Simulation Analysis and Multiobjective Optimization of Pulverization Process of Seed-Used Watermelon Peel Pulverizer Based on EDEM
Abstract
:1. Introduction
2. The Calibration of the Model Parameters of Seed-Used Watermelon Peel and the Construction of the Simulation Model
2.1. The Calibration of Model Parameters of Seed-Used Watermelon Peel
2.1.1. Mechanical Performance Tests
2.1.2. The Calibration of Mechanical Parameters
2.1.3. The Calibration of Contact Parameters
2.2. Whole Machine Structure of Pulverizer and Discrete Element Modeling of Seeded Melon Peels
2.2.1. Whole Machine Structure
2.2.2. The Discrete Element Method (DEM)
3. Design of Pulverization Performance Simulation Test
3.1. The Simulation Testing and Validation
3.2. RSM Test Scheme Design
3.3. Multiobjective Optimization Based on Hybrid Metacellular Genetic Algorithm CellDE
3.4. The ANOVA Model
4. The Crushing Performance Simulation Test Analysis
4.1. The Simulation Analysis of the Original Working State
4.2. ANOVA of Influencing Factors
4.3. Crushing Performance Analysis
4.3.1. Analysis of the Percentage of Particle Size Less Than 8 mm
4.3.2. The Analysis of Pulverizing Efficiency
4.3.3. The Analysis of Power Density
4.4. Parameter Optimization and Verification Analysis
4.4.1. The Establishment of Prediction Model and Multiobjective Optimization Analysis
Model | Mean Square | F-Value | p-Value | R2 |
---|---|---|---|---|
Psv | 237.30 | 34.07 | <0.05 | 0.98 |
Ge | 260.47 | 10.36 | <0.05 | 0.93 |
Ppd | 578.68 | 6.50 | <0.05 | 0.83 |
4.4.2. Prototype Crushing Performance Test and Verification Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Z. Design and Research of Seed-Used Watermelon Crushing Separator; Gansu Agricultural University: Lanzhou, China, 2019. [Google Scholar]
- Chang, B.; Wu, J.F.; Huang, X.P. Design of Seed-Used Watermelon Double-Pass Beater. For. Mach. Woodwork. Equip. 2021, 49, 29–33, 39. [Google Scholar]
- Ding, H.B.; Wu, L.; Zang, Z.P.; Xu, Y.R.; Huang, X.P.; Wu, J.F. Study on microwave vacuum drying characteristics and quality of Seed-used Watermelon solids. J. Chin. Agric. Mech. 2023, 44, 88–94. [Google Scholar]
- Sun, H.; Li, S.Y.; Huang, X.P.; Wu, J.F.; Wang, F.X. Discrete element model construction and seed-flesh separation process of seed gourd. J. Northwest A&F Univ. (Nat. Sci. Ed.) 2022, 50, 144–154. [Google Scholar]
- Xu, Y.F.; Zhang, X.L.; Wu, S.; Chen, C.; Wang, J.Z.; Yuan, S.Q.; Chen, B.; Li, P.P.; Xu, R.J. Numerical simulation of particle motion at cucumber straw grinding process based on EDEM2022. Int. J. Agric. Biol. Eng. 2020, 13, 227–235. [Google Scholar]
- Hu, J.M. Design Optimization of Hammer Blade Crusher to Improve the Crushing Performance. J. Eng. Res. Rep. 2023, 25, 143–152. [Google Scholar]
- Iskenderov, R.; Lebedev, A.; Zacharin, A. Constructive and regime parameters of horizontal impact crusher of grain materials. IOP Conf. Ser. Earth Environ. Sci. 2019, 403, 012057. [Google Scholar] [CrossRef]
- Zhang, T.; Zhao, M.Q.; Liu, F.; Tian, H.Q.; Wulan, T.; Li, D.P. A discrete element method model of corn stalk and its mechanical characteristic parameters. BioResources 2020, 15, 9337–9350. [Google Scholar] [CrossRef]
- Zhai, Z.P.; Yuan, D.H.; Lan, Y.Z.; Zhao, H.X. Reliability analysis and optimization of the hammer rotor of forage crusher under multiple failure modes. J. Mech. Sci. Technol. 2023, 37, 5103–5115. [Google Scholar] [CrossRef]
- Zhang, B.Y.; Zhai, Z.P.; Lun, X.J.; Cui, H.M.; Lan, Y.Z. Test analysis and numerical simulation of noise from forage crushers. Appl. Acoust. 2022, 196, 108873. [Google Scholar] [CrossRef]
- Marczuk, A.; Blicharz-Kania, A.; Savinykh, P.A.; Isupov, A.Y.; Palichyn, A.V.; Ivanov, I.I. Studies of a Rotary–Centrifugal Grain Grinder Using a Multifactorial Experimental Design Method. Sustainability 2019, 11, 5362. [Google Scholar] [CrossRef]
- Wang, D.; Tian, H.Q.; Zhang, T.; He, C.B.; Liu, F. Dem Simulation and Experiment of Corn Grain Grinding Process. Eng. Agrícola 2021, 41, 559–566. [Google Scholar] [CrossRef]
- Chukwuezie, O.C.; Nwakuba, N.R.; Asoegwu, S.N. Performance Analysis of a Modified Laboratory Hammer Mill: Field Test Results from Different Tropical Crops. Polytechnica 2020, 3, 46–54. [Google Scholar] [CrossRef]
- Mugabi, R.; Byaruhanga, Y.B.; Eskridge, K.M.; Weller, C.L. Performance evaluation of a hammer mill during grinding of maize grains. Agric. Eng. Int. CIGR J. 2019, 21, 170–179. [Google Scholar]
- Braun, M.; Wecker, H.; Dunmire, K.; Evans, C.; Sodak, M.W.; Kapetanovich, M.; Shepherd, J.; Fisher, R.; Coble, K.; Stark, C.; et al. Evaluation of Hammermill Tip Speed, Air Assist, and Screen Hole Diameter on Ground Corn Characteristics. Processes 2021, 9, 65–69. [Google Scholar] [CrossRef]
- Chen, Z.R.; Wang, G.Q.; Xue, D.M.; Cui, D.A. Simulation and optimization of crushing chamber of gyratory crusher based on the DEM and GA. Powder Technol. 2021, 384, 36–50. [Google Scholar] [CrossRef]
- Quist, J.; Evertsson, C.M. Cone crusher modelling and simulation using DEM. Miner. Eng. 2016, 85, 92–105. [Google Scholar] [CrossRef]
- Johansson, M.; Quist, J.; Evertsson, M.; Hulthén, E. Cone crusher performance evalua-tion using DEM simulations and laboratory experiments for model validation. Miner. Eng. 2017, 103–104, 93–101. [Google Scholar] [CrossRef]
- Wu, F.B.; Ma, L.F.; Zhao, G.H.; Wang, Z.J. Chamber Optimization for Comprehensive Improvement of Cone Crusher Productivity and Product Quality. Math. Probl. Eng. 2021, 2021, 5516813. [Google Scholar] [CrossRef]
- Cheng, J.Y.; Ren, T.Z.; Zhang, Z.L.; Jin, X.; Liu, D.W. Influence of Two Mass Variables on Inertia Cone Crusher Performance and Optimization of Dynamic Balance. Minerals 2021, 11, 163. [Google Scholar] [CrossRef]
- Niu, X.D.; Wu, J.F.; Lu, X.H.; Pan, H.P. Studly on mechanical characteristics of seed watermelon and its fi-nitc element analysis. J. Chin. Agric. Mech. 2017, 38, 12–16. [Google Scholar]
- Li, C.Z.; Honeyands, T.; O’Dea, D.; Moreno-Atanasio, R. The angle of repose and size seg-regation of iron ore granules: DEM analysis and experimental investigation. Powder Technol. 2017, 320, 257–272. [Google Scholar] [CrossRef]
- Barr, J.B.; Desbiolles, J.M.; Fielke, J.M.; Ucgul, M. Development and fieldevaluation of a high-speed no–till seeding system. Soil Tillage Res. 2019, 194, 104337. [Google Scholar] [CrossRef]
- Song, X.F.; Dai, F.; Zhang, F.W. Calibration of DEM models for fertilizer particles based on numerical simulations and granular experiments. Comput. Electron. Agric. 2023, 204, 107507. [Google Scholar] [CrossRef]
- Myers, R.H.; Montgomery, D.C. Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 2nd ed.; Wiley: New York, NY, USA, 2002. [Google Scholar]
- Alba, E.; Dorronsoro, B.; Luna, F.; Nebro, A.J.; Bouvry, P.; Hogie, L. A cellular multi-objective genetic algorithm for optimal broadcasting strategy in metropolitan MANETs. Comput. Commun. 2007, 30, 685–697. [Google Scholar] [CrossRef]
- Nebro, A.J. MOCell: A cellular genetic algorithm for multiobjective optimization. Int. J. Intell. Syst. 2009, 24, 726–746. [Google Scholar] [CrossRef]
- Durillo, J.J.; Nebro, A.J.; Luna, F.; Alba, E. Solving three-objective optimization problems using a new hybrid cellular genetic algorithm. In Proceedings of the International Conference on Parallel Problem Solving from Nature, Dortmund, Germany, 13–17 September 2008; Springer: Berlin/Heidelberg, Germany, 2008; pp. 661–670. [Google Scholar]
- Price, K.; Storn, R.M.; Lampinen, J.A. Differential Evolution: A Practical Approach to Global Optimization; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Zitzler, E.; Laumanns, M.; Thiele, L. SPEA2: Improving the strength Pareto evolutionary algorithm. TIK-Rep. 2001, 103. [Google Scholar]
- Tang, Y.; Zhou, B.; Xie, W. Equivalence Analysis of Three Significant Tests of Univariate Linear Regression Equation. Stud. Coll. Math. 2022, 25, 76–78. [Google Scholar]
- Wang, J.; Dong, P. Effect of process parameters on the broken performance of a new vertical shaft counterattack crusher based on EDEM2022. J. Inn. Mong. Univ. Sci. Technol. 2020, 39, 27–32. [Google Scholar]
Ingredient | Parameter |
---|---|
Moisture content % | ≥94 |
Ash percentage % | 0.29 |
Density of outer layer of seed-used watermelon peel g mL | 0.79 |
Density of inner and middle layers of seed-used watermelon peel g/mL | 0.75~0.77 |
Total carbohydrate % | 2.1~3.0 |
Thickness of outer layer of seed-used watermelon peel mm | 1.5~3.0 |
Thickness of the middle layer of seed-used watermelon peel mm | 4.0~5.0 |
Thickness of the inner layer of seed-used watermelon peel mm | 4.0~5.0 |
Parameter Eigenvalues | Definition and Formula | Outer Layer of Seed-Used Watermelon Peel | Seed-Used Watermelon Peel Middle Layer | Seed-Used Watermelon Peel Lining |
---|---|---|---|---|
Rupture stress (MPa) | Fp | 1.31 ± 0.1 a | 0.40 ± 0.1 b | 0.61 ± 0.1 b |
Fault deformation (mm) | Dp | 2.01 ± 0.4 a | 2.86 ± 0.8 a | 2.36 ± 0.6 a |
Fracture slope (N/mm) | Ep = tanα | 12.48 ± 0.5 a | 2.79 ± 0.8 c | 5.07 ± 1.2 b |
Fracture work (N·mm) | 19.32 ± 1.3 a | 11.41 ± 1.6 b | 13.89 ± 1.7 b | |
Total fracture work (N·mm) | 25.37 ± 4.3 a | 24.28 ± 3.7 b | 25.81 ± 4.4 b |
Parameter Eigenvalues | Outer Layer of Seed−Used Watermelon Peel | Seed−Used Watermelon Peel Middle Layer | Seed−Used Watermelon Peel Lining |
---|---|---|---|
Hardness 1 (N) | 41.50 ± 2.5 a | 14.04 ± 1.5 c | 21.06 ± 2.0 b |
Hardness 2 (N) | 33.25 ± 2.3 a | 11.26 ± 1.4 b | 14.12 ± 1.7 b |
Elasticity | 0.33 ± 0 b | 0.68 ± 0.01 a | 0.70 ± 0.1 a |
Cohesiveness | 0.26 ± 0.0 a | 0.36 ± 0.03 a | 0.20 ± 0.01 a |
Reversion | 0.50 ± 0 a | 0.22 ± 0.01 b | 0.12 ± 0 b |
Initial modulus of elasticity (MPa) | 1.37 ± 0.3 a | 0.29 ± 0.1 b | 0.31 ± 0.1 b |
Parameter | Parameter Value |
---|---|
The normal stiffness per unit area (N/m) | 16,437 |
The coefficient of tangential stiffness (N/m) | 11,815 |
Critical normal stress (MPa) | 1.37 |
Critical tangential stress (MPa) | 1.1 |
Bonding radius (mm) | 3.0 |
Recovery Coefficient | Static Friction Coefficient | Coefficient of Rolling Friction | |
---|---|---|---|
Seeded melon peel and seeded melon peel | 0.30 | 0.25 | 0.05 |
Seeded melon peel vs. inner wall | 0.52 | 0.50 | 0.03 |
Seeded melon peel and hammer blade | 0.49 | 0.50 | 0.03 |
Technical Index/Units (mm × mm × mm) | Numerical Value |
---|---|
Boundary dimension (length × width × height) | 1750 × 620 × 900 |
Equipment total weight/kg | 728 |
Size and number of hammer pieces (length × width × thickness) | (150 × 50 × 6) 108 |
Feed inlet size | 250 × 528 |
Seed-used watermelon peel size range | <300 |
Motor power/kW | 18.5 |
Mesh size | 6 |
Diameter of fragment room | 520 |
Parameters | Test Values for Percentage of Particle Size Less Than 8 mm | Simulated Values for Percentage of Particle Size Less Than 8 mm | Relative Error % |
---|---|---|---|
Spindle speed n (r/min) | 83 | 85 | 2.41 |
Hammer number x | 84 | 87 | 3.57 |
Feeding quantity t (kg/min) | 81 | 85 | 4.93 |
Level | MSS, n (r/min) | NCB, x | FQ, t (kg/min) |
---|---|---|---|
1 | 1000 | 60 | 100 |
0 | 1500 | 84 | 150 |
−1 | 2000 | 108 | 200 |
Test No. | Influence Factor | Evaluation Indexes of Crushing Performance | ||||
---|---|---|---|---|---|---|
x1 | x2 | x3 | y1 | y2 | y3 | |
(MSS, n)/(r/min) | (NCB, x) | (FQ, t)/(kg/min) | Psv (%) | Ge (%) | Ppd × 10−3 (t/h·kw) | |
1 | 1 | 0 | −1 | 97 | 92 | 13 |
2 | 0 | 1 | 1 | 95 | 82 | 23 |
3 | 0 | 0 | 0 | 76 | 72 | 29 |
4 | 0 | −1 | 1 | 75 | 65 | 17 |
5 | −1 | 0 | 1 | 95 | 85 | 55 |
6 | 0 | 0 | 0 | 71 | 61 | 29 |
7 | 0 | 0 | 0 | 71 | 61 | 29 |
8 | 0 | 1 | −1 | 85 | 69 | 13 |
9 | −1 | 0 | −1 | 85 | 64 | 73 |
10 | 1 | −1 | 0 | 76 | 71 | 12 |
11 | 0 | −1 | −1 | 69 | 64 | 20 |
12 | −1 | −1 | 0 | 62 | 72 | 19 |
13 | 1 | 1 | 0 | 96 | 96 | 18 |
14 | 0 | 0 | 0 | 71 | 61 | 29 |
15 | −1 | 1 | 0 | 81 | 76 | 58 |
16 | 0 | 0 | 0 | 71 | 61 | 29 |
17 | 1 | 0 | 1 | 98 | 97 | 18 |
Factor Intercept | Psv (%) | Ge (%) | Ppd × 10−3 (t/h·kw) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Coefficient | Mean Square | F-Value | p-Value | Coefficient | Mean Square | F-Value | p-Value | Coefficient | Mean Square | F-Value | p-Value | |
MSS | 72.00 | 242.00 | 34.75 | 0.0006 | 7.38 | 435.13 | 17.30 | 0.0042 | −18.00 | 2592.00 | 28.94 | 0.0010 |
NCB | 5.50 | 703.13 | 100.96 | <0.0001 | 6.38 | 325.13 | 12.93 | 0.0088 | 5.50 | 242.00 | 2.70 | 0.1442 |
FQ | 9.38 | 91.12 | 13.08 | 0.0085 | 5.00 | 200.00 | 7.95 | 0.0258 | −0.75 | 4.50 | 0.050 | 0.8290 |
MSS·NCB | 3.38 | 0.25 | 0.036 | 0.8551 | 5.25 | 110.25 | 4.38 | 0.0746 | −8.25 | 272.25 | 3.04 | 0.1248 |
MSS·FQ | 0.25 | 20.25 | 2.91 | 0.1319 | −4.00 | 64.00 | 2.54 | 0.1547 | 5.75 | 132.25 | 1.48 | 0.2637 |
NCB·FQ | −2.25 | 4.00 | 0.57 | 0.4733 | 3.00 | 36.00 | 1.43 | 0.2705 | 3.25 | 42.25 | 0.47 | 0.5143 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mou, X.; Wan, F.; Wu, J.; Luo, Q.; Xin, S.; Ma, G.; Zhou, X.; Huang, X.; Peng, L. Simulation Analysis and Multiobjective Optimization of Pulverization Process of Seed-Used Watermelon Peel Pulverizer Based on EDEM. Agriculture 2024, 14, 308. https://doi.org/10.3390/agriculture14020308
Mou X, Wan F, Wu J, Luo Q, Xin S, Ma G, Zhou X, Huang X, Peng L. Simulation Analysis and Multiobjective Optimization of Pulverization Process of Seed-Used Watermelon Peel Pulverizer Based on EDEM. Agriculture. 2024; 14(2):308. https://doi.org/10.3390/agriculture14020308
Chicago/Turabian StyleMou, Xiaobin, Fangxin Wan, Jinfeng Wu, Qi Luo, Shanglong Xin, Guojun Ma, Xiaoliang Zhou, Xiaopeng Huang, and Lizeng Peng. 2024. "Simulation Analysis and Multiobjective Optimization of Pulverization Process of Seed-Used Watermelon Peel Pulverizer Based on EDEM" Agriculture 14, no. 2: 308. https://doi.org/10.3390/agriculture14020308
APA StyleMou, X., Wan, F., Wu, J., Luo, Q., Xin, S., Ma, G., Zhou, X., Huang, X., & Peng, L. (2024). Simulation Analysis and Multiobjective Optimization of Pulverization Process of Seed-Used Watermelon Peel Pulverizer Based on EDEM. Agriculture, 14(2), 308. https://doi.org/10.3390/agriculture14020308