. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Regler, F.; Bernhardt, H. Standardized Decision-Making for the Selection of Calf and Heifer Rearing Using a Digital Evaluation System. Agriculture 2024, 14, 272. https://doi.org/10.3390/agriculture14020272
Regler F, Bernhardt H. Standardized Decision-Making for the Selection of Calf and Heifer Rearing Using a Digital Evaluation System. Agriculture. 2024; 14(2):272. https://doi.org/10.3390/agriculture14020272
Chicago/Turabian StyleRegler, Fredrik, and Heinz Bernhardt. 2024. "Standardized Decision-Making for the Selection of Calf and Heifer Rearing Using a Digital Evaluation System" Agriculture 14, no. 2: 272. https://doi.org/10.3390/agriculture14020272
APA StyleRegler, F., & Bernhardt, H. (2024). Standardized Decision-Making for the Selection of Calf and Heifer Rearing Using a Digital Evaluation System. Agriculture, 14(2), 272. https://doi.org/10.3390/agriculture14020272