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Abstract: In this study, the influence of genotype (G), environment (E), and their interaction (G × E)
on the content of total free phenolic compounds (TPC) and the antioxidant capacity (AC) was
investigated, using sixteen durum wheat genotypes cultivated under seven crop management systems
in Mediterranean environments. Possible correlations between TPC and AC with protein content
(PC) and vitreous kernel percentage (VKP) were examined. Gs that exhibited stability across diverse
conditions were studied through a comprehensive exploration of G × E interaction using a GGE
biplot, Pi, and
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Shukla’s stability variance, σ2i 

In 1972, Shukla [34] proposed the stability variance of genotype i, defined as its vari-

ance across environments after accounting for the main effects of environmental means. 

According to this statistic, genotypes with the lowest values are more stable. 

Deviation from regression, S2di 

The utilization of the variance of deviations from the regression (S2di) has been pro-

posed as one of the prominent parameters in the selection of stable genotypes. Genotypes 

with an S2di = 0 are considered the most stable, whereas an S2di > 0 would indicate lower 

stability across all environments. Hence, genotypes with lower values are the most desir-

able. 

Kang’s Genotypes with a rank-sum, KR 

Kang’s rank-sum method [47] utilizes yield and σ2i (variance) as selection criteria. 

This approach assigns equal weight to yield and stability statistics in identifying high-

yielding and stable genotypes. The genotype achieving the highest yield and the lowest 

σ2i is given a rank of one. Subsequently, the ranks for yield and stability variance are com-

bined for each genotype. Genotypes with the lowest rank-sum are regarded as the most 

desirable. 

The GGE biplot model is grounded in the singular value decomposition of the first 

two principal components [28], as follows: 

𝑦𝑖𝑗 − 𝜇 − 𝛽𝑗 = 𝜆1𝜉𝑖1𝜂𝑗1 + 𝜆2𝜉𝑖2𝜂𝑗2 + 𝜀𝑖𝑗  

where 𝑦𝑖𝑗 is the measured mean of genotype i in environment j, μ is the grand mean, 𝛽𝑗 is 

the main effect of environment j, 𝜆1 and 𝜆2 are the singular values for the first and second 

principal component (PC1 and PC2, respectively), 𝜉1 and 𝜉2 are eigenvectors of genotype 

i for PC1 and PC2, 𝜂1 and 𝜂2 are eigenvectors of environment j for PC1 and PC2, and 𝜀𝑖𝑗 is 

the residual associated with genotype i in environment j. 

. The results indicated significant impacts of E, G, and G × E on both TPC and
AC. Across E, the mean values of G for TPC, ABTS (2’-azino-bis-3-ethylbenzothiazoline-6-sulfonic
acid), DPPH (2,2-diphenyl-1-picrylhydrazyl), and FRAP (ferric reducing antioxidant power) values
were 48.8 mg Trolox equivalents (TE)/100 g, 121.3 mg TE/100 g, 23.0 mg TE/100 g, and 88.4 mg
TE/100 g, respectively. E, subjected to splitting top-dressing N fertilization, consistently showed low
values, while the late-sowing ones possessed high values. Organic crop management maintained a
stable position in the middle across all measurements. The predominant influence was attributed
to G × E, as indicated by the order G × E > E > G for ABTS, DPPH, and FRAP, while for TPC, it
was E > G × E > G. For TPC, the superior Gs included G5, G7 and G10, for ABTS included G3, G5
and G7, and for protein included G1, G9, and G16. G7 and G5 had a high presence of frequency,
with G7 being the closest genotype to the ideal for both TPC and ABTS. These results suggest that
the sowing time, nitrogen fertilization, and application method significantly impact the various
antioxidant properties of durum wheat. This study holds significant importance as it represents one
of the few comprehensive explorations of the impact of various Es, Gs, and their interactions on
the TPC and AC in durum wheat, with a special emphasis on crop management and superior Gs
possessing stable and high TPC and AC among them, explored by GGE biplot, Pi and
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. Further
experimentation, considering the effect of the cultivation year, is necessary, to establish more robust
and stable conclusions.

Keywords: cultivars; antioxidant properties; phenolic compounds; protein; GGE biplot; stability
indices; cultivation practices; adaptation to climate change
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1. Introduction

In 2020, durum wheat (Triticum turgidum L. var durum Desf.) accounted for 6.2% of the
219 million hectares of grain cultivated worldwide [1,2]. Among the Mediterranean basin
countries, Greece, Italy, Algeria, and Tunisia have the highest proportions of durum wheat
to bread wheat acreage, reaching up to 85%. This demonstrates the excellent adaptability
of durum wheat to the climatic conditions of the Mediterranean area [2,3]. The durum
wheat kernel, which consists of three parts (bran, endosperm, and embryo), is typically
fractionated and, due to its vitreous nature, which differs from the bread wheat kernel,
is referred to as semolina [4–6]. Bread, couscous, bulgur, frekeh, noodles, and, most
importantly, pasta are the most renowned products made from durum wheat [5].

Consumer awareness of health-promoting foods has increased [7]. Many human
degenerative diseases are linked to reactive oxygen species and oxidative stress, and
antioxidant activity significantly impacts many diseases [8]. Polyphenols play a broader
role in the human body by regulating antioxidant enzyme gene transcription and being
involved in cell growth regulation, inflammation, etc. [9]. Furthermore, the activity of
transcription factors or microRNA modulation could be influenced by polyphenols [10].

Many plants with significant antioxidant activity are cultivated in the Mediterranean
basin, contributing to healthy living. These plants include Sideritis scardica, Melissa officinalis
L., Cannabis sativa L., and the Lamiaceae family. Nevertheless, these plants are consumed in
much smaller quantities than wheat [11–17]. Durum wheat contains significant amounts
of antioxidants, with whole wheat flours exhibiting higher antioxidant activity than their
corresponding white flours, primarily because the phenolic compounds are mainly found
in the bran [18–21]. Some by-product fractions of durum wheat have shown antioxidant
activity comparable to that of fruits and vegetables, likely due to fiber-bound phenolic com-
pounds [22,23]. Thus, the consumption of whole wheat flour may be beneficial for health.

Significant differences have been observed among different wheat genotypes (Gs) in
the amounts of phenolic acids, with trans-ferulic acid being the most abundant [7,18,24].
Beta et al. [25] noted an influence of the environment (E) on total phenolic compounds
(TPC) and antioxidant capacity (AC). G, E, G × E, and year all impact the TPC and the AC
of durum wheat. Most notably, the year affects the free phenolic acids, the environment by
year interactions affect the conjugated phenolic acids, and the G affects the bound phenolic
acids [26,27].

The interaction between G and performance, which varies across different Es (G × E
interaction-GEI), adds complexity to identifying superior genotypes. This complexity is
referred to as the crossover concept [28]. The primary goal is to obtain a G that consistently
has high and stable values for seed yield or other quality characteristics across a diverse
range of tested Es. Only then can it be asserted that a genotype is a superior selection with
high adaptability [26,29]. Various statistical tools have been developed to address G × E
interaction and crop stability.

Commonly used parametric models helping in the identification of superior Gs [30]
are the ASVi stability measure [31] from Additive Main effect Multiplicative Interaction
(AMMI) analysis [32], the G superiority Pi index [33], the stability variance (σ2

i ) [34], the
variance of deviations from regression (s2

di) [35] and the Kang’s rank-sum method (
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index) [36]. The GGE biplot analysis visualizes the interaction outcomes between G and E.
In its pursuit, the analysis has a dual objective: firstly, to pinpoint varieties that surpass
the average performance and demonstrate stability across multiple Es, and secondly, to
recommend the utilization of varieties exhibiting stability in specific Es [28].

Utilizing the GGE biplot model [28,37], a comprehensive visual representation of the
entire G × E interaction is offered. This involves a biplot that encapsulates both the average
yield performance and stability. Furthermore, the GGE plot distance between any given G
and the ideal G can be utilized to measure its desirability [28,37].

Nevertheless, there is a gap in existing research, as no prior study fully explores the
impact of these factors and their interactions on the antioxidant properties of durum wheat,
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with a focus on different crop management systems and the identification of superior Gs
possessing stable and high TPC and AC among them.

In our ongoing commitment to improving the health-related aspects of wheat, this
study assesses the impact of G, E, and G × E on the TPC and AC (DPPH, ABTS, and FRAP)
of durum wheat in Mediterranean environments. Specifically, the TPC and AC of sixteen
durum wheat genotypes under seven high/low input crop management systems were
investigated. Correlations between TPC and AC and their relationships with protein content
(PC) and vitreous kernel percentages (VKP) were also studied. Moreover, the genotypes
with the higher and more stable TPC and AC across the Es were identified through a
comparative examination with GGE biplot analysis and five parametric stability models.

2. Materials and Methods
2.1. Plant Material and Experimental Design

Experiments were conducted in the 2020–2021 growing season, evaluating sixteen
commercially available Gs (Table 1) across seven different Es (Table 2). These Gs were
selected considering their popularity among Greek growers, their potential for high yields,
and a comprehensive assessment of commercial factors to determine their adaptability.

Table 1. Origin, genealogy, and release date of the 16 genotypes.

Genotype Code Name of Genotype Country of Origin Genealogy Year Released

G1 Pigreco Italy Not available (NA) NA
G2 Canavaro Italy Coloseo/Simeto 2008
G3 Maestrale Italy Iride/Svevo 2004
G4 M. Aurelio Italy D95241/Arcobaleno/Svevo NA
G5 Meridiano Italy Simeto/WB881/Duilio/F21 1999
G6 Mexicali-81 Greece Selection from Mexicali 75 1981
G7 Monastir France Not Available (NA) NA
G8 Simeto Italy Capeiti 8/Valnova 1988
G9 Svevo Italy Linea Cimmyt/Zenith 1996

G10 Vendeta Italy Creso/Ofanto 2003
G11 Egeo Italy Claudio/v80 NA
G12 Elpida Greece Sifnos/Mexicali-81 2010
G13 Zoi Greece Simeto /Mexicali-81 2011
G14 Secolo Italy NA NA
G15 Grecale Italy NA NA
G16 Zeta E. Greece NA NA

The seven Es (Table 2) that were evaluated include the following:

1. Thermi-typical fertilization/typical sowing time (mid-November). With typical fertil-
ization (total N amount of 180 kg ha−1), one-third of which was applied (ammonium
phosphate 20-10-0) before sowing and two-thirds (ammonium nitrate 33.5-0-0) at full
tillering (Zadok 29). (High-productivity environment);

2. Thermi-organic field (no fertilization)/typical sowing time; low-productivity environ-
ment);

3. Thermi-typical fertilization/late sowing time, i.e., end of January. All the other agro-
nomic treatments were identically applied to all plots. (Low-productivity environment);

4. Thermi-splitting topdressing N fertilization/typical sowing time. Splitting topdress-
ing N fertilization involved splitting one-third (ammonium phosphate 20-10-0) before
sowing, one-third (ammonium nitrate 33.5-0-0) at full tillering (Zadok 29), and one-
third during the first node (Zadok 31). (High-productivity environment);

5. Thermi-splitting topdressing N fertilization/late sowing time (as described above).
(High-productivity environment);
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Table 2. Soil and climatic characteristics of seven evaluation environments.

Code Location Latitude/
Longitude

Climate
Type

PrA 2

(mm)
PrA-M 3

(mm)
T 4

(◦C) Prod. 5 Fertilization 6 Planting Date Soil
Texture 7 pH (1:1) EC 8 SOM 9

%
POlsen

mg kg−1

E1
Thermi/typical

fertilization/typical
sowing date

40◦54′ N/
23◦00′ E BSk 1 343.6 45.4 12.8 HP Typical Typical L 7.89 0.516 1.8 12.28

E2
Thermi-

Organic/typical
sowing date

40◦54′ N/
23◦00′ E BSk 343.6 45.4 12.8 LP Organic Typical L 7.67 0.585 2.5 22.47

E3
Thermi-typical

fertilization/late
sowing

40◦54′ N/
23◦00′ E BSk 343.6 45.4 12.8 LP Typical Late sowing L 7.84 0.681 1.8 18.29

E4
Thermi-splitting

fertilization/typical
sowing date

40◦54′ N/
23◦00′ E BSk 343.6 45.4 12.8 HP

Splitting
topdressing
application

Typical L 8.14 0.564 1.7 20.63

E5
Thermi-late splitting

fertilization/late
sowing date

40◦54′ N/
23◦00′ E BSk 343.6 45.4 12.8 LP

Splitting
topdressing
application

Late sowing L 7.99 0.497 1.8 23.21

E6
Nea Gonia/typical
fertilization/typical

sowing date

40◦35′ N/
23◦08′ E BSk 335.5 57.6 12.4 HP Typical Mid-

November CL 7.05 0.525 1.8 30.10

E7
Sindos/typical

fertilization/late
sowing date

40◦68′ N/
22◦80′ E BSk 376.2 41.6 12.7 LP Typical Late sowing SL 7.85 0.485 1.7 28.50

1 Köppen–Geiger climate types: BSk = arid, steppe, cold [38,39]; 2 PrA = precipitation during all growing season (November to June); 3 PrA-M = precipitation of grain filling period i.e.
April–May (this period mainly represents the beginning of flowering to grain filling); 4 T (◦C) = the average temperature in the growing season (November to June); 5 All information has
been described; 6 Fertilization (different ways of fertilization explained below); 7 Soil textures: L = loam, CL = clay loam, SL = sandy loam; 8 EC = electrical conductivity (Ms cm−1);
9 SOM = soil organic matter.
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6. Nea Gonia (typical sowing time) with typical fertilization (total N amount of 150 kg ha−1),
one-third of which was applied (ammonium phosphate 20-10-0) before sowing and two-
thirds (ammonium nitrate 33.5-0-0) at full tillering (Zadok 29). (High-productivity
environment);

7. Sindos-typical fertilization/late sowing time. (Low-productivity environment).

In each location, the Gs were arranged in plots across the trials using a randomized
complete block design (RCBD) with three replicates. Each plot covered an area of 1 square
meter and consisted of four rows, 1 m long and 0.25 m apart. Details on soil/climatic
data and agronomic practices, such as the date of sowing and fertilization, are provided in
Table 2. In each location, the trial daily mean air temperature and precipitation during the
growing seasons were recorded by a wireless automatic weather station (Pessl iMetos OEM
Model-1) installed and supported by the software DSS Legumini.net ver. 1.0 for better
microclimate illustration (Table 2).

Each sample was milled in a laboratory mill (ZM-100; Retsch, Haan, Germany) to pass
through a 0.5 mm sieve. All other chemicals and solvents used were of analytical grade.

2.2. Vitreous Kernel Percentage

Visual estimation was applied to separate three sets of 100 kernels into vitreous
and non-vitreous kernels. Those with a dark translucent appearance were considered
vitreous kernels, while non-vitreous kernels appeared starchy and opaque. The results
were expressed as percent (%) of vitreous kernels (VKP). VKP was only recorded in the
central environment for a brief qualification of the genotypes.

2.3. Protein Content

The protein content of the grounded samples was determined using a Near-InfraRed
(NIR) analyzer (PerCon Inframatic 8620, Perten Instruments, Hamburg, Germany) after a
calibration curve was set using the Kjeldahl method [40].

2.4. Free Phenolic Extraction

We dissolved 0.25 g of durum wheat flour in 2 mL 70% aqueous methanol (MeOH/H2O),
vortexed this for 1 min, and then incubated it for 10 min in an ultrasound bath (frequency
37 kHz, model FB 15051, Thermo Fisher Scientific Inc., Loughborough, UK) at room tempera-
ture. Then, the extracts were centrifuged (Universal 320R, Hettich, Frankenberg, Germany) at
4000 rpm for 10 min, the supernatants were collected, and the residue was re-extracted one
more time. Finally, the clear supernatants were mixed and stored at −20 ◦C until analysis.
Three replications were conducted for each sample.

2.5. Total Phenolic Content (TPC)

The TCP determination was carried out based on the Folin–Ciocalteu method, accord-
ing to Singleton et al. [41]. Briefly, 0.2 mL of the free extracts were mixed with 0.8 mL of
diluted Folin–Ciocalteu reagent (diluted 10-fold in deionized water), vortexed, and allowed
to rest for 2 min. Then, 2.0 mL of sodium carbonate (7.5% w/v) solution and distilled water
up to 10 mL were added and incubated for one hour under dark conditions. The absorbance
was recorded in a spectrophotometer (HITACHI U-1900, Tokyo, Japan) at 725 nm, and the
results were expressed as mg of gallic acid equivalents (GAE) per 100 g of dry weight (dw).

2.6. Antioxidant Capacity
2.6.1. Radical Scavenging Activity (ABTS)

The activity of radical scavenging of the durum wheat extracts against ABTS (2,2-
azinobis-(3-ethylbenzthiazoline-6-sulphonic acid) radical cation was determined according
to Re et al. [42]. For the ABTS•+ preparation, two mM ABTS were mixed with 0.73 mM
potassium persulfate (K2S2O8) and dissolved in distilled water. After the mixture was
stored under dark and ambient temperature conditions, its absorbance was adjusted at 0.70
(±0.02) at 734 nm.
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A volume of 3.9 mL of the ABTS•+ solution was mixed with 0.1 mL of the durum
wheat extract, and after 4 min, its absorbance was recorded at 734 nm. For the percent
inhibition of the ABTS radical cation, the following equation was used:

Inhibition (%) =

[
Ao − As

A0

]
× 100

where Ao is the blank’s absorbance and As is the sample’s absorbance.
Trolox was used for the calibration curve, as a standard compound, and the results

were expressed as mg of Trolox equivalents (TE) per 100 g dw.

2.6.2. Ferric Reducing/Antioxidant Power (FRAP)

The reducing power of the durum wheat extracts was determined according to Benzie
and Strain’s method [43]. The FRAP assay was prepared by mixing 20 mM ferric chloride
solution (FeCl3.6H2O), 10 mM TPTZ (2-4-6-tripyridyl-s-triazine) in 40 mM HCl and 0.3 mM
acetate buffer (pH 3.6), in a proportion of 1:1:10, respectively).

A volume of 3.0 mL of the FRAP solution was mixed with 0.1 mL of the durum wheat
extract, and after 4 min of incubation at 37 ◦C under darkness, its absorbance was recorded
at 593 nm against a blank. The results were expressed as mg of Trolox equivalents (TE) per
100 g dw.

2.6.3. Radical Scavenging Capacity Activity (DPPH)

Radical scavenging capacity activity was determined using the Yen and Chen method [44].
A 0.1 mM DPPH (2,2-diphenyl-1-picryhydrazyl) solution in methanol was prepared (DPPH•).
A volume of 2.85 mL of DPPH• was mixed with 0.15 mL of the durum wheat extracts, and
the absorbance was recorded at 516 nm after 5 min of incubation. The results were expressed
as mg of Trolox equivalents (ET) per 100 g dw.

2.7. Statistical Analysis

Characteristics were subjected to an over environment two-way analysis of vari-
ance (ANOVA), using a mixed model considering environments as a random effect and
genotypes as a fixed effect. The Shapiro–Wilk test was employed to assess the normal
distribution of variables, whereas Levene’s test checked the ANOVA’s assumptions for
the equality of the error variances and residual normality [45]. Differences between either
genotypes or environments were identified with a post hoc Tukey HSD test. Pearson and
Spearman’s rank correlation coefficients were calculated and evaluated for their signifi-
cance at three probability levels: 0.001 (indicating a strong correlation), 0.01 (indicating a
moderate correlation), and 0.05 (indicating a weak correlation). All the statistical analyses
were performed using IBM SPSS Statistics 28.0.0.0 (190) software.

2.8. Data Analysis

The AMMI models [32] were executed utilizing the GenStat (13th edition) statistical
software. It relies on the calculation of the first and second principal component (PC) scores,
denoted as PC1 (indicative of the first PCA’s interaction) and PC2 (indicative of the second
PCA’s interaction), as outlined in Purchase’s study [31,32]. The following equation details
the computation process:

the ASVi =

√
SSPC1
SSPC2

(PC1)2 + (PC2)2

where SS is the sum of squares. The genotype with the smallest ASVi value was regarded
the most stable.

Genotype superiority, Pi.
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The computation of genotype superiority [46], labeled as Pi, entailed the assessment
of the mean square distance between the genotype and the maximum response using the
following equation:

twoPi = ∑
i

(
yij − maxj

)2
/2e)

In this equation, maxj represents the maximum response observed among all geno-
types in the given environment (j). The key takeaway is that the smallest Pi value indicates
the better genotype.

Shukla’s stability variance, σ2
i.

In 1972, Shukla [34] proposed the stability variance of genotype i, defined as its
variance across environments after accounting for the main effects of environmental means.
According to this statistic, genotypes with the lowest values are more stable.

Deviation from regression, S2
di.

The utilization of the variance of deviations from the regression (S2
di) has been proposed

as one of the prominent parameters in the selection of stable genotypes. Genotypes with an
S2

di = 0 are considered the most stable, whereas an S2
di > 0 would indicate lower stability

across all environments. Hence, genotypes with lower values are the most desirable.
Kang’s Genotypes with a rank-sum,
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Kang’s rank-sum method [26,47] utilizes yield and σ2

i (variance) as selection criteria.
This approach assigns equal weight to yield and stability statistics in identifying high-
yielding and stable genotypes. The genotype achieving the highest yield and the lowest σ2

i
is given a rank of one. Subsequently, the ranks for yield and stability variance are combined
for each genotype. Genotypes with the lowest rank-sum are regarded as the most desirable.

The GGE biplot model is grounded in the singular value decomposition of the first
two principal components [28], as follows:

yij − µ − β j = λ1ξi1ηj1 + λ2ξi2ηj2 + εij

where yij is the measured mean of genotype i in environment j, µ is the grand mean, β j is
the main effect of environment j, λ1 and λ2 are the singular values for the first and second
principal component (PC1 and PC2, respectively), ξ1 and ξ2 are eigenvectors of genotype i
for PC1 and PC2, η1 and η2 are eigenvectors of environment j for PC1 and PC2, and εij is
the residual associated with genotype i in environment j.

3. Results and Discussion

The study investigated the effect of G, E, and G × E on durum wheat’s TPC and the
AC. It also examined the correlations among TPC, AC, PC, and VKP percentages.

3.1. Effect of Genotype, Environment, and Genotype by Environment

The analysis of variance showed that all sources of variation were highly significant
in all antioxidant-related traits (Table 3). G × E had the most significant effect on all the
analyses referred to AC. For ABTS, DPPH, and FRAP, the contributions of G × E to the
variation were 45.3, 49.9, and 64.9%, respectively (Table 3). Regarding TPC, E contributed a
large portion (42.4%), followed by G × E (42.2%). G showed a low contribution (from 6.7
to 12.7) to the variation for all the traits, while E, for the AC, had a moderate contribution
from 20.7 to 33.1%.

In accordance with these results, other studies reported a high contribution by the
E for TPC [48,49]. A high contribution by G × E for TPC is also reported by Martini
et al. [50]. Regarding the AC by DPPH test, other studies reported a higher contribution to
the variation by either E or G [48,49]. However, Irakli et al. reported a higher contribution
by G × E to the total variation in ABTS values for lens culinaris L. [51]. In hemp seeds, the
cultivation year had a higher effect on TPC, ABTS, and FRAP [12]. Other studies exploring
the impact of genotype and environment on soft winter wheat reported a significantly
higher effect of E on ABTS, followed by G × E [50,52].
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Table 3. Two-way ANOVA for total phenolic compound (TPC), ABTS scavenging activity, DPPH
scavenging activity, and ferric reducing/antioxidant power (FRAP) was determined for sixteen
durum wheat genotypes cultivated under seven environments.

TPC ABTS DPPH FRAP
df MS SS SS% MS SS SS% MS SS SS% MS SS SS%

Environment 6 1787.6 *** 10,725.5 42.4 7348.9 *** 44,093.6 33.1 2664.9 *** 3992.1 38.3 25,886.9 *** 155,321.4 20.7
Genotype 15 154.7 *** 2320.2 9.2 594.0 *** 8910.0 6.7 266.1 *** 3992.1 9.6 6325.1 *** 94,876.7 12.7

G × E 90 118.6 *** 10,670.6 42.2 671.0 *** 60,389.3 45.3 231.6 *** 20,844.8 49.9 5403.5 *** 486,314.2 64.9
Error 224 6.9 1551.4 6.2 89.4 20,016.5 15.0 4.1 926.3 2.2 56.9 12,746.9 1.7

df: degrees of freedom, MS: Mean Square, SS: Sum of Squares. ***: p < 0.001.

The effect of E on the antioxidants in cereals is significant [53]. Growing conditions,
particularly solar radiation during the grain-filling period, contribute to free radical for-
mation that increases oxidative stress. This triggers the biosynthesis of antioxidants for
self-defense against environmental stress [54]. It has been reported that droughts reduce
grain size by shortening the filling phase, and the high temperature and drought jointly
affect the duration of grain filling, rather than individually [55]. The soluble forms of
polyphenols are affected mainly by the climatic conditions occurring during the different
years of experimentation. The interaction between weather conditions and location can
induce a diverse response in accumulating compounds in the kernel [56]. Except for the
crop management and the cultivation location, a year-to-year variation in the content of
phenolic compounds in durum wheat has also been reported [57]. In general, there is a
small impact of G and large effects of both year and G × E interaction on the metabolite
composition (amino acids, sugars, organic acids, fatty acids, and sterols) and the quality of
durum wheat grains [58]. Given these complexities, further investigations that consider
the year-to-year variations in the antioxidant properties of durum wheat are necessary.
Such studies would significantly contribute to the ongoing discourse on understanding
and enhancing the quality of durum wheat in varying environmental contexts.

3.2. Total Phenolic Compounds

Phenolic compounds are among the most extensively researched phytochemical classes
derived from plants, due to their capability to function as radical scavengers. Thus, they
have garnered significant attention for their potential in preventing cancer and various
chronic diseases [59,60]. In Table 4, the mean values ± SE of TPC, ABTS, DPPH, and
FRAP for different Es and Gs are displayed and grouped using the Tukey HSD a, b test
(α = 0.05). The mean TPC value was 48.8 ± 0.5 mg GAE/100g dw. Generally, E4 and E5 had
significantly lower TPC values than the rest of the Es. In contrast, the significantly highest
values were observed in E3, followed by E7, where the same cultivation practices (late
sowing) were applied in a different region. E1, E2, and E6 had medium TPC values. This
suggests that using a splitting fertilization approach over conventional practices negatively
affected the TPC content of durum wheat. There was also a significant difference between
E1 and E7, which were both environments with typical fertilization and typical sowing
dates that were cultivated in different regions. This variation in phenolic compounds across
locations might be due to pedoclimatic differences or how different genetic backgrounds of
the plant material are adjusted in different environments [51].

The G with the highest mean TPC content was G9 (Svevo), but no significant differ-
ences were observed with other varieties (G5, G6, G7, and G15), while the lowest was
observed in G2. A similar range of TPC for cv. Simeto (G8 in this study) was reported by
Laus et al. [61], ranging from 14.6 ± 0.60 to 74.5 ± 2.40 mg GAE/100g dw. The lowest value
was observed in an irrigated field fertilized with 33 kg. ha−1 of sulfur, while the highest
value was found in a non-irrigated, no-sulfur field, the only one exceeding the values
presented in this report. The TPC for whole meals of durum wheat for the extractable
phenolic compounds, Duilio, Sant’Agata, and Simeto, were 192.3 ± 0.5, 144.5 ± 1.8, and
181.9 ± 3.2 mg GAE/100g dw, more than double the values reported here. Similar values
have been reported for old and modern varieties [19,62–64]. These differences are likely
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attributable to the extraction method and the fact that bound phenolic compounds were
not extracted [21].

Table 4. Mean values ± SE, for 16 durum wheat genotypes and seven environments of total phenolic
compounds (TPC), ABTS and DPPH radical scavenging activity, and ferric reducing/antioxidant
power (FRAP).

TPC * ABTS DPPH FRAP

Environment

E1 48.8 ± 1.1 c ** 118.3 ± 2.2 c 14.4 ± 1.7 g 75.7 ± 4.6 d

E2 49.5 ± 1.1 c,d 122.2 ± 2.2 c 18.7 ± 1.8 e 91.2 ± 9.6 c

E3 57.3 ± 1.2 a 142.6 ± 2.8 a 21.5 ± 2.3 d 106.7 ± 10.0 b

E4 42.0 ± 1.0 d 110.8 ± 2.6 d 16.6 ± 0.9 f 88.7 ± 2.5 c

E5 39.8 ± 0.7 e 104.8 ± 2.3 e 34.4 ± 0.6 a 52.4 ± 3.0 e

E6 51.7 ± 0.7 b 128.4 ± 2.4 b 24.5 ± 0.5 c 79.2 ± 1.6 d

E7 52.8 ± 0.8 b 122.4 ± 2.1 c 31.1 ± 0.8 b 125.1 ± 5.7 a

Average 48.8 ± 0.5 121.3 ± 1.1 23.0 ± 0.6 88.4 ± 2.6

Genotype

G1 49.9 ± 2.4 b,c ** 122.8 ± 5.1 a,b 26.1 ± 2.1 b 106.6 ± 9.7 b

G2 43.8 ± 1.9 f 112.8 ± 3.4 c,d 20.0 ± 2.3 e 77.1 ± 8.3 e,f

G3 46.5 ± 2.1 d,e 124.7 ± 5.0 a,b 22.7 ± 1.6 c,d 80.0 ± 5.6 d–f

G4 49.4 ± 1.7 c 124.0 ± 4.0 a,b 23.6 ± 1.8 c 109.2 ± 12.3 b

G5 52.4 ± 1.0 a,b 129.0 ± 5.1 a 22.7 ± 1.5 c,d 72.9 ± 4.9 f,g

G6 49.0 ± 2.2 c,d 121.1 ± 5.3 a–c 27.0 ± 4.2 b 112.0 ± 19.7 b

G7 52.4 ± 1.7 a,b 125.5 ± 3.2 a,b 23.9 ± 2.0 c 108.0 ± 8.6 b

G8 46.9 ± 1.2 d,e 107.0 ± 3.4 d 20.3 ± 2.1 e 69.9 ± 5.5 g

G9 53.1 ± 2.6 a 122.4 ± 5.0 a,b 31.7 ± 4.1 a 90.4 ± 9.8 c

G10 50.4 ± 1.7 b,c 120.2 ± 3.4 a–c 20.9 ± 2.0 d,e 86.3 ± 6.0 c,d

G11 47.0 ± 2.0 d,e 121.3 ± 3.5 a–c 18.9 ± 2.0 e,f 81.0 ± 5.3 d,e

G12 46.9 ± 1.2 d,e 116.7 ± 3.1 b,c 17.8 ± 2.0 f 72.9 ± 4.3 f,g

G13 49.6 ± 1.4 c 125.4 ± 2.9 a,b 22.9 ± 1.5 c 65.8 ± 2.6 g

G14 45.7 ± 1.7 e,f 120.1 ± 3.7 a–c 20.1 ± 1.3 e 80.0 ± 4.5 d–f

G15 52.0 ± 2.3 a–c 124.2 ± 6.1 a–c 27.2 ± 2.9 b 122.1 ± 21.1 a

G16 46.5 ± 1.7 d,e 124.2 ± 5.7 a,b 22.4 ± 1.7 c,d 80.5 ± 7.1 d,e

Average 48.8 ± 0.5 121.2 ± 1.1 23.0 ± 0.6 88.4 ± 2.6
* TPC: total phenolic compound (expressed as mg GAE/100 g dw), ABTS: ABTS + scavenging activity (ex-
pressed as TE/100 g dw), DPPH: DPPH scavenging activity (expressed as TE/100 g dw) and FRAP: ferric
reducing/antioxidant power (expressed as TE/100 g dw). ** Different letters within a column indicate significant
differences (among environments or genotypes) according to the Tukey HSD test (p < 0.05).

In the present study, organic crop management did not show significant differences in
TPC compared to the two conventional methods (E1 and E6). However, in one of the two
years studied by Nocente et al. [65], there was a significant difference between conventional
and organic crop management, with organic practices resulting in higher TPC values.
Similar findings with significantly higher TPC amounts have also been reported in other
studies [49,66]. On the other hand, nitrogen fertilization had a positive and analogous
effect on the TPC of winter wheat grains in Ma et al. [67,68]. The E has a high impact on
the antioxidants in cereals [53]. For example, sunny days, soil type, and precipitation can
affect the TPC of plants [69,70]. More factors have been reported to impact the TPC of plant
material, such as prolonged exposure to Ultraviolet (UV) radiation, high altitudes, and
water-deficit conditions that positively influence its synthesis [71,72]. Other factors that
influence TPC come after the durum wheat kernel processing. Abdel-Aal and Rabalski [73]
reported that the TPC in einkorn bread, cookies, and muffins increased after baking due to
the degradation of conjugated and bound phenolic acids.
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3.3. Antioxidant Capacity

The mean value of the ABTS scavenging activity among the different Es was
121.3 ± 1.1 mg TE/100 g dw. Like TPC, the significantly lowest mean values were observed
for E4 and E5, while the highest values were found in E3, with a significant difference
from the other Es (Table 4) [74]. For the DPPH values, different observations were made.
The E with the highest mean value was E5, followed by E7 (both late sowing), while E1
and E4 had the lowest values (Table 4). Regarding the genotype, there were significant
variations among them, with G9 giving the highest value and showing a significant dif-
ference from the rest. Different levels of phenolic compound biosynthesis in two sowing
times can be attributed to the induction caused by diverse biotic stresses. Moreover, the
variability between the two locations could be linked to the varying levels of severity of
plant pathologies present across these locations [75]. Variations in temperature conditions
before the harvesting of wheat seeds have also been reported as a major factor influencing
the profile of AC [74].

Di Loreto et al. [7], in their analysis of 22 old and modern durum wheat varieties,
reported DPPH values of 186.2 mg TE/100g dw (7.4 ± 0.3 µmol/g) for the old durum
wheat cv. Inglesa and 101.6 mg TE/100g dw (4.1 ± 0.2 µmol/g) for the modern durum
wheat cv. Claudio [7]. Similar results have been reported by Truzzi et al. [64].

In accordance with the results presented in this study, Fares et al. (2019) [66] reported no
significant differences between ABTS values for conventional and organic crop management.
However, in one of the two years studied by Nocente et al. [65], there was a significant
difference between conventional and organic crop management, with conventional practices
resulting in higher total antioxidant capacity, as measured by the ABTS radical solution.

Consistent with our findings, other studies mentioned that organic cultivation pos-
sessed higher DPPH values than conventional one [49]. For broccoli, cauliflower, and red
cabbage, DPPH values were significantly higher in organically cultivated vegetables, and
the same trend was observed for ABTS values in kohlrabi. In contrast, broccoli showed
higher ABTS values under conventional cultivation [76]. For other crops, there were no
significant differences in AC between organic and conventional cultivation methods [77].
On the other hand, nitrogen fertilization had a positive and analogous effect on the AC of
winter wheat grains, as reported by Ma et al. [67]. More post-processing factors can influ-
ence the AC of durum wheat. For example, for raw and cooked macaroni, it was reported
that the antioxidant capacity increased after cooking because of Maillard reaction products,
like Amadori compounds [78]. Similar statements were made by some researchers about
boiled, microwaves, or steam-cooked vegetables [79].

For FRAP, E5 had a significantly lower mean value than the rest of the Es, while E7 and
E3 had the highest mean values, with a significant difference from the rest (Table 3). G15
had the significant highest mean values among the Gs. Di Loreto et al. [7] reported a mean
value of 357.9 mg TE/100g dw for 22 durum wheat varieties (1.4 ± 0.05 mmol/100g). Truzzi
et al. [64] reported almost one-third of those values, both for old and modern durum wheat
varieties, even though the opposite was observed for TPC and DPPH values. Significantly
higher FRAP values were reported for broccoli and kohlrabi cultivated under organic crop
management than in conventional conditions [76]. Differences in climatic conditions, such
as temperature and amount of rainfall before harvest, can impact both the TPC and AC of
plants [74].

3.4. Organic and Late Sowing Environments

An interesting observation is that in almost all the Es but E2 (organic), even when
high values were observed in one analysis, low values were observed in another when
compared with the rest. In all the analyses (TPC, ABTS, DPPH, FRAP), E2 consistently
yielded values falling between those of the other Es (Table 3). This provides evidence that
nitrogen fertilization and its application method significantly impact the various antioxidant
properties of durum wheat. Phenolic compounds are the ecological response of the plant to
external factors. The influence of these parameters may also be higher when considering
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an agronomic system without inputs, such as the organic crop management presented
here, to be introduced to improve the crop’s nutritional status and protect the plant against
diseases [57]. A detailed examination of the specific compounds, their quantities, and their
activity in different environments would shed more light on this observation.

In the case of late sowing Es, mainly E7, high values were observed significantly in all
the antioxidant analyses. This could be attributed to the harsh or non-optimal conditions
the plants faced, leading them to produce higher levels of antioxidants for protection [1].
Further research is needed to gather clear evidence. However, this could also be related to
the dilution effect, as late sowing environments had lower productivity.

3.5. Vitreous Kernel and Protein

The samples’ PC and VKP (only for E1) were determined to extract possible correla-
tions with their antioxidant properties. NIR spectroscopy was used for the former, while
visual observation was employed for the latter.

Regarding the VKP results, only one repetition was conducted in E1, and the results
are presented in Table 5. G2, G4, G9, and G10 possessed high VKP percentages; however,
no significant differences could be calculated.

Table 5. Mean protein ± SE percentages of sixteen durum wheat genotypes cultivated under seven
environments, and percentages of vitreous kernels of sixteen durum wheat genotypes only under the
central environment.

Mean Protein % Vitreous %

Environment

E1 13.3 ± 0.1 c * Not Availiable (NA)
E2 10.7 ± 0.3 d,e NA
E3 11.6 ± 0.2 d NA
E4 15.1 ± 0.2 a NA
E5 13.1 ± 0.2 c NA
E6 10.3 ± 0.1 e NA
E7 14.1 ± 0.1 a,b NA

Genotype

G1 13.9 ± 0.5 a 62.25
G2 12.9 ± 0.4 a 87.5
G3 12.2 ± 0.5 a 74.8
G4 13.1 ± 0.4 a 86.7
G5 12.2 ± 0.4 a 69.3
G6 11.8 ± 0.3 a 66.6
G7 12.7 ± 0.4 a 55.1
G8 12.1 ± 0.5 a 73.1
G9 13.0 ± 0.5 a 83.5

G10 12.6 ± 0.5 a 92.2
G11 12.7 ± 0.5 a 63.6
G12 11,9 ± 0.4 a 56.6
G13 12.5 ± 0.3 a 77.4
G14 12.5 ± 0.4 a 45.6
G15 12.1 ± 0.4 a 72.7
G16 13.3 ± 0.4 a 76.9

Average 12.6 ± 0.1 71.5
* Different letters within a column indicate significant differences according to the Tukey HSD test (p < 0.05).

The mean protein content of the samples was 12.6 ± 0.1%, which is slightly lower than
the value reported by Žilić et al. (2010) for durum wheat (13.89%) and somewhat higher
than that reported for bread wheat (11.7%) (Table 5) [80]. The highest protein percentages,
significantly different from the rest, were found in E4, but were not significantly higher
than in E7. E6 had the lowest content, which was not significantly different from E2. Both
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environments with splitting fertilization (i.e., E4 and E5) had higher protein content than
their conventionally fertilized counterparts. Among the Gs, no significant differences were
observed. Products made from durum wheat are considered staple foods due to their
significant contribution to energy and nutrition, coming primarily from their carbohydrate
and protein content. Moreover, wheat contains essential nutrients and phytochemical
compounds notable for their significant biological impact [61,81,82]. The antioxidant
properties of proteins are also noteworthy; the AC of wheat gluten protein hydrolysates
has been previously reported [20,23].

3.6. Correlation among Traits

Due to the large quantity of samples, making it easier for correlations to emerge among
the data, a correlation was considered significant only if it exceeded 0.4 (Table 6). A highly
significant positive correlation was observed between FRAP and TPC, while a moderate
correlation was observed between FRAP and each ABTS and DPPH value. TPC and ABTS
also demonstrated a strong significant correlation (Table 6). No significant correlations were
found among vitreous kernel percentages with TPC, DPPH, and ABTS values. However,
FRAP had a weak negative correlation with VKP (−0.351). VKP showed a high correlation
with protein content. A significant correlation between TPC and DPPH was reported by
Pandino et al. [49]. On the other hand, when AC was measured with DPPH assay, it was
not correlated with the phenolic content [74]. In other studies, TPC and the AC were also
strongly correlated by the strong correlation between TPC and each ABTS and FRAP found
here [61,83,84]. The only weak negative correlation, between TPC and DPPH, could be
attributed to the extraction and measurement of only the free phenolic compound of the
samples. Phenolic compounds in insoluble-bound form are the major contributors to the
AC of wheat grains [20–22]. In durum wheat-based food products, this can be observed in
white wheat flour and white flour-based products with low levels of phenolic acids. This
is due to removing components during the milling process, such as bran, aleurone, and
hyaline layers, which typically contain the highest concentration of phenolic acids [85].

Table 6. Pearson correlations for TPC (total phenolic compound), ABTS scavenging activity, DPPH scav-
enging activity, and ferric reducing/antioxidant power (FRAP), protein content (PC), and vitreous kernel
percentage (VKP) of durum wheat for sixteen DW genotypes cultivated under seven environments.

TPC ABTS DPPH FRAP Protein Vitreous %

TPC 1 0.676 ** 0.273 ** 0.525 ** −0.333 ** −0.052
ABTS 1 0.110 0.452 ** −0.313 ** 0.097
DPPH 1 0.443 ** 0.077 −0.112
FRAP 1 0.113 −0.351 *

Protein 1 0.706 **
Vitreous 1

** = significance at 0.01 and * = significance at 0.05.

3.7. G × E Interaction Analysis

As G × E possessed a high contribution for all the analyses, the results were further
analyzed by a GGE biplot analysis to visualize the interaction outcomes between genotypes
and environments. Thus, varieties that surpassed the average performance and demon-
strated stability across multiple environments were pinpointed. The GGE biplot analysis
was explicitly applied to TPC, indicating the antioxidant profile of the durum wheat sam-
ples. TPCs are considered important bioactive compounds due to their potential biological
activities. They are found in plants with antioxidant, anticancer, and anti-inflammatory
properties [86]. Notably, in Section 3.5, ABTS exhibited the highest correlation with TPC,
leading to its selection as an indicator of antioxidant activity. The objective was to pinpoint
genotypes with higher and more stable phenolic profiles and antioxidant activity across
Mediterranean farming systems and with high protein content. Both parametric and non-
parametric indices were computed to assess genotypes for their suitability across diverse
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environments. Table 7 illustrates the genotypes occupying the first and last five positions
based on rankings derived from each statistical measure. In the overall evaluation across all
environments, G5, G7, and G10 consistently secured the top five rankings with a presence
frequency of 4/6, 3/6, and 5/6, respectively, establishing them as the most stable genotypes
for TPC. Conversely, G2 and G8 occupied the least favorable positions in the bottom five
rankings, with frequencies of 3/6 and 5/6, respectively.

Regarding ABTS, the most stable genotypes appeared to be G3, G5, G7, and G13, which
consistently secured top five rankings with a presence frequency of 4/6, 3/6, 4/6, and 4/6,
respectively. On the other hand, G8 and G12 occupied the least favorable positions in the bottom
five rankings, with frequencies of 3/7 and 3/7, respectively. G1, G9, and G16, possessing 3/7,
4/7, and 5/7 presence frequencies, were the most stable genotypes for protein content.

According to the GGE biplot (Figure 1), for TPC in the total comparison of all Es,
genotype G7 was the only one relatively close to the ideal genotype, followed by G10, G9,
and G5. Similarly, the GGE biplot analysis revealed that for the total evaluation of ABTS in
all environments, G7 was the only one relatively close to the ideal genotype, followed by
G4, G13, and G5. For protein, G1 was the only one relatively close to the ideal genotype,
followed by G9 and G16. The GGE biplot analysis explained 61.02%, 46.58%, and 67.14% of
the total variability for TPC, ABTS, and protein.
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Figure 1. Genotype and genotype by environment (GGE) comparison biplot of sixteen genotypes
evaluated in seven environments for TPC (left), ABTS (center), and protein (right).

G7 and G5 had high frequency presences, with G7 being the closest genotype to the
ideal for both TPC and ABTS. However, this trend was not observed for protein. This
aligns with the strong positive correlation between TPC and ABTS and their weak negative
correlation with protein. These data can contribute to the decision-making regarding the
selection of genotypes and crop management practices, potentially offering increased health
benefits through antioxidant and antiplatelet properties. These properties play a role in
mitigating the development of various chronic diseases [87,88].

Table 8 displays the rank correlations among the statistical measures assessed across
six environments. For TPC, the mean demonstrates a weak positive correlation with the
measures of GGE. Among the statistical measures that had been estimated, strong positive
correlations were recorded for σ2

i with s2di and a weak positive correlation existed between
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The mean had a moderate correlation with the measures of GGE, a strong correlation with
Pi, and a weak one with σ2

i. GGE was positively correlated weakly with Pi and moderately
with
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, which was moderately positively correlated with Pi. A moderate correlation was
also observed between σ2

i and s2di.
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Table 7. Genotypes were categorized into top five and bottom five groups based on mean value, stability, and parametric measures. Top five and bottom five
genotypes that occurred ≥3 times within a group are presented in bold.

TPC ABTS Protein

All Mean GGE ASVi Pi σ2
i s2di
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G23 G66 G6 G2 G6 G6 G8 G83 G8 G95 G8 G6 G6 G6 G66 G15 G43 G6 G15 G15 G15

* Refers to the frequency of a genotype that occurs ≥3 times within a group. Number equals the times of appearance.

Table 8. Spearman’s rank correlation coefficients were computed between the statistics of mean TPC, ABTS, and protein with cultivar superiority, the GGE biplot
rank, and parametric measures (ASVi, Pi, σ2

i, s2di, and

Agriculture 2024, 14, x FOR PEER REVIEW 8 of 20 
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Genotype superiority, 𝑃𝑖 , 
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of the mean square distance between the genotype and the maximum response using the 

following equation: 

𝑡𝑤𝑜𝑃𝑖 = ∑ (�̅�𝑖𝑗 − 𝑚𝑎𝑥𝑗)
2

/2𝑒)
𝑖

  

In this equation, 𝑚𝑎𝑥𝑗  represents the maximum response observed among all geno-

types in the given environment (j). The key takeaway is that the smallest 𝑃𝑖  value indicates 

the better genotype. 

Shukla’s stability variance, σ2i 

In 1972, Shukla [34] proposed the stability variance of genotype i, defined as its vari-

ance across environments after accounting for the main effects of environmental means. 

According to this statistic, genotypes with the lowest values are more stable. 

Deviation from regression, S2di 

The utilization of the variance of deviations from the regression (S2di) has been pro-

posed as one of the prominent parameters in the selection of stable genotypes. Genotypes 

with an S2di = 0 are considered the most stable, whereas an S2di > 0 would indicate lower 

stability across all environments. Hence, genotypes with lower values are the most desir-

able. 

Kang’s Genotypes with a rank-sum, KR 

Kang’s rank-sum method [47] utilizes yield and σ2i (variance) as selection criteria. 

This approach assigns equal weight to yield and stability statistics in identifying high-

yielding and stable genotypes. The genotype achieving the highest yield and the lowest 

σ2i is given a rank of one. Subsequently, the ranks for yield and stability variance are com-

bined for each genotype. Genotypes with the lowest rank-sum are regarded as the most 

desirable. 

The GGE biplot model is grounded in the singular value decomposition of the first 

two principal components [28], as follows: 

𝑦𝑖𝑗 − 𝜇 − 𝛽𝑗 = 𝜆1𝜉𝑖1𝜂𝑗1 + 𝜆2𝜉𝑖2𝜂𝑗2 + 𝜀𝑖𝑗  

where 𝑦𝑖𝑗 is the measured mean of genotype i in environment j, μ is the grand mean, 𝛽𝑗 is 

the main effect of environment j, 𝜆1 and 𝜆2 are the singular values for the first and second 

principal component (PC1 and PC2, respectively), 𝜉1 and 𝜉2 are eigenvectors of genotype 

i for PC1 and PC2, 𝜂1 and 𝜂2 are eigenvectors of environment j for PC1 and PC2, and 𝜀𝑖𝑗 is 

the residual associated with genotype i in environment j. 

).

TPC ABTS Protein

GGE ASVi Pi σ2
i s2di
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GGE 1 ns ns ns ns ns 1 ns 0.559 * ns ns 0.714 ** 1 ns 0.659 ** ns ns 0.773 **
ASVi 1 ns ns ns ns 1 ns ns ns ns 1 ns 0.903 *** 0.888 *** 0.582 *

Pi 1 ns ns ns 1 ns ns 0.677 ** 1 ns ns ns
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i 1 0.815 ** 0.599 * 1 0.865 ** ns 1 0.988 ** 0.718 **
s2di 1 0.587 * 1 0.685 ** 1 0.696 **

*, **, *** significant at the p < 0.05, p < 0.01 and p < 0.001 levels of probability, respectively, + non-significant (ns)
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On the other hand, GGE was strongly positively correlated with the mean and Pi for
protein and moderately correlated with
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, which were also correlated between them.
From statistic tools that consider both G and G × E, the means (of TPC, ABTS, and

protein) were positively correlated with GGE biplot analysis. Pi was positively correlated
with the mean of ABTS and protein, while
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only with the mean of protein. Similar results
about the effectiveness of the GGE biplot, Pi, and
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in handling G × E interaction, were
found by other researchers for wheat yield [30,89,90].

4. Conclusions

This research evaluated the impact of G, E, and their interaction (G × E) on durum
wheat’s TPC and AC (DPPH, ABTS, and FRAP) in Mediterranean environments. High
productivity Es exhibited reduced antioxidant quantities, whereas low productivity ones,
growing under harsh conditions, had better profiles. Organic cultivation consistently
yielded values falling between those of the other Es. In contrast, high values were observed
in both TPC and AC for the late-sowing Es. G × E interaction was the most influential
factor, significantly impacting TPC and AC. Notably, G7 emerged as a potential superior G,
displaying high and stable TPC and AC across various crop management systems. These
findings are significant as they represent one of the few comprehensive explorations focus-
ing on the effects of different crop management systems on TPC and AC in durum wheat
and identifying superior Gs possessing stable and high values among them. However, it is
essential to note that the available results are solely derived from the specific cultivation
year under investigation. Therefore, additional experimentation is necessary to establish
more robust and stable conclusions.

Therefore, the results could advocate for policies supporting sustainable cultivation
practices and incentivizing superior cultivars to enhance crop quality. Gs demonstrating
high values and stability across conditions could potentially be adopted to improve durum
wheat quality. Stakeholders should encourage farmers to adapt their farming strategies
by considering the impact of G × E interactions on their crops’ nutritional quality. Fur-
thermore, promoting collaborations with industry stakeholders, such as food processors or
manufacturers, to develop durum wheat-based products capitalizing on enhanced nutri-
tional and antioxidant qualities is crucial. In conclusion, understanding these influences
provides valuable insights into factors impacting durum wheat’s nutritional and antioxi-
dant quality, with potential implications for the agricultural industry and the production of
healthier durum wheat-based products.
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