Efficacy and Phytotoxicity of Sulfur Dioxide Fumigation for Postharvest Control of Western Flower Thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), on Select Fresh Fruit and Vegetables
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insect and Materials
2.2. SO2 Fumigation of Western Flower Thrips
2.3. SO2 Fumigation of Fresh Produce
2.4. Data Analysis
3. Results
4. Discussions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Howe, R.W. Problems in the laboratory investigation of the toxicity of phosphine to stored product insects. J. Stored Prod. Res. 1974, 10, 167–181. [Google Scholar] [CrossRef]
- Hole, B.D.; Bell, C.H.; Mills, K.A.; Goodship, G. The toxicity of phosphine to all developmental stages of thirteen species of stored product beetles. J. Stored Prod. Res. 1976, 12, 235–244. [Google Scholar] [CrossRef]
- Liu, Y.-B. Oxygen enhances phosphine toxicity for postharvest pest control. J. Econ. Entomol. 2011, 104, 1455–1461. [Google Scholar] [CrossRef] [PubMed]
- Bell, C.H.; Savvidou, N.; Wontner Smith, T.J. The toxicity of sulfuryl fluoride (Vikane) to eggs of insect pests of flour mills. In Proceedings of the 7th International Working Conference on Stored-Product Protection (IWCSPP), Beijing, China, 14–19 October 1998; Sichuan Publishing House of Science and Technology: Chengdu, China, 1999; Volume 1, pp. 345–350, ISBN 7536440987. [Google Scholar]
- Aung, L.H.; Leesch, J.G.; Jenner, J.F.; Grafton-Cardwell, E.E. Effects of carbonyl sulfide, methyl iodide, and sulfuryl fluoride on fruit phytotoxicity and insect mortality. Ann. Appl. Biol. 2001, 139, 93–100. [Google Scholar] [CrossRef]
- Pupin, F.; Bikoba, V.; Biasi, W.B.; Pedroso, G.M.; Ouyang, Y.; Grafton-Cardwell, E.E.; Mitcham, E.J. Postharvest control of western flower thrips (Thysanoptera: Thripidae) and California red scale (Hemiptera: Diaspididae) with ethyl formate and its impact on citrus fruit quality. J. Econ. Entomol. 2013, 106, 2341–2348. [Google Scholar] [CrossRef] [PubMed]
- Bikoba, V.N.; Pupin, F.; Biasi, W.V.; Rutaganira, F.U.; Mitcham, E.J. Use of ethyl formate fumigation to control adult bean thrips in navel oranges. J. Econ. Entomol. 2019, 112, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Zoffoli, J.P.; Michelow, P.; Naranjo, P. Sensitivity of fruit species to ethyl formate fumigation under quarantine concentrations. Acta Hort. 2013, 1012, 763–767. [Google Scholar] [CrossRef]
- Kyung, Y.; Kim, H.K.; Cho, S.W.; Kim, B.-S.; Yang, J.-O.; Koo, H.-N.; Kim, G.-H. Comparison of the efficacy and phytotoxicity of phosphine and ethyl formate for controlling Pseudococcus longispinus (Hemiptera: Pseudococcidae) and Pseudococcus orchidicola on imported foliage nursery plants. J. Econ. Entomol. 2019, 112, 2149–2156. [Google Scholar] [CrossRef]
- Liu, Y.-B.; Oh, S.; Yang, X. Nitric oxide fumigation for postharvest control of pests and pathogens. In Proceedings of the 11th International Conference on Controlled Atmosphere and Fumigation in Stored Products (CAF2020), Winnipeg, MB, Canada, 23–28 August 2020; CAF Permanent Committee Secretariat: Winnipeg, MB, Canada, 2021; pp. 288–295. [Google Scholar]
- Smilanick, J.L.; Harvey, J.M.; Hartsell, P.L.; Henson, D.J.; Harris, C.M.; Fouse, D.C.; Assemi, M. Influence of sulfur dioxide fumigant dose on residues and control of postharvest decay of grapes. Plant Disease 1990, 74, 418–421. [Google Scholar] [CrossRef]
- Luvisi, D.A.; Shorey, H.H.; Smilanick, J.L.; Thompson, J.F.; Gump, B.H.; Knutson, J. Sulfur Dioxide Fumigation of Table Grapes. Bulletin 1932; Division of Agriculture and Nature Resources, University of California: Oakland, CA, USA, 1992. [Google Scholar]
- Magan, N.; Aldred, D. Post-harvest control strategies: Minimizing mycotoxins in the food chain. Intl. J. Food Microbiol. 2007, 119, 131–139. [Google Scholar] [CrossRef]
- Stejskal, V.; Vendl, T.; Aulicky, R.; Athanassiou, C. Synthetic and natural insecticides: Gas, liquid gel, gel and solid formulations for stored-product and food-industry pest control. Insects 2021, 12, 590. [Google Scholar] [CrossRef] [PubMed]
- Vail, P.V.; Tebbets, J.S.; Smilanick, J. Sulfur dioxide control of omnivorous leafroller in the laboratory. Insect Acaricide Tests 1991, 17, 371–372. [Google Scholar] [CrossRef]
- Mitcham, E.J.; Zhou, S. Control of grape mealybug using carbon dioxide and sulfur dioxide. In Proceedings of the International Research Conference Methyl Bromide Alternative and Emissions Reductions, Orlando, FL, USA, 7–9 December 1998; pp. 1–67. [Google Scholar]
- Mitcham, E.J.; Simpson, T.; Biasi, W.; Ahmadi, H.; Bikoba, V.; Leesch, J.; Tebbets, S.; Tebbets, J. Quality of ‘Thompson Seedless’ table grapes fumigated with CO2 + SO2 and methyl bromide. Acta Hort. 2005, 687, 209–211. [Google Scholar] [CrossRef]
- Liu, Y.-B. Sulfur dioxide fumigation for postharvest control of mealybugs on harvested table grapes. J. Econ. Entomol. 2019, 112, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-B. Efficacy and sorption of sulfur dioxide as a fumigant for control of navel orangeworm (Amyelois transitella) on stored pistachios. J. Stored Prod. Res. 2023, 102, 102109. [Google Scholar] [CrossRef]
- Hubhachen, Z.; Fanning, P.D.; Abeli, P.; Perkins, J.A.; Isaacs, R.; Beaudry, R.M. Postharvest control of spotted wing drosophila and blueberry maggot by low temperature conditions and fumigation with sulfur dioxide. Postharvest Biol. Technol. 2023, 204, 112412. [Google Scholar] [CrossRef]
- Reitz, S.R.; Gao, Y.; Kirk, W.D.J.; Hoddle, M.S.; Leiss, K.A.; Funderburk, J.E. Invasion biology, ecology, and management of western flower thrips. Annu. Rev. Entomol. 2020, 65, 17–37. [Google Scholar] [CrossRef] [PubMed]
- Australian Government Department of Agriculture and Water Resources. Final Group Pest Risk Analysis for Thrips and Orthotospoviruses on Fresh Fruit, Vegetable, Cut-Flower and Foliage Imports; Department of Agriculture and Water Resources: Canberra, ACT, Australia, 2017. [Google Scholar]
- Liu, Y.-B. Low temperature phosphine fumigation for postharvest control of western flower thrips (Thysanoptera: Thripidae) on lettuce, broccoli, asparagus, and strawberry. J. Econ. Entomol. 2008, 101, 1786–1791. [Google Scholar] [CrossRef]
- Liu, Y.-B. Semi-commercial ultralow oxygen treatment for control of western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae), on harvested iceberg lettuce. Postharvest Biol. Technol. 2011, 59, 138–142. [Google Scholar] [CrossRef]
- Liu, Y.-B. Nitric oxide fumigation for control of western flower thrips and its safety to postharvest quality of fresh fruit and vegetables. J. Asia-Pacific. Entomol. 2016, 19, 1191–1195. [Google Scholar] [CrossRef]
- SAS Institute. JMP Statistic Discovery Software v16; SAS Institute Inc.: Cary, NC, USA, 2021. [Google Scholar]
- Ananthakrishnan, T.N. Bionomics of thrips. Annu. Rev. Entomol. 1993, 38, 71–92. [Google Scholar] [CrossRef]
- Shepherd, T.; Griffiths, D.W. The effects of stress on plant cuticular waxes. New Phytol. 2006, 171, 469–499. [Google Scholar] [CrossRef]
- Bainard, L.D.; Isman, B.M.; Upadhyaya, M.K. Phytotoxicity of clove oil and its primary constituent eugenol and the role of leaf epicuticular wax in the susceptibility to these essential oils. Weed Sci. 2006, 54, 833–837. [Google Scholar] [CrossRef]
- Scora, R.W.; Wolstenholme, B.N.; Lavi, U. Taxonomy and botany. In The Avocado: Botany, Production and Uses; Whiley, A.W., Schaffer, B., Wolstenholme, B.N., Eds.; CAB Publishing: Wallingford, UK, 2002; pp. 15–37. [Google Scholar]
- Singh, V.; Gamrasni, D.; Arie, R.B.; Naschitz, S.; Friedman, H. Identification of open lenticels in apples after harvest in relation to lenticel breakdown development during storage. Postharvest Biol. Technol. 2016, 121, 165–170. [Google Scholar] [CrossRef]
Time (min) | SO2 (%) | Rep | Total | Mortality (%) Mean ± SE | ANOVA | |
---|---|---|---|---|---|---|
Start | End | |||||
30 | 0.1 | 0.081 | 9 | 166 | 38.62 ± 7.27 b | df = 4, 40 |
0.2 | 0.176 | 9 | 164 | 94.67 ± 2.16 a | F = 53.3264 | |
0.3 | 0.263 | 9 | 165 | 98.86 ± 0.75 a | P < 0.0001 | |
0.5 | 0.432 | 9 | 179 | 100 a | ||
Control | 9 | 157 | 18.95 ± 9.55 c | |||
60 | 0.1 | 0.074 | 13 | 258 | 87.12 ± 4.13 b | df = 3, 49 |
0.2 | 0.168 | 13 | 272 | 99.73 ± 0.28 a | F = 128.6937 | |
0.3 | 0.259 | 13 | 261 | 100 a | P < 0.0001 | |
Control | 14 | 260 | 15.20 ± 3.89 c |
Product | Treatment | Rep | L* | a* | b* |
---|---|---|---|---|---|
Green | SO2 | 8 | 62.02 ± 1.24 | −10.20 ± 0.24 | 41.6 ± 1.05 |
apple | Control | 8 | 60.93 ± 0.85 | −10.87 ± 0.15 | 41.90 ± 1.28 |
ANOVA | F= | 0.5190 | 5.5648 | 0.0281 | |
df = 1, 14 | P= | 0.4831 | 0.0334 | 0.6693 | |
Yellow | SO2 | 8 | 74.26 ± 0.87 | −3.08 ± 0.71 | 47.32 ± 0.69 |
apple | Control | 8 | 74.06 ± 0.72 | −3.15 ± 0.50 | 47.43 ± 0.73 |
ANOVA | F= | 0.0311 | 0.0055 | 0.0125 | |
df = 1, 14 | P= | 0.8625 | 0.9418 | 0.9126 | |
Navel | SO2 | 12 | 65.93 ± 0.41 | 33.50 ± 0.51 | 64.09 ± 1.12 |
orange | Control | 12 | 64.57 ± 1.70 | 32.74 ± 0.78 | 65.40 ± 0.69 |
ANOVA | F= | 0.5989 | 0.6584 | 0.9856 | |
df = 1, 22 | P= | 0.4473 | 0.4258 | 0.3316 | |
Green | SO2 | 9 | 37.16 ± 0.65 | −8.90 ± 0.18 | 22.05 ± 0.99 |
pepper | Control | 9 | 37.16 ± 0.76 | −8.75 ± 0.23 | 21.10 ± 1.24 |
ANOVA | F= | 0.0000 | 0.2457 | 0.3631 | |
df = 1, 16 | P= | 0.9977 | 0.6268 | 0.5553 | |
Red pepper | SO2 | 9 | 32.64 ± 0.88 | 30.57 ± 1.23 | 17.23 ± 1.03 |
Control | 9 | 33.44 ± 0.72 | 31.26 ± 1.21 | 17.26 ± 1.12 | |
ANOVA | F= | 0.4904 | 0.1592 | 0.0004 | |
df = 1, 16 | P= | 0.4938 | 0.6952 | 0.9837 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.-B. Efficacy and Phytotoxicity of Sulfur Dioxide Fumigation for Postharvest Control of Western Flower Thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), on Select Fresh Fruit and Vegetables. Agriculture 2024, 14, 305. https://doi.org/10.3390/agriculture14020305
Liu Y-B. Efficacy and Phytotoxicity of Sulfur Dioxide Fumigation for Postharvest Control of Western Flower Thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), on Select Fresh Fruit and Vegetables. Agriculture. 2024; 14(2):305. https://doi.org/10.3390/agriculture14020305
Chicago/Turabian StyleLiu, Yong-Biao. 2024. "Efficacy and Phytotoxicity of Sulfur Dioxide Fumigation for Postharvest Control of Western Flower Thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), on Select Fresh Fruit and Vegetables" Agriculture 14, no. 2: 305. https://doi.org/10.3390/agriculture14020305
APA StyleLiu, Y. -B. (2024). Efficacy and Phytotoxicity of Sulfur Dioxide Fumigation for Postharvest Control of Western Flower Thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), on Select Fresh Fruit and Vegetables. Agriculture, 14(2), 305. https://doi.org/10.3390/agriculture14020305