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Abstract: Due to the challenges of pest detection in complex environments, this research introduces a
lightweight network for tobacco pest identification leveraging enhancements in YOLOVS technology.
Using YOLOVS large (YOLOVSI) as the base, the neck layer of the original network is replaced
with an asymptotic feature pyramid network (AFPN) network to reduce model parameters. A
SimAM attention mechanism, which does not require additional parameters, is incorporated to
improve the model’s ability to extract features. The backbone network’s C2f model is replaced with
the VoV-GSCSP module to reduce the model’s computational requirements. Experiments show the
improved YOLOv8 model achieves high overall performance. Compared to the original model, model
parameters and GFLOPs are reduced by 52.66% and 19.9%, respectively, while mAP@0.5 is improved
by 1%, recall by 2.7%, and precision by 2.4%. Further comparison with popular detection models
YOLOvV5 medium (YOLOv5m), YOLOv6 medium (YOLOv6m), and YOLOv8 medium (YOLOvV8m)
shows the improved model has the highest detection accuracy and lightest parameters for detecting
four common tobacco pests, with optimal overall performance. The improved YOLOvS8 detection
model proposed facilitates precise, instantaneous pest detection and recognition for tobacco and
other crops, securing high-accuracy, comprehensive pest identification.

Keywords: pest recognition; object detection; YOLOVS; lightweight network; attention mechanism

1. Introduction

As one of the most important economic crops in China, tobacco is a key raw material
for the cigarette industry. In Guangdong Province, China, tobacco is cultivated on a large
scale and generates high economic outputs, thus playing a vital role in promoting local
economic development [1,2]. Owing to external growth environments and its own chemical
properties, tobacco is susceptible to infestation by some specialist insect pests, especially on
the leaves and rootstalk. This can lead to reduced yield and quality, resulting in tremendous
economic losses to the tobacco industry [3].

In the past few years, as computer vision and deep learning technologies have ad-
vanced in tandem, a growing number of deep learning approaches have been widely
adopted in agricultural production. These methods have found successful applications in
areas such as pest detection, crop classification, and fruit counting. These deep learning
approaches autonomously extract features from image data, and their detection accuracy
surpasses conventional visual inspection and machine learning methods. Moreover, the
developed models are capable of being transferred to portable or integrated systems [4—6].
For instance, Liu et al. [7] utilized an enhanced AlexNet architecture for the classification
of twelve prevalent species of pests in rice fields, attaining an average detection accuracy
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(mAP) of 95.1% on their test set. Wang et al. enhanced the accuracy to 91% in classifying
crop pest images by adjusting the convolutional kernel size of AlexNet, demonstrating
superiority over traditional machine learning techniques [8]. Furthermore, Cheng et al. uti-
lized the ResNet architecture to classify 98 agricultural pest species. Their results indicated
that networks based on deep residual learning structures outperformed conventional deep
convolutional neural networks like AlexNet, especially in recognizing pests against com-
plex backgrounds [9]. Collectively, these research efforts have delved into the use of deep
learning in crop pest recognition, confirming the viable application of deep learning-based
computer vision methods for detecting agricultural pests.

With the rapid development of deep learning, leveraging image detection and local-
ization for pest identification has become feasible, characterized by its accuracy, real-time
performance, and non-destructive nature. The methods involved primarily fall into two
categories: two-stage and one-stage object detection algorithms. Two-stage algorithms,
represented by models such as R-CNN [10] and Faster R-CNN [11], first obtain candidate re-
gions of the detection object, then generate candidate bounding boxes within these areas for
regression prediction, resulting in the final prediction boxes. On the other hand, one-stage
algorithms, with prominent models like YOLO [12] and SSD [13], directly generate several
candidate regions in the input image and classify them based on the type and location of
the detection object. Due to simplified image processing steps, one-stage object detection
algorithms are faster than two-stage algorithms and have become the most widely applied
detection algorithm to date. Liu and Wang [14] enhanced the YOLOv3 model using image
pyramid techniques, achieving a 92.39% detection accuracy rate in identifying 12 types of
tomato pests, an improvement of 4% over the original model. However, the computational
cost required for this model’s improvement method is relatively high, and its real-time
capability needs further enhancement. She et al. [15] integrated the Feature Pyramid Net-
work (FPN) into SSD, capturing resolution information at different feature levels of the
image. The improved SSD model recognized rice pests, especially brown planthoppers,
with an average accuracy rate increased from 67.6% to 75.8%. The experimental results
indicate that this model performs better in detecting large targets but has substantial room
for improvement in recognizing small targets. Moreover, the training network is not very
perfected, with precision and performance still needing improvement. Liu et al. [16] com-
bined the Graph Convolutional (GC) network and feature fusion techniques to enhance
YOLOV3, achieving a 65.69% detection accuracy rate in identifying 24 types of pests, a
4.27% improvement over the original YOLOv3. However, in actual tests, under complex
backgrounds, the model exhibited missed detections of pests, indicating less than ideal
performance. Zhang et al. [17] used an improved YOLOv3 to detect tobacco beetle pests,
employing the K-means++ algorithm, SloU Loss, and an improved feature pyramid module
to enhance the original YOLOv3 model. The improved model achieved a 93.26% precision
rate in recognizing tobacco beetles. However, the dataset for this experiment focused
only on tobacco beetles, and in actual detection scenarios, interference from other types of
pests or non-pest objects may reduce recognition accuracy and generalizability, affecting its
application value in broad agricultural pest management.

In the real world, for tobacco pest detection, model selection not only focuses on
recognition performance but also considers the model’s resource usage and consumption.
For instance, when using mobile devices to detect tobacco pests, the key task is to iden-
tify targets efficiently and in real time, providing significant convenience for farmers in
early pest control during tobacco cultivation. Therefore, the model’s memory footprint
and computational resources become critical considerations, directly affecting the model’s
practical usability [18]. Although traditional models like the YOLO and SSD series have
high accuracy rates, their larger sizes make them less suitable for deployment on mo-
bile or embedded devices. To facilitate the operation of deep learning models on mobile
devices, numerous researchers have introduced a variety of lightweight network archi-
tectures. Zhang et al. [19] used the lightweight feature extraction network GhostNet and
depthwise separable convolutions to reconstruct the original YOLOv4 model. In tests
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on a custom apple dataset, the improved YOLOv4's parameter count was approximately
15.53% of the original model, while the mAP increased by 3.45%. Zhang et al. [20] used
MobileNet v2, depthwise separable convolutions, and the Attention Feature Fusion Module
(AFFM) module to improve the original YOLOv4 model. Although the accuracy of the
improved model decreased slightly, its parameters were reduced to 19.53% of the original
YOLOVA4. Sun et al. [21] proposed the YOLOv5-CS network based on YOLOvS5, C3-light
modules, and the SimAM attention module. This model reduced floating-point operations
by 15.56% compared to the original YOLOV5, and the average precision (AP) reached 99.1%.
Kang et al. [22] used multi-scale features and attention mechanisms to lightweight improve
the original CenterNet model, reducing the model size by 25.7% and making it suitable for
deployment on actual hardware.

Currently, in natural environments, tobacco pest image detection faces challenges
such as similar colors between pests and backgrounds, significant variations in pest target
sizes, and the presence of interfering objects in images. This necessitates enhanced model
feature extraction capabilities and strengthened focus on target features. Moreover, current
pest image detection rarely involves the identification of pest targets in complex growing
environments, and the computational cost of the target detection network for tobacco pests
is relatively high, necessitating further improvement in its real-time capability. Given the
characteristics of tobacco pest detection and the existing issues with pest identification
models, this study develops a lightweight model for the identification and monitoring of
common tobacco pests in complex environments across different size scales. This paper
employs the lightweight AFPN network and VoV-GSCSP module to improve and optimize
the original YOLOv8 module, reducing the parameter count and computational load of
the original model and incorporating the SimAM attention mechanism to enhance feature
extraction capabilities in complex backgrounds and recognition accuracy of pest targets.
Through network structure optimization and algorithm design, this study aims to develop
a high-performance and lightweight tobacco pest detection algorithm to meet the demands
of real-world applications.

2. Materials and Methods
2.1. Image Dataset

This study focused on four common tobacco pests: cutworms, red spiders, aphids, and
leafrollers. The dataset was sourced from IP102 [23], a large dataset for pest recognition.
Through manual screening and cleaning, 460 pest images were obtained, distributed as
follows: 143 for cutworms, 102 for red spiders, 113 for aphids, and 102 for leafrollers.
Figure 1 displays samples of pests.

Cutworm Leafroller Red Spider

Figure 1. Pest samples.

For data annotation, the study employed the Labelme software (version 5.4.1) for
manual labeling [24]. The minimum bounding rectangle of each image was used as the
basic information for annotation. Annotations were saved in the YOLO format as txt files.
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2.2. Data Enhancement

Data augmentation is a pivotal technique employed in computer vision, serving
to enhance the size and diversity of training data, which in turn facilitates improved
generalization performance of the detection model [25]. In this study, the Mosaic data
augmentation approach was adopted to bolster the training set, aiming to enhance the
robustness of the detection model in pest identification [26]. The fundamental principle
behind the Mosaic data augmentation technique is to concatenate four images that have
been randomly scaled, cropped, and arranged into a single composite image. This strategy
aims to expand the data repository and amplify the model’s performance in detecting
smaller targets. An exemplary outcome of this method can be observed in Figure 2. Through
Mosaic data augmentation, multiple smaller images can be amalgamated into a larger
composite, thereby enhancing the scale and richness of the dataset without necessitating
additional labeled data. To meet deep learning model training requirements, the dataset
was expanded to 4000 images through data augmentation, then divided into training and
test sets at an 8:2 ratio.
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Figure 2. Results after Mosaic data augmentation.

2.3. Standard YOLOv8 Model

YOLOVS represents the latest installment of the single-stage object detection YOLO
series [27,28]. Embracing the detection philosophy of its YOLO predecessors, its modus



Agriculture 2024, 14, 353

50f21

operandi involves subdividing an image into smaller grid cells, then predicting the center of
each grid cell to detect objects [29]. YOLOv8 comprises three main components: a Backbone
network, a Neck network, and a Prediction layer. Within its Backbone, the model integrates
the Darknet-53 architecture to enhance the feature extraction process, elevating feature
extraction quality while curtailing computational overheads. The architecture known as
Darknet-53, which comprises fifty-three convolutional layers, is partitioned into several
smaller convolutional modules based on varying phases of information transmission, direct-
ing the model’s gradient flow during propagation, thus mitigating the vanishing gradient
issue [30]. YOLOvVS8’s Neck utilizes a Path Aggregation Network-Feature Pyramid Net-
work (PAN-FPN) network structure to construct a feature pyramid, adeptly amalgamating
feature maps from the Backbone through various upsampling stages to fuse extracted fea-
tures [31]. The Prediction or “Head” layer executes object detection predictions and outputs.
Here, YOLOVS introduces a decoupled design, segmenting classification and detection
tasks, and assigning them to different branches, augmenting detection efficiency [32]. Its
architectural schematic is depicted in Figure 3.

Prediction

UPSAMPLE

SPPF

CBS

CBS a

Figure 3. Structure of YOLOv8 model.

2.4. Improved YOLOwv8 Model

While the YOLOv8 model exhibits commendable detection accuracy, its extensive
parameter count impedes its seamless deployment in detection devices. Hence, there is an
exigency for a lightweight design adaptation of YOLOv8. Additionally, in practical pest
detection scenarios, challenges abound due to the intricate environments that pests inhabit.
These include varying object scales, intricate backgrounds, and instances where detection
targets obscure one another. Such complexities pose significant hurdles to the detection task.
Thus, judicious refinements to YOLOVS8 can bolster both the model’s detection performance
and efficiency, fostering its deployability in hardware systems.

2.4.1. YOLOv8 Model Improvement Strategy

In this research, the ‘I’ variant of the YOLOv8 model, designated as YOLOVS]I, served
as the core framework. To reduce the consumption of computational resources, the final
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two C2f components within the YOLOVSI structure were substituted by the more efficient
VoV-GSCSP module, which is based on the GSConv convolution technique. During the
feature fusion phase, a lightweight AFPN network supplanted the original PAN-FPN in
YOLOVS], aiming to alleviate the parameter count of the initial model. The backbone
network of YOLOVSI yields four outputs: C1, C2, C3, and C4. These serve as inputs for
the AFPN layers. Given the intrinsic challenges associated with pest imagery, such as
intricate backgrounds and significant luminance variations due to differing times and
weather conditions, the SImAM attention mechanism was integrated into the main network.
This enhancement accentuates the focus on pest targets set against complex backdrops. By
embedding this attention mechanism within the C2f module of YOLOVS], higher weightage
is assigned to the semantic information of the pest targets, thereby refining detection
precision. Figure 4 depicts the structure of the revised network.

]
—»@—'—» Predict
—>ﬁ ——> Predict

CBS
VoVGSCSP
SPPF

Up-sampling
—  horizontal connection

\4 Down-sampling

Figure 4. Structure of improved YOLOvS8] model.

2.4.2. Asymptotic Feature Pyramid Network

To reduce the parameter count required for network deployment, this study employs
the AFPN as a substitute for the PAN-FPN network in the ‘neck’ layer of YOLOVS [33]. In
the original YOLO algorithm’s feature fusion procedure, the FPN and PAN are adopted.
This architecture necessitates the fusion and transfer of features across multiple scales,
escalating computational overhead [34]. Moreover, the PAN-FPN structure within the
YOLO algorithm directly uses the outputs of the C3, C4, and C5 layers from the Back-
bone during feature fusion, neglecting the semantic disparities among distinct feature
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layers. Consequently, this results in suboptimal fusion outcomes for non-adjacent layer
features [33].

The introduction of the AFPN addresses this issue. AFPN, a feature fusion network,
is specifically designed to tackle the substantial semantic fusion gaps between adjacent
layers of the Backbone. The architecture of AFPN is asymptotic, harmonizing the semantic
information of diverse level features in the progressive fusion process, thus alleviating the
aforementioned problem. To maintain uniform dimensions and set the stage for integrating
features, the AFPN utilizes 1 x 1 convolution alongside bilinear interpolation to upscale
features. During downsampling, various convolutional operations are applied depending
on the sampling frequency. Figure 5 displays the configuration of the AFPN network.

Backbone

Figure 5. Structure of AFPN network.

The AFPN network introduces a novel feature fusion approach, with a progressive
feature fusion strategy that ensures the model’s efficiency and accuracy. By substituting the
traditional PAN-FPN structure in YOLOvS8 with AFPN, this study addresses the semantic
gap issues present during the feature fusion process. The progressive architecture of
AFPN narrows the semantic disparities between different hierarchical features during
fusion, alleviating the problems caused by semantic gaps and thereby enhancing the
model’s capability in pest detection within complex environments. Furthermore, due to its
lightweight design, AFPN offers a more streamlined structure compared to the traditional
PAN-FPN. Its integration into YOLOVS helps to reduce the model’s parameter count and
lower the overall computational resource footprint.

2.4.3. VoV-GSCSP Module

The VoV-GSCSP module is formulated from the GSConv convolutional framework and
the GS bottleneck component, constituting a cross-level part network (GSCSP) module [35].
GSConv, noted for its efficiency, is detailed in Figure 6. By integrating depthwise separable
convolution with channel shuffle techniques, GSConv bolsters the module’s nonlinear
representational capacity, concomitantly mitigating computational overhead.

The GS bottleneck is a module predicated on GSConv, optimizing the conventional
bottleneck module. The traditional bottleneck module, originating from ResNet [36], encom-
passes two standard convolutions: kernels of size 3 x 3and 1 x 1. The 1 x 1 convolution
is primarily employed to diminish and restore the dimensionality of features, while the
3 x 3 convolution establishes the bottleneck layer, characterized by reduced dimensions
for both input and output. The distinctive design of the bottleneck effectively manages the
dimensions of features, thereby simplifying computational complexity. Figure 7 illustrates
the configuration of the GS bottleneck.
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Figure 6. Structure of GSConv module.

Input

Cy channels

C5/2 channels

C, channels
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Output

Figure 7. Structure of GS bottleneck.

The VoV-GSCSP represents an ongoing innovation based on the GS bottleneck module,
incorporating a single-shot aggregation approach for its design. This module effectively
balances the model’s accuracy and computational speed, simplifies the network structure,
and concurrently maintains high precision and extensive feature reusability. Within VoV-
GSCSP, the channel count is divided into two sections: the first section undergoes a Conv
convolution initially, then utilizes stacked GS bottleneck modules for feature extraction;
the second section serves as a residual connection and simply passes through a single
Conv convolution. Ultimately, these two sections are fused based on the channel count and
output via a Conv convolution. The structure of VoV-GSCSP is presented in Figure 8.
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Figure 8. Structure of the VoV-GSCSP module.

The VoV-GSCSP not only retains the advantages of GSConv but also integrates the
full suite of benefits from the GS bottleneck. Its innovative skip-connection branch design
affords the VoV-GSCSP a more robust nonlinear representation than the C2f module of
YOLOVS, effectively overcoming the problem of vanishing gradients. Additionally, it
adopts the gradient partitioning strategy from the Cross Stage Partial Network (CSPNet),
whereby its channel-splitting technique enhances gradient fusion and reduces redundancy
in gradient information, thus fortifying its learning capability. This paper employed the
VoV-GSCSP module to replace the final two C2f modules in the YOLOv8I backbone network,
aimed at diminishing the computational resource requirements of the model. This allows
for efficient operation even in environments with limited computational resources. The
lightweight design of the VoV-GSCSP module not only reduces computational complexity
but also maintains substantial feature extraction capacity, which is particularly crucial for
real-time detection and deployment on edge devices.

2.4.4. SImAM Attention Module

In natural scenes, the recognition of pest images can be challenging due to the similarity
between the target and the background, overlap among targets, or the small size of the
target. To accurately distinguish between target and non-target information and minimize
interference from non-targets, this study integrates an attention mechanism within the
primary structure of the network, thus improving its ability to extract features.

Inspired by the human cognitive system, the attention mechanism emulates the human
capability to concentrate on particular details, magnifying details of the observed object,
and focusing more on the core issues of the data. Within the realm of deep learning,
introducing attention mechanisms has been proven to enhance task performance [37].
SimAM, a 3D attention module designed by Yang et al. based on neuroscientific theory [38],
differs from traditional channel and spatial attention models. It deduces attention weights
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based on the energy function of neuroscientific theory, enabling the calculation of neuron
significance for feature maps sans extra parameters. The minimum energy function e; for
the ith neuron in the SimAM attention mechanism is shown in Equation (1).

* 2 02 2
ef = (4(A+02))/((t—w’+202+24) (1)
where )
up = 1S x;, 07 = 1 il(x»—ut)2 (2)
M—-142"""" " M-1 &2
M=HxW 3)

Here, u; represents the average value of all neurons, (th is the variance of all neurons, ¢
is the target neuron, x; is associated with the ith neuron in the input feature map across a
singular channel, A is the regularization coefficient, and M denotes the number of neurons
per channel. A smaller ef value indicates that the target neuron in the current feature map
is more separable from other neurons, making that neuron more important. The weight for
each neuron within the feature map is determined through 1/¢;. Equation (4) displays the
ultimate feature map X, where E encapsulates the ef values for all feature map neurons.

X = X-sigmoid(1/E) 4)

Incorporating this module into the network significantly enhances its ability to extract
essential features, effectively suppressing the interference of non-significant elements. The
complex and variable backgrounds in pest images, especially under differing lighting
conditions due to changes in time and weather, may pose challenges to pest recognition.
The SimAM attention mechanism, by assigning higher weight to the semantic information
of pest targets, allows the model to focus more on the pests themselves rather than the
surrounding environment. Integrating the SimAM attention mechanism with the feature
extraction layers boosts the original model’s accuracy in pest detection, particularly when
the target pests are small in scale or similar in color to the background. Additionally, most
operations of this attention mechanism rely on optimized energy function choices, which
avoid excessive structural adjustments. This optimization accelerates the computation of
attention weights while maintaining the network’s lightness. The structure of the SimAM
module is depicted in Figure 9.

3D-weights

Generation g
e %ﬁg %ﬁg

gsPyiPyl
H .
did

X Fusion

W

C

Figure 9. The structure of SImAM attention block, where X is the input feature tensor. C: Channels of
the image. W: Width of the image. H: Height of the image.
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2.5. Model Evaluation Metrics

The study chose the following as evaluation metrics: Recall, Precision, mAP@0.5,
mAP@0.5:0.95, GFLOPs, and Parameters. mAP@0.5 is the mean of the mAP values at
an Intersection over Union (IoU) threshold of 0.5, and mAP@0.5:0.95 calculates the mean
of mAP values across IoU thresholds from 0.5 to 0.95, increasing by 0.05 at each step.
Formulas (5) through (10) are as follows.

TP

Precision = TP L EP (5)
TP
Recall = m (6)
1
AP = / PRAR @)
0
1 M o
mAP = — Y, AP(T) x 100% (8)
n n
GFlops = O ,Kl-2 * Cl-z_l x Cj + Z M? % C; 9)
i=1 i=1
n
Parameters = O Z, Ml2 * Kl2 xCi_1 % C; (10)
i=1

In Equations (5) and (6), TP refers to true positives, FN to false negatives (missed
detections), TN to true negatives, and FP to false positives (false detections). In Equation (8),
M represents the total number of classes involved in the detection task, and AP(T) denotes
the detection precision of class T. In Equations (9) and (10), O represents the order of
magnitude, K is the kernel size, C is the channel number, M is the input image size, and i is
the iteration number.

3. Results
3.1. Experiment Settings
3.1.1. Experimental Platform

The experimental setup’s hardware utilizes an Intel(R) Xeon(R) Gold 6240 CPU, fea-
turing 24 cores and 48 threads (base frequency at 2.60 GHz). For GPU acceleration, two
NVIDIA GeForce RTX 3090 units are used, leveraging the CUDA 11.6 platform to expedite
the network training process. The training environment operates on Python 3.8.16, with the
PyTorch 1.13.1 deep learning framework, on an Ubuntu OS (version 22.04.3) Development
tasks are conducted using the PyCharm IDE (version 2023.1.2).

3.1.2. Model Training Strategy

In this research, training and testing data were segmented into various groups (Batch
size), and after a comparative study, it was decided to train with 32 images per batch. An
Epoch, meaning one cycle through all images in the dataset, was observed to reach a point
of convergence in the network’s loss value after 100 cycles. Thus, the experiment was
designed with a 100 Epoch completion target.

Before processing, all images underwent resizing to a standard dimension of
224 x 224 pixels. To preserve the integrity of the images, no data augmentation techniques
were applied during the training phase. The learning rate adjustments were managed by
the Stochastic Gradient Descent (SGD) optimizer, starting at 0.01, with a momentum factor
of 0.937 and a weight decay factor of 0.0005. For evaluating the model’s accuracy on the test
dataset, an IoU benchmark of 0.7 was used, alongside non-maximum suppression (NMS)
with a matching IoU criterion of 0.7. Furthermore, to maintain unbiased model assessment,
no pre-trained models were leveraged in any comparative or ablation analysis.
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3.2. Comparison Experiment before and after Model Improvement

This study contrasts the training outcomes of the original YOLOvSI and the improved
YOLOVS8] models. The experiments constitute a univariate test, with both models being
trained and tested under an identical platform environment. Upon completion of the
training phase, a comparative evaluation of both models’ efficacy on the test dataset was
undertaken to determine the impact of the modifications. Table 1 displays the outcomes of
this evaluation.

Table 1. Performance of YOLOvS8] model before and after improvement.

Model Parameters GFLOPs mAP@0.5 Recall mAP@0.5:0.95 Precision
YOLOvS8I 43.61 M 164.8 87.9% 77.4% 69.1% 90.3%
Improved-YOLOvSI 20.65M 131.9 88.9% 80.1% 69.7% 92.7%

Table 1 data reveals that the enhanced YOLOv8] model has made notable progress in
terms of compactness. The metrics for the revised YOLOvS] stand at 20.65M parameters and
131.9 GFLOPs, marking reductions of 52.66% and 19.9%, respectively, when juxtaposed with
the original YOLOVSI version. Regarding accuracy in detection, the enhanced YOLOvSI
version consistently surpassed the original across the board in the test dataset. In detail,
mAP@0.5 saw an uplift of 1%, Recall by 2.7%, mAP@0.5:0.95 by 0.6%, and Precision by 2.4%.

For a graphical representation and evaluation of both algorithms” efficacy in identi-
fying pests in tobacco crops, a Precision-Recall (P-R) graph was constructed, positioning
Recall on the x-axis against Precision on the y-axis. An IoU threshold of 0.5 was employed
to segregate true positives from false positives. This P-R graph is shown in Figure 10.
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Figure 10. P-R curve: (A) YOLOVS], (B) Improved-YOLOVSL

From the graph, it is evident that the mAP@0.5 score of the refined model reached
88.9% for detecting four types of tobacco pests. For detection of leafrollers, cutworms,
aphids, and red spiders, the mAP@0.5 values were 91.5%, 86.5%, 89.3%, and 88.9%, respec-
tively, showing improvements of 0.3%, 2.5%, and 1.5% relative to the original YOLOVSL
Combining all the aforementioned data, it can be concluded that the advancements in the
YOLOvS8I model have not just boosted its detection capabilities but also markedly lessened
both the parameter size and computational load, achieving no-table progress in model
lightweighting.

3.3. Ablation Experiments

To evaluate the effectiveness of the suggested enhancements on the baseline model,
eight ablation studies were performed on the upgraded model utilizing identical hard-
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ware and datasets. The groups for the ablation studies included the YOLOvVSI equipped
with the AFPN network (YOLOvVS8I+AFPN), the YOLOvSI utilizing the SimAM atten-
tion mechanism (YOLOv8I+SimAM), the YOLOvS8I incorporating the VoV-GSCSP module
(YOLOvS81+VoV-GSCSP), and combinations of various methods: YOLOv8l+AFPN+VoV-
GSCSP, YOLOvS8I+AFPN+SimAM, and YOLOv81+VoV-GSCSP+SIMAM. The comparative
results of the ablation tests are presented in Table 2.

Table 2. The results of the ablation test.

Model Parameters GFLOPs mAP@0.5
YOLOvS8I 43.61 M 164.8 87.9%
YOLOVS8I+AFPN 27.67 M 151.6 88.4%
YOLOvV8I+SimAM 43.61 M 164.8 88.4%
YOLOvV81+VoV-GSCSP 36.60 M 145.2 87.9%
YOLOVvV8I+AFPN+VoV-GSCSP 20.65M 131.9 88.5%
YOLOv8l+AFPN+SimAM 27.67 M 151.6 88.7%
YOLOv8I+VoV-GSCSP+SIMAM 36.60 M 145.2 88.2%
Improved+YOLOvSI 20.65 M 1319 88.9%

Data from Table 2 indicates that the AFPN network contributed most significantly
to both model lightweighting and detection accuracy enhancement. When the AFPN
network replaced the feature fusion network of the original YOLOv8I model, there was a
36.55% reduction in the model’s parameter count and a 0.5% increase in the mAP@0.5 value.
However, the AFPN network’s ability to reduce the original model’s GFLOPs was limited,
achieving only an 8.01% decrease. This is attributed to the 4 x 4 and 8 x 8 convolutions
used in the downsampling operations of the AFPN network. Larger kernel convolutions
introduce additional computational overhead, resulting in the model’s computational com-
plexity not being significantly reduced. The VoV-GSCSP module, built from GSConv, made
the most substantial contribution to the decline in the original model’s GFLOPs. By combin-
ing depthwise separable convolution and channel shuffling methods, GSConv successfully
minimizes model complexity without compromising its accuracy. After incorporating the
VoV-GSCSP module, the GFLOPs of YOLOvS8I decreased by 11.9%. The introduction of the
SimAM attention mechanism also enhanced the model’s detection precision, achieving a
0.5% improvement over the original model. Given the no-additional-parameter feature
of SimAM, the model’s parameters and GFLOPs remained unchanged after integrating
SimAM. When combining multiple optimization techniques, further improvements in
model performance were observed. Combining the AFPN network with the VoV-GSCSP
module, the model’s parameters and GFLOPs decreased by 52.65% and 19.96%, respectively.
Integrating the AFPN network with the SimAM attention mechanism elevated the model’s
mAP score to 88.7%. Utilizing all three optimization techniques in tandem, the model per-
formance was optimized. The results from the ablation tests reveal that all three proposed
optimization strategies contributed positively to the comprehensive performance of the
model. The improved model exhibited notable advancements in terms of lightweighting,
achieving an mAP@0.5 value of 88.9% with only 20.65 M parameters and 131.9 GFLOPs,
thereby confirming the efficiency and practicality of the suggested enhancements.

Additionally, this paper offers a visual analysis of the performance of the YOLOv81
models on the test set, each incorporating one of the three optimization strategies. Precision,
Recall, mAP@0.5, and mAP@0.5:0.95 were selected as the criteria for evaluation. The
changes in these four indicators following the addition of different modules to YOLOv8I
are depicted in Figure 11.
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Figure 11. Change curves of four indicators after adding different modules to YOLOvSI.

Referencing Figure 11, it is noticeable that the model’s performance on the test set
was variably affected by diverse optimization approaches. However, broadly speaking,
training curves of all models were similar, showing rapid convergence. This indicates
that the lightweighting strategies employed in the study did not compromise the learning
capability of the original model.

3.4. Different Model Performances

For a comprehensive evaluation of the model introduced in this research, we juxtaposed
its performance against leading-edge object detection frameworks such as YOLOVS5 [39],
YOLOV6 [40], and YOLOvS. All models are single-stage object detection algorithms. No-
tably, the versions of YOLOvV5 and YOLOV6 utilized were the latest official anchor-free
implementations, which demonstrate significant improvements over their original versions.
The hardware and software configurations, as well as the hyperparameters used for training
all models, were kept consistent. The outcomes of the experiments are displayed in Table 3.
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Table 3. Performance comparison of different models.
Model mAP@0.5 Recall Precision mAP@0.5:0.9 Parameters

YOLOv5m 85.5% 74.6% 90.3% 63.5% 25.05M
YOLOv6m 87.3% 77.4% 93.6% 67.1% 51.98 M
YOLOv8m 86.7% 76.5% 90.6% 65.6% 25.84 M

YOLOvS8I 87.9% 77.4% 91.6% 69.1% 43.61 M
Improved-YOLOvS] 88.9% 80.1% 92.7% 69.7% 20.65M

The data in Table 3 reveals that in terms of accuracy metrics and model parameters,
the improved model exhibits superior performance. Compared to YOLOv5m, YOLOv6m,
YOLOvV8m, and YOLOVS], the mAP@0.5 value of Improved-YOLOvS8l is 3.4%, 1.6%, 2.2%,
and 1% higher, respectively. In terms of Recall, the improvements are 5.5%, 2.7%, 3.6%,
and 2.7% respectively. Moreover, the model parameters are reduced by 17.6%, 60.3%, 20%,
and 52.6% respectively. Collectively, these indicators suggest that the improved YOLOvSI
model demonstrates robust detection capabilities in complex environments, achieving high
detection accuracy while being lightweight in size, outperforming YOLOv5m, YOLOv6m,
YOLOv8m, and YOLOvSI.

Using Precision, Recall, mAP@0.5, and mAP@0.5:0.95 as evaluation metrics, the per-
formance curves of different models on the test set were plotted, as shown in Figure 12.

Figure 12 indicates that the convergence of the curves for the five models is similar,
with each model beginning to converge by the 20th epoch. Ultimately, improved YOLOvSI
model demonstrates a slight edge. Specifically, for the accuracy metrics mAP@0.5 and
mAP@0.5:0.95, both the original YOLOvS8I and Improved-YOLOvSI exhibit excellent perfor-
mance, with YOLOv5m lagging behind and YOLOv6m showing considerable fluctuations.
For the recall curve, the final result of Improved-YOLOVSI surpasses other models. For
the Precision curve, all five models showcase comparable performances. Through the
model performance curve comparisons, it is evident that the improved YOLOv8] model
possesses robust capabilities in recognizing positive class samples, effectively capturing
target categories comprehensively.
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Figure 12. Cont.
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Figure 12. Performance curves of different models on the test set.

3.5. Model Detection Results

To evaluate the model’s proficiency in recognizing the four pests of tobacco in com-
plex environments, this study constructed confusion matrices based on the testing dataset
outcomes, illustrated in Figures 13 and 14. Within this confusion matrix, the maximum pre-
dicted classifications consistently lie along the diagonal, thereby confirming the feasibility
of the model for pest detection. The recall rates for the detection of the four pests derived
from the confusion matrix are detailed in Table 4.
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Figure 13. Confusion matrix: YOLOVSL.
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Figure 14. Confusion matrix: Improved-YOLOVSL.
Table 4. Recall results for four pests.
Model Leaf Roller Cutworm Aphid Red Spider
YOLOvSI 80.6% 76.1% 75.4% 77.2%
Improved-YOLOVSI 83.6% 78.2% 79% 79.5%

The data presented in the table clearly demonstrates that the enhanced YOLOvVSI
model surpasses the original YOLOVSI in recall rate for all categories. The improved
model boasts recall rates of 83.6% for leafrollers, 78.2% for cutworms, 79.0% for aphids,
and 79.5% for red spiders, marking increases of 3.0%, 2.1%, 3.6%, and 2.3%, respectively,
over the original YOLOVSI. The increase is particularly noteworthy for aphids, with a
significant 3.6% improvement in recall rate. As illustrated in Figure 13, the original model
is prone to misclassification when pests exhibit color and size characteristics similar to the
background. For instance, leafrollers can sometimes be mistaken for the background due
to their camouflaging properties. Cutworms may occasionally be confused with leafrollers,
likely due to their overlapping morphological features. Such misclassifications, manifesting
as false negatives, are especially prevalent with aphids, whose small size renders them less
conspicuous against various backgrounds, leading the original model to confuse them with
the background. The improved YOLOvS8I model, with its integrated attention mechanism
module, has improved feature extraction capabilities, reducing such errors. This is evident
from the decreased number of false positives and false negatives in the confusion matrix
for aphids and other pests, as can be seen in Figure 14. The reduction in false positives and
negatives contributes to the enhanced recall rates for all pests, as detailed in Table 4, with
the improvements in the aphid category being the most pronounced. These enhancements
confirm that the model has successfully addressed some of the challenges associated
with pest detection in complex backgrounds, thereby affirming an increase in the model’s
precision in distinguishing pests from the background.



Agriculture 2024, 14, 353

18 of 21

A)

(B)

Aphid

To showcase the detection results of the enhanced YOLOvS8I model, random images
were selected from the test dataset for comparison. These findings are illustrated in
Figure 15. Highlighted areas represent the network’s detection results, with the text on
top of the boxes indicating the recognized pest type and numerical values reflecting the
detection confidence.

Cutworm Leafroller Red Spider

Figure 15. Contrasting the detection outcomes pre and post enhancement of the model: (A) YOLOvSI,
(B) Improved-YOLOvVSI.

From Figure 15, it is evident that both models exhibit comparable detection perfor-
mance. However, in certain scenarios, the improved YOLOvV8] model excels. In tests
recognizing smaller targets like aphids and red spiders, the improved YOLOv8] model
registers higher confidence levels. This is attributable to the YOLOv8I model integrating
the AFPN network, thereby expanding the receptive field of the original model, enhancing
its sensitivity and adaptability towards smaller object detection. In intricate backgrounds,
the improved YOLOvV8] model similarly holds an advantage. In recognizing cutworms,
the original YOLOvS8] model displays lowered confidence for overlapping and occluded
objects and occasionally misidentifies background elements. In contrast, the improved
YOLOVS8I model avoids these pitfalls, consistently exhibiting a detection confidence of over
96% for overlapping and occluded objects without false positives. Taking the test results
into account, the improved YOLOv8I model demonstrates superior detection capabilities
and confidence in recognizing small targets and intricate backgrounds compared to the
original YOLOVSI. Given the more lightweight nature of the improved YOLOvS8I model, it
holds a distinct advantage in practical scenarios.

3.6. Model Interpretability Analysis

To evaluate the improved YOLOvVSI model’s ability to extract pest features via its
backbone network, this paper employs the Grad-CAM (Gradient-weighted Class Activation
Mapping) algorithm for visual analysis [41]. Grad-CAM generates a heatmap by calculating
the gradient of the input image, highlighting the key regions that the model primarily
focuses on. Brighter colors indicate a higher degree of attention from the model. This
paper derives the final layer’s output feature map from the backbone network, acquiring
the activation pattern through gradient computation. The activation distribution is then
superimposed on the original image, creating a heatmap, depicted in Figure 16.
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Figure 16. Comparison of model heat maps: (A) Original images, (B) YOLOVS], (C) Improved-YOLOVSL.

The visualization outcomes reveal that the enhanced YOLOv8I model shows notable
improvements in feature extraction over its predecessor. Prior to the introduction of the
SimAM attention mechanism and the VoV-GSCSP module, the original model demonstrated
a lower degree of focus on pest targets, as reflected in the heatmap with more blue areas,
indicating a lower level of confidence and suggesting that the original model’s backbone
network had limited capability in extracting effective pest features. However, with the
incorporation of the SimAM attention and VoV-GSCSP, the model’s backbone network
became more precise in extracting valid information from the image, with its decision
focus centered on the pest target area itself. This indicates that the improvement strategies
employed in this paper can significantly enhance the model’s decision reliability.

4. Conclusions

(1) Based on the characteristics and challenges of recognizing pests of tobacco in
complex environments, this study introduces a refined, more efficient YOLOv8 model.
Key enhancements include implementing the streamlined AFPN network and VoV-GSCSP
modules as substitutes for the original feature extraction network and C2f module of
YOLOVS, targeting a reduction in the model’s parameter count and processing requirements.
Furthermore, it incorporates the SimAM attention module to boost the model’s accuracy in
feature extraction and pest target localization against complex backdrops.

(2) This study carried out comparative tests using the test dataset, adopting Preci-
sion, Recall, Parameters, GFLOPs, mAP@0.5, and mAP@0.5:0.95 as metrics to evaluate
the efficacy and detection performance of the enhancement strategies. Findings from
the comparative analysis indicate that, in relation to the baseline model, the enhanced
YOLOVS version exhibits a decrease in parameter count and GFLOPs by 52.66% and 19.9%
respectively, an augmentation in the mAP@0.5 score by 1%, an enhancement in Recall by
2.7%, an uplift in mAP@0.5:0.95 by 0.6%, and a boost in Precision by 2.4%. When bench-
marked against prevalent object detection frameworks such as YOLOv5m, YOLOv6m, and
YOLOV8m, the advanced YOLOVS version showcases superiorities in detection precision
and parameter efficiency.

(3) The enhanced YOLOVS8 model effectively balances model resource consumption
with detection accuracy. It achieves a significant reduction in model parameters and compu-
tational requirements while enhancing the model’s detection capabilities. This advancement
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allows for the model to be readily deployed on resource-constrained embedded devices,
such as mobile terminals, facilitating real-time and accurate identification of tobacco pests
in complex environments, thus demonstrating considerable practical application value. To
actualize the application of this model in agricultural machinery, it can be integrated with
lightweight processors and custom software interfaces, enabling seamless interaction with
smart plant protection devices or ground robots. Such equipment is capable of processing
image data in real-time in the field, rapidly and accurately identifying and locating pests,
providing decision support for precision pesticide application.
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