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Abstract: Early blight and late blight are two of the most prevalent and severe diseases affecting potato
crops. Efficient and accurate grading of their severity is crucial for effective disease management.
However, existing grading methods are limited to assessing the severity of each disease independently,
often resulting in low recognition accuracy and slow grading processes. To address these challenges,
this study proposes a novel two-stage approach for the rapid severity grading of both early blight
and late blight in potato plants. In this research, two lightweight models were developed: Coformer
and SegCoformer. In the initial stage, Coformer efficiently categorizes potato leaves into three classes:
those afflicted by early blight, those afflicted by late blight, and healthy leaves. In the subsequent
stage, SegCoformer accurately segments leaves, lesions, and backgrounds within the images obtained
from the first stage. Furthermore, it assigns severity labels to the identified leaf lesions. To validate the
accuracy and processing speed of the proposed methods, we conduct experimental comparisons. The
experimental results indicate that Coformer achieves a classification accuracy as high as 97.86%, while
SegCoformer achieves an mIoU of 88.50% for semantic segmentation. The combined accuracy of this
method reaches 84%, outperforming the Sit + Unet_V accuracy by 1%. Notably, this approach achieves
heightened accuracy while maintaining a faster processing speed, completing image processing in
just 258.26 ms. This research methodology effectively enhances agricultural production efficiency.

Keywords: convolutional neural network; deep learning; disease classification; semantic segmentation;
potato diseases; disease severity classification

1. Introduction

Potato holds the distinction of being the fourth largest staple food crop on a global
scale and ranks as one of the most significant noncereal crops worldwide. Endowed with
rich nutritional content, remarkable adaptability, and innate resistance, the potato assumes
a pivotal role in agricultural production, economic progress, and human well-being [1–3].
However, within the growth trajectory of potato plants, the emergence of disease infesta-
tions on their leaves can precipitate a substantial decline in yield. Among these afflictions,
early blight and late blight reign as the most pernicious and prevalent maladies befalling
the potato crop [4]. The symptoms associated with both ailments manifest as scorching on
tubers and leaves, presenting a formidable challenge in terms of differentiation and lending
to widespread confusion [5]. Consequently, managing these diseases becomes an intricate
task, underscoring the vital importance of early-stage detection and severity assessment.
The evaluation of disease severity assumes particular significance as it paves the way for
the adoption of targeted treatments and the implementation of adaptable pesticide dosing
strategies, thus effectively curtailing control expenditures [6].

Generally, the severity of crop diseases is classified by dividing the degree of infection
from mild to severe, represented by the percentage of area occupied by lesions at each
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level [7–9]. Traditional assessment of potato disease severity relies mainly on the subjective
judgment of experts, agricultural technicians, and farmers, which is time-consuming, labor-
intensive, subjective, and inefficient, making it difficult to be widely applied [10]. With the
rapid development of computer image processing, it has become extensively applicable to
the task of grading the severity of crop diseases. Vision-based image processing segmenta-
tion techniques can automatically identify and segment spots by analyzing features such
as patterns, shapes, colors, and textures in digital images, thus enabling disease severity
classification [11]. Vision-based image processing segmentation techniques include thresh-
old segmentation [12], region growth [13], and edge detection [14]. Chaudhary et al. [15]
converted the RGB image into CIELAB, HIS, and YCbCr color space, respectively, based
on different color features between the diseased spots and leaves, then based on the color
features, the diseased spots were segmented by detecting the threshold value of diseased
spots by applying OTSU method. Jothiaruna et al. [16] proposed a method combining
color features and area growth for leaf lesion segmentation with an average segmentation
accuracy of 87%. The above algorithms can achieve rapid segmentation of lesion areas;
however, these algorithms are relatively simple. They yield limited segmentation results
for complex backgrounds and diverse images with various changes. Additionally, they
are sensitive to noise and image distortions. In recent years, with the development of
artificial intelligence and deep learning, the technology of using deep learning to achieve
disease severity classification has been proposed. Using image classification techniques
to directly classify the severity of the pictures can provide fast severity assessment, and
these algorithms for image classification include VGG [17], ResNet [18], MobileNet [19],
ConvNeXt [20], and Transformer [21], etc. Chenghai Yin et al. [22] proposed DISE-Net to
assess the severity level of maize leaflet spot disease, which is divided into five levels, and
the recognition accuracy reaches 97.12%, but it can only achieve the grading of a single
disease, and the requirements of the image are high. Meanwhile, the use of semantic seg-
mentation techniques to segment leaf spots and thus grade the severity is also widely used,
and these algorithms for semantic segmentation techniques include FCN [23], UNet [24],
Deeplab [25], and PSPNet [26], etc. Hongbo Yuan et al. [27] proposed an improved DeepLab
v3+ deep learning network for segmenting grape leaf black rot spots with an mIoU of 84.8%.
Lin et al. [28] constructed a semantic segmentation model based on U-Net’s convolutional
neural network for segmenting cucumber powdery mildew spots with an mIoU of 72.11%
and a Dice accuracy of 83.45%. Semantic segmentation techniques based on deep learning
utilize deep neural networks to extract high-level semantic features, enabling more precise
and fine-grained recognition and segmentation. While these segmentation algorithms
can segment spots on plant leaves, traditional visual segmentation methods have high
image quality requirements. On the other hand, deep learning-based image segmenta-
tion algorithms can effectively handle spots with complex backgrounds, displaying good
generalization and robustness. In practical applications, employing deep learning-based
semantic segmentation techniques to identify and segment spots on potato disease-infected
leaves allows for rapid and accurate assessment of disease severity. Analyzing the results
of lesion identification and segmentation enables efficient monitoring and prevention of
the occurrence and spread of potato diseases. However, these methods can only achieve
single-stage segmentation and severity level assessment for individual diseases, and their
accuracy in assessment is relatively low.

A multi-stage severity assessment method has been proposed, which uses multiple
deep-learning image processing tasks to process a single image for more accurate disease
severity grading. These image-processing tasks encompass image classification, target
detection, semantic segmentation, instance segmentation, and other techniques. Xueping Ni
et al. [29] combined a target detection model and an image classification model to first detect
blueberries using the MobileNet SSD target detection algorithm and then segmented the
internal bruise and normal part using the MobileNet-UNet semantic segmentation model.
The calculated percentage of the bruise, the average intersection and merger ratio (IoU) of
blueberry segmentation and bruise segmentation were 0.979 and 0.773, respectively. While
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this method is fast, it can only achieve the segmentation of a single case, and the evaluation
accuracy is not high. Xudong Li et al. [30] combined an image classification model and
a semantic segmentation model to effectively segment and detect potato leaf diseases
amid complex backgrounds. They initiated the process by utilizing the Mask R-CNN
instance segmentation technique to segment potato leaves within the image. Subsequently,
they employed image classification models such as VGG16, ResNet50, and InceptionV3 to
classify the diseases affecting potato leaves. Finally, they utilized semantic segmentation
models including U-Net, PSPNet, and DeepLabV3+ to further classify potato leaves. The
overall accuracy of this approach is commendable, yielding positive results. However,
the three tasks are conducted independently of each other, which does not permit swift
severity grading.

To enhance the precision and speed of disease severity assessment, an integrated
approach that harnesses the strengths of diverse deep-learning tasks while optimizing the
process for efficient and comprehensive grading is imperative. In this study, we introduce
a two-stage methodology for classifying potato disease severity. This approach rapidly
and accurately assesses the severity of early and late blight diseases in potatoes. Initially,
we curated a dataset tailored to the two-stage task, serving both disease classification
and semantic segmentation purposes. Subsequently, we devised a classification network
named Coformer, primed to categorize potato images as exhibiting early blight, late blight,
or being healthy. This model achieved a remarkable accuracy rate of 97.86% in disease
classification. In the subsequent stage, we developed a semantic segmentation network
drawing from Coformer and SegCoformer. This network effectively isolates diseased spots,
leaves, and backgrounds within images, culminating in a segmentation mean Intersection
over Union (mIoU) of 88.50%. Finally, we compute the ratio of diseased spots based
on the segmentation outcomes and assess the severity of potato diseases in accordance
with the national standard reference table for both early and late blight. Notably, this
method achieves exceptional accuracy while maintaining an impressive processing speed
of just 258.26 milliseconds per image. This study uniquely integrates the two-stage task of
spot identification and spot segmentation, employing lightweight models for the severity
grading endeavor. This innovative approach expedites the grading of disease severity
across a diverse array of spots while ensuring the precision of severity assessment. Our
methodology furnishes a dependable technical instrument for identifying and managing
authentic potato diseases. The elevated precision and efficiency of this method empower
swift and accurate classification of potato diseases, thereby contributing to the advancement
of agricultural production efficiency. Furthermore, this study extends valuable insights to
other classifications of crop disease, serving as a reference for future research endeavors.

2. Materials and Methods
2.1. Construction of the Dataset

In this study, we constructed two datasets with different tasks for the disease classifi-
cation task and the semantic segmentation task of potato leaves with early and late blight.
We obtained the data for the disease classification task by acquiring them from PlantVillage
and Kaggle, and we collected a total of 3000 raw images, including healthy, early blight, and
late blight leaves of potatoes. We resized the raw images to 256 × 256 pixels. We filtered the
data for the semantic segmentation task by removing the images with angular deviation
and incomplete leaves from the data for the disease classification task, and we obtained a
total of 620 and 723 images of potato early and late blight, respectively. Then, we labeled
the leaf and spot areas in the images using EISeg-1.0.2 software [31], with the normal areas
of the leaves labeled in green, the spot areas in red, and the background labeled in black.
Finally, we converted them into 8-bit depth maps for the semantic segmentation task.

2.2. Data Enhancement

We used convolutional neural networks for the training and validation of our model,
and we required a large number of positive and negative samples. To improve the model’s
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generalization ability, robustness, and to prevent problems such as overfitting and sample
bias, we performed data enhancement on the original dataset in this study [32]. In the first
task stage of this study, we applied four data enhancement methods, as shown in Figure 1,
including contrast enhancement (CE), brightness enhancement (BE), 20-degree rotation
(RR), and color dithering (CD), which expanded the sample data to 5 times of the original
one, with a total of 15,000 images. We also showed the sample maps before and after the
image enhancement. For the classification task, we divided the dataset into training and
validation sets according to a ratio of about 8:2 for the potato disease dataset, which were
12,000 and 3000 images, respectively.
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On the segmentation task, we synchronized the data enhancement of the labeled
images and the corresponding labels of the images, respectively, and the enhancement
method was horizontal flip, expanding the sample data to 2 times of the original, a total of
2686, and the dataset divided the potato disease dataset into the training, validation, and
testing sets on the segmentation task according to the ratio of about 7:2:1. The specific data
sample division is shown in Table 1.

Table 1. Division of data on the split task.

Disease Images Training Validation Testing

early blight 1240 868 248 124
late blight 1446 1013 289 144

2.3. Rules for Grading the Severity of Potato Diseases

Determining the severity of plant leaf disease is generally measured using the leaf spot
coverage method, i.e., based on the ratio of the area covered by spots on the leaf to the area
of the leaf. To estimate the severity of potato leaf disease, potato early blight leaves and late
blight leaves were treated in this study, and the disease-infected spots on the leaves were
separated from the normal part of the leaves, and the corresponding areas were calculated
to compute the spot ratio. Then the severity of potato diseases was obtained according
to the standard reference table of potato early blight [33] and late blight [34], as shown in
Table 2, where Ke represents the standard reference of potato early blight and Kl represents
the standard reference of potato late blight.



Agriculture 2024, 14, 386 5 of 21

Table 2. Potato early blight and late blight standard reference table.

Level Severity Ke/% Kl/%

0 normalcy Ke = 0 Kl = 0
1 relatively low 0 < Ke ≤ 5 0 < Kl ≤ 5
3 lower 5 < Ke ≤ 10 5 < Kl ≤ 10
5 medium 10 < Ke ≤ 20 10 < Kl ≤ 20
7 relatively high 20 < Ke < 50 20 < Kl < 50
9 high Ke ≥ 50 Kl ≥ 50

A semantic segmentation network segments the spot-covered part, the normal part,
and the irrelevant background of an image, and outputs an image with only three labels:
spot, normal, and background, and each pixel in the image is assigned a semantic label. In
this study, the pixels of the three labels in the image were calculated and the spot ratio of
potato diseases was obtained according to Equation (1). Assuming that the labeled image
output from the semantic segmentation network is M, where each pixel takes the values of
0 (for background), 1 (for diseased spots), and 2 (for normal), the ratio of diseased pixels to
the total number of pixels can be expressed according to Equation (1).

K =
Ad

Ad + Al
× 100% =

∑
i,j
[M(i, j) = 1]

∑
i,j
[M(i, j) = 1] + ∑

i,j
[M(i, j) = 2]

× 100% (1)

where Ad is the area of diseased area, and Al is the area of the normal region, and M(i, j) = 1
denotes the counting of pixel points with a value equal to 1 in the M matrix, and ∑ij denotes
the summation of all pixel positions in the image (i, j) in the image are summed.

2.4. Experimental Flow

The overall process of disease severity grading of potato early blight and late blight
is shown in Figure 2. Firstly, the disease classification of potato leaves was carried out,
which was divided into early blight, late blight, and healthy leaves. Those predicted by
the model to be healthy leaves are directly outputted with a disease severity rating of 0.
Images predicted by the model to be early blight or late blight are semantically segmented,
with the leaf and spot portions segmented individually, and then the spot ratio Ke or Kl
is computed, and finally, the disease severity rating is obtained by comparing with the
reference table for early blight or early blight in potatoes.
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2.5. Network Architecture
2.5.1. Coformer

As shown in Figure 3, the Coformer network structure is combined by stacking Con-
vNeXt V2 block and Segformer block modules, which is the proposed classification network
for potato diseases in this study. Firstly, the image is convolved to compress the size of
the image feature map, and the number of channels is increased to enrich the feature map
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information, then the key feature extraction of the main convolution module is performed,
and finally pooling and normalization are performed for the prediction of disease classifi-
cation. The ConvNeXt V2 block serves as the pivotal feature extraction module within the
ConvNeXt V2 network [35]. This innovative block incorporates a depth-separable convolu-
tional layer in tandem with a global response normalization layer, seamlessly operating as a
unified convolutional process. Notably, this design empowers the network with exceptional
generalization capabilities, all the while maintaining a parsimonious parameter count. Seg-
former block, as the core part of the Segformer network structure [36], i.e., the Transformer
block in Figure 3, introduces a highly efficient self-attention mechanism, which acceler-
ates and compresses the multiple self-attention mechanism to significantly reduces the
amount of computation and improves the operation speed of the network. Simultaneously,
the self-attention mechanism integrated into the Segformer block exhibits the capacity to
dynamically ascertain correlations among individual positions. This adaptive learning ca-
pability significantly enhances the model’s comprehension of semantic information within
the image, thereby augmenting the precision of feature extraction processes.
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In this study, the Coformer network structure is stacked in the combination of C-C-T-
T [37], C denotes the convolutional neural network module and T denotes the Transformer
module, which makes Coformer have the common advantage of the superb generalization
ability of convolutional neural network and the whole area sensory field of the self-attention
mechanism model. Additionally, in Section 3.1, we conduct a comparative analysis among
three combination approaches: C-T-T-T, C-C-T-T, and C-C-C-T. The experimental find-
ings consistently highlight the superior predictive accuracy of the C-C-T-T configuration.
Furthermore, the Coformer has smaller model parameters and FLOPS, the first two convo-
lutional modules use ConvNeXt V2 block for extracting deep features and improving the
generalization ability of the model, and the last two modules use Segformer block to make
the model get superb modeling ability. Here the ConvNeXt V2 block is referred to as ‘block
1’ and the Segformer block is referred to as ‘block 2’. The Coformer network stack is shown
in Table 3.



Agriculture 2024, 14, 386 7 of 21

Table 3. Coformer network stacking.

Operator Input Output n

Conv2d 224 × 224 × 3 64 × 64 × 40 1
LayerNorm 64 × 64 × 40 64 × 64 × 40 1

Convnext v2 block 64 × 64 × 40 64 × 64 × 40 2
Convnext v2 block 64 × 64 × 40 32 × 32 × 80 2
Transformer block 32 × 32 × 80 16 × 16 × 160 2
Transformer block 16 × 16 × 160 8 × 8 × 320 2

Pooling 8 × 8 × 320 1 × 320 1
LayerNorm 1 × 320 1 × 320 1

Linear 1 × 320 1 × 3 1

The integration of depth separable convolution within block 1 facilitates the extraction
of profound features, enabling the network to emphasize specific regions in the image. This
enhancement bolsters the model’s perceptual performance, while the reduced parameter
count of the depth separable network accelerates training and reasoning processes. Simul-
taneously, block 1 introduces Global Response Normalization (GRN) and applies it to the
high dimensional features of each block 1. This action effectively removes redundant acti-
vations across channels, curbing the saturation of neurons and mitigating channel-related
feature breakdowns. GRN within block 1 fosters significant biasing of neurons toward
distinct patches of potatoes during feature extraction via the convolutional neural network.
The spatial normalization of features amplifies the robustness and generalization of these
features. Global response normalization operates as an adaptive normalization procedure
on features, contingent on the feature distribution across the entire image. This operation
decouples inter-feature dependencies, ultimately enhancing the model’s expressive capac-
ity. The GRN structure, as shown in Figure 3, encompasses a learnable scaling parameter
‘gamma’ for normalized feature scaling and a corresponding learnable bias parameter ‘beta’
for fine-tuning feature alignment across channels.

Block 2 contains the Efficient Self-Attention module of the transformer, which enables
the whole network to obtain the global receptive fields, which are used to capture the
contextual information at different locations in the input feature mapping so that the
whole network obtains the deep feature information in the global context and performs
the weighted aggregation of the information to obtain better classification results. Efficient
Self-Attention calculates the attention by dividing the sequence into chunks and performing
chunk matrix multiplication to accelerate the computation of self-attention and reduce the
consumption of self-attention computation.

The computation of Efficient Self-Attention is shown in Equation (2). Firstly, three
feature vectors are obtained from the input features, which are the data Q (query), the
K (Key) and V (Value). K and V are the feature embedding values mapped from high
dimension to low dimension. Then the Q; and K perform a dot product operation and
divide by

√
d (where d is the value of each K and V dimensions of the vectors) to obtain

the score matrix for attention. Finally, the score matrix is compared with the V weighted
summation and, by means of a learnable linear transformation (so f tmax), which again
maps the feature map to the original input dimensions to obtain the final output of the
multi-head attention mechanism.

Attention(Q, K, V) = softmax

(
QKT

√
d

V

)
(2)

In addition, block 2 introduces Mix-FNN, which uses a 3 × 3 convolution in the
feed-forward network (FFN) to convey the position information while considering the local
information leakage caused by padding with zeros, which is able to avoid the problem
of degradation of accuracy caused by interpolating position encoding (PE) at different
resolutions. The calculation of Mix-FNN is shown in Equation (3). xin represents the
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input features, i.e., the self-attentive output features, and xout represents the features of
the output, and MLP(xin) represents the pair of features that will be xin input multiple
hidden layers for pass-through processing, and GELU() represents the GELU activation
function, compared to the RELU activation function adds stochastic regularity, which
ensures efficient nonlinear output of the model and thus improves the robustness of the
model, the Conv3×3 represents the 3 × 3 convolution operation.

xout = MLP(GELU(Conv3×3(MLP(xin)))) + xin (3)

2.5.2. SegCoformer

While the current semantic segmentation model has achieved commendable outcomes
in terms of segmentation accuracy, the intricate feature extraction and encoding/decoding
procedures have resulted in a performance bottleneck concerning segmentation speed. In
this research, an innovative approach is undertaken, building upon the foundation of the
Coformer network. Specifically, the terminal Linear layer, referred to as the encoder, is re-
placed. Subsequently, a comprehensive Multi-Layer Perceptron (MLP) decoder is employed
for the decoding process. This modified architecture, known as the SegCoformer network,
is shown in Figure 4, depicting the structural configuration introduced in this study.
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Specifically, the multilevel features produced by the encoder are initially harmonized
across channels. This involves upsampling the feature map to a dimension equivalent
to one-fourth of the input channels (256 × 256 × 3), as represented by Equation (4). The
1/4 times feature map is then passed through the MLP layer to fuse the cascaded features
Fˆ and the MLP layer is used to project the fused features Fˆ into the segmentation mask M
with H/4 × W/4 × Ncls resolution, and the M is computed as shown in Equation (5), where
Ncls is the number of categories. Finally, the feature map with H/4 × W/4 × Ncls size is
reduced back to the size of H × W × Ncls, i.e., (256 × 256 × 3). Compared to traditional
decoders such as ASPP [38], this module receives the depth feature map from the encoder
as input and feeds it into multiple null convolution branches with different expansion
rates, multiple sets of null convolutions are able to obtain different sizes of the sensory
fields, followed by global average pooling of the feature maps, and finally, splicing together
the features of the three branches and upsampling them to the same size as the input
feature map. The MLP decoder can effectively reduce the number of network parameters
and computation amount while obtaining the global receptive field compared with the
traditional ASPP module, which can fuse cross-channel feature information and obtain
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different sizes of receptive fields, but it will increase the network complexity, the number of
parameters, and the computation amount accordingly. In contrast, the MLP decoder is a
more lightweight solution, which is suitable for converting the depth feature maps output
from the encoder into high-resolution prediction results.

F̂i = Upsample
(

H
4
× W

4

)(
F̂i
)
, ∀I (4)

M = Linear(C, Ncls)
(

Linear(4C, C)
(
Concat

(
F̂i
))

, ∀i
)

(5)

where Upsample (H × W) (−) denotes upsampling the feature map to H × W dimensions,
Linear (Cin, Cout) (−) denotes the linear layer with Cin and Cout as input and output
vector dimensions, respectively, and M denotes the mask values of the different categories
predicted by the model. The SegCoformer network stack is shown in Table 4.

Table 4. SegCoformer network stacking.

Operator Input Output n

Conv2d (k = 4, s = 4) 256 × 256 × 3 64 × 64 × 32 1
LayerNorm 64 × 64 × 32 64 × 64 × 32 1

Convnext v2 block 64 × 64 × 32 64 × 64 × 32 2
Convnext v2 block 64 × 64 × 32 32 × 32 × 64 2
Transformer block 32 × 32 × 64 16 × 16 × 128 2
Transformer block 16 × 16 × 128 8 × 8 × 256 2

MLP Layer 8 × 8 × 256 64 × 64 × 256 1
Dropout 64 × 64 × 256 64 × 64 × 256 1
Linear 64 × 64 × 256 64 × 64 × 3 1
Resize 64 × 64 × 3 256 × 256 × 3 1

2.6. Experimental Environment

In order to ensure the fairness and reproducibility of the experimental results, Win-
dows 10 was chosen for this study in terms of the operating system. Specifically, the
CPU model of the computer was Intel Core (TM) i7-7820X with 2.4 GHz and 32 GB of
RAM. Meanwhile, the graphics processor model was NVIDIA TITAN Xp, with a graphics
memory of 12 GB. The software environment used in the experiment is Python 3.8 and
Pytorch-GPU 1.9.

2.7. Experimental Parameters

In order to make the experimental results more comparable and at the same time to
make an objective comparison of the performance of different models, this study sets uni-
form experimental parameters. In the image classification task, firstly in the normalization
of each image of the input, Equation (6) “output” denotes the output after normalization
and “input” denotes the input image, and “mean” denotes the mean value, which is taken
as (0.485, 0.456, 0.406), “std” denotes the standard deviation, which is taken as (0.229, 0.224,
0.225). The optimizer uses AdamW (Adaptive momentum and weight decay), the loss
function uses the cross-entropy loss function, and the training uses the migration learning
technique in order to improve the model’s generalization [39], pretraining weights of differ-
ent networks on imagenet-1k are used separately (except MobileVit and Coformer) [40], the
batch size is set to 64, the learning rate is initialized to 0.001, and the number of iterations
is 50.

output =
input − mean(input)

std(input)
(6)

In the semantic segmentation task, in order to reduce overfitting, the training strategy
of migration learning (except SegCoformer) is used, where the weights are frozen for the
initial 100 rounds and unfrozen for the next 100 rounds for fine-tuning. The pre-training
weights of the different networks on imagenet-21k are used separately, the optimizer is
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used with AdamW, and the loss function is used with the cross-entropy loss function. The
learning rate is initialized to 0.001, the weights decay to 0.01, the batch size is set to 16 and
the total number of iterations is 200.

2.8. Indicators for Model Evaluation

Considering that the image classification task and the semantic segmentation task are
different computer vision tasks, precision (%), recall (%), F1 score (%), and accuracy (%)
were chosen as the metrics to evaluate the performance of the classification model for better
testing the performance of the proposed model in this study.

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1−score =
2TP

2TP + FP + FN
(9)

Accuracy =
TP + TN

TP + FP + FN + TN
(10)

where TP, TN, FP, and FN are the number of true positive samples, true negative samples,
false positive samples, and false negative samples, respectively. Precision is a measure of
the proportion of samples that the model correctly predicts as positive given all samples
predicted as positive, as in Equation (7). Recall measures the proportion of all true positive
samples in which the model successfully finds a positive, as in Equation (8). The F1-score
is the reconciled average of precision and recall, and is used to combine the accuracy and
recall of the classifier, as in Equation (9). Accuracy is the most intuitive measure of model
quality, and it describes the proportion of all samples correctly classified by the classifier, as
in Equation (10). In this study, precision, recall, Dice coefficient, and mean intersection and
merger ratio (mIoU, %) are chosen as metrics for evaluating the performance of semantic
segmentation models.

The Dice coefficient, as in Equation (11), is usually used to calculate the similarity of
two samples, and its value ranges from (0, 1). The Dice coefficient is defined as the ratio of
the twice of the intersection between the prediction mask and the true label mask to the
sum of the number of pixels of the prediction mask and the true label mask. In situations
where the prediction is in perfect agreement with the ground truth, the Dice coefficient
reaches its maximum value of 1. Conversely, if the prediction and ground truth do not
align at all, the Dice coefficient attains a minimum value of 0. Therefore, the higher the
Dice coefficient, the closer the model prediction results are to the true labels, and the better
the model performance.

Dice =
2TP

FP + 2TP + FN
(11)

mIoU, as in Equation (12), as a metric for model performance evaluation, can reflect the
model’s table on semantic segmentation tasks more objectively. We used mIoU as the main
metric to measure the performance of our method. Additionally, we calculated the IoU
value of each category for each image in the test set and weighted the average to obtain the
mIoU of the whole image.

mIoU =
1

k + 1∑k
i=0

Pii

∑k
j=0 Pij + ∑k

j=0 Pji − Pii
(12)

where, Pij represents the number of pixels that originally belong to class i but are predicted
to be class j, Pii class i, and Pji represents the number of pixels that are truly labeled as class
i and are predicted to represent the number of pixels that originally belonged to class j but
are predicted to be class i. In this study, the pixels in each image are classified into three
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classes: speckle, blade, and background, so k is taken as 2. To better measure the complexity
of the model, this study uses the number of parameters (params) and the amount of floating
point calculations (FLOPs). The FLOPs are calculated as shown in Equation (13).

FLOPs =
[
∑n=1

Conv=n

(
2CiK2 − 1

)
HWCO

]
+
[
∑n=1

Full=n (2I − 1)O] (13)

where Ci is the number of input channels of the ith convolutional layer, CO is the number
of output channels of the convolutional layer, K is the convolution kernel size, and H is the
height and width of the output feature map of the convolutional layer, respectively. W are
the height and width of the output feature map of the convolutional layer, respectively, I
is the height and width of the output feature map of the convolutional layer, and O is the
number of inputs and outputs in the fully connected layer, respectively.

3. Tests and Analysis of Results
3.1. Coformer Network Classification Performance Analysis

To validate the various Coformer combinations outlined in Section 2.5.1, training
experiments were performed on the image classification dataset utilized in this study. The
networks encompassing the combinations C-C-C-T, C-T-T-T, and C-C-T-T-T were individ-
ually trained and designated as Coformer1, Coformer2, and Coformer. The comparative
outcomes are detailed in Table 5.

Table 5. Comparison results of different combinations of Coformer.

Network Accuracy/% F1-Score/% Params/M Flops/G

Coformer1 95.56 95.56 3.58 0.43
Coformer2 96.33 96.34 4.46 0.52
Coformer 97.86 97.87 4.06 0.46

Analysis of Table 3 shows that Coformer1 has the worst performance with only 95.56%
accuracy but has the smallest model complexity among the three networks. Coformer2
outperforms Coformer1 with 96.33% accuracy, which is 0.77% higher compared to Co-
former1 but has the largest amount of model parameters and FLOPs. Coformer, on the
other hand, balances the model complexity while ensuring the highest model performance
with an accuracy of 97.86%, which is 1.53% higher than Coformer2. For further analysis,
their confusion matrices are plotted separately, as shown in Figure 5.
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The analysis reveals that all three models are generally proficient in making accurate
predictions, albeit with minor differences. Coformer exhibits a higher count of correctly
predicted samples compared to Coformer1 and Coformer2. Through comprehensive
analysis, Coformer amalgamates the advantages of CNN models and Transformers into a
singular architecture, yielding the best performance. It excels in robust generalization and
demonstrates commendable modeling capabilities simultaneously.

3.2. Comparison of Classification Performance of Coformer Network Compared to Other
Transformer Networks

To validate the superiority of the Coformer network over other feature extraction net-
works containing Transformers, experimental comparisons are conducted with alternative
Transformer based networks, which are ViT [41] (vision_transformer_base_patch16_224),
Sit (swin_transformer_tiny_patch4_window7_224) [42], CoAt (CoAtNet0) [37], MVit (mo-
bile_vit_small) [19], and Coformer, which are the versions with the smallest number of
parameters, are analyzed for performance and model complexity. The results of the com-
parison are shown in Table 6.

Table 6. Comparison results with other Transformer models.

Network Accuracy/% Precision/% Recall/% F1-Score/% Params/M Flops/G Size/M

Vit 98.35 98.36 98.36 98.36 85.64 16.86 327.35
Sit 99.06 98.60 99.03 98.96 98.81 15.16 105.27

CoAt 98.06 98.07 98.07 98.07 16.99 3.35 66.57
MVit 93.89 92.02 94.70 93.34 4.94 1.46 19.00

Coformer 97.86 97.87 97.87 97.87 4.06 0.46 10.19

Analyzing Table 6 shows that among the five networks under comparison, Coformer
boasts the least intricate model structure and showcases commendable performance. While
Vit exhibits the highest FLOPs and model size, Sit claims the largest parameter count.
However, Sit’s superiority in performance can be attributed to its layered local attention
mechanism. As for CoAT, its model complexity falls within the intermediate spectrum;
even though its parameter count, FLOPs, and model size are reduced in comparison
to Vit and Sit, its accuracy lags behind Vit’s. MVit adopts separable convolution and
attention mechanisms to alleviate the model’s computational demands and parameter
volume. Although MVit significantly streamlines network complexity in contrast to Vit,
Sit, and CoAt, the reduction in parameters leads to a notable performance decline. It
ranks as the poorest performer among all networks, with accuracy and precision rates of
93.89% and 92.02%, respectively. This suggests that the model lacks high confidence in
classifying samples as positive instances. Additionally, MVit exhibits the lowest recall rate,
standing at only 94.70%, implying that the model frequently misclassifies true positive
samples as negative. On the other hand, in comparison, Coformer touts the least intricate
network complexity while still approaching CoAT’s performance, with a marginal accuracy
difference of just 0.2%. This underscores Coformer’s ability to maintain minimal model
complexity while achieving respectable performance. As illustrated in Figure 6, for a more
comprehensive analysis of Coformer’s performance, this study plots training loss, training
accuracy, validation loss, and validation accuracy across various epochs.
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set accuracy, (c) represents training set loss, and (d) represents validation set loss).

From Figure 6, it becomes apparent that throughout the training process, all networks
except for the MVit and Coformer networks are equipped with corresponding pretraining
weights. As a result, the entire training process displays greater stability, characterized
by minor fluctuations, and achieves a high level of accuracy within the initial five rounds.
Conversely, the MVit and Coformer networks, lacking pretraining weights and featuring
lower network complexity, exhibit more substantial fluctuations in both training and
validation during the initial five rounds. Nevertheless, across the entirety of the training
process, Coformer outperforms MVit in terms of fluctuation in loss values, variation in
accuracy rates, and the magnitude of accuracy. Among the networks, Sit demonstrates
the highest stability throughout the training process, marked by minimal fluctuation
amplitude. Simultaneously, it attains the highest validation accuracy. While Coformer
does not maintain peak performance throughout the entire process, it still surpasses CoAT
and MVit, without demonstrating signs of overfitting. Coformer has the strongest overall
performance in terms of accuracy and speed in disease classification, and it can provide
efficient and accurate support for the rapid grading of potato disease severity.
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3.3. Performance Analysis of Semantic Segmentation of SegCoformer Model

In order to evaluate the training effect and generalization ability of the SegCoformer
model, this study plots the overall training process of the SegCoformer model, as shown in
Figure 7, where the main axis shows the trend and change of the mIoU values of the model
on the validation set in each round, and the subaxis shows the trend and change of the
training loss and validation loss. Analyzing Figure 7 shows that during the initial stages of
training, both the training loss and validation loss are elevated, accompanied by low mIoU
values. However, as the training progresses, there is a consistent decline in both the training
and validation losses, while the mIoU values demonstrate a steady ascent. Around the
180th round of training, the model attains an mIoU value of 88.50%, indicating its proficient
capability in accurately segmenting images with a high degree of precision. Notably, by the
185th round, the model achieves its lowest training and validation losses. On the whole,
these findings underscore a highly favorable outcome, signifying the successful acquisition
of segmentation capabilities with remarkable accuracy by the SegCoformer model.
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We used the model with the highest mIoU value to segment an image of early blight
on a potato leaf and another image of late blight. The segmentation results are depicted
in Figure 8. In this figure, “origin” denotes the original image, “a” represents the image
after background removal-essentially the segmented target image, “b” showcases the
segmented image, where green corresponds to the healthy parts of the leaf, red indicates
the diseased portions, and “c” displays a combination of the original image and the
segmented image, with a mixing factor of 0.7. From the figures, it is evident that the
SegCoformer model delivers exceptional accuracy in segmenting the primary leaf structure.
This holds particularly true for the early blight image, where numerous shadows were
predicted correctly. Furthermore, the SegCoformer model exhibits remarkable precision in
segmenting the disease spots, capturing even the minutest details of both early and late
blight spots.
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3.4. Performance Comparison of SegCoformer Compared to Other Semantic Segmentation
Network Parameters

In order to verify the segmentation performance of SegCoformer, based on the dataset
of the semantic segmentation task of this study, it was compared with other semantic
segmentation networks Deep_X (deeplabv3_xception) [43], Deep_M (deeplabv3 + mo-
bilenetv2), Unet_V (u-net_vgg16), Unet_R (u-net_resnet50), Segformer (Segformer_b0) [36],
and SegCoformer were experimentally compared to analyze their performance and model
complexity for segmenting spots of early and late blight in potato. According to the analysis
in Table 7, it can be seen that in terms of mIoU and Dice, Unet_V is the most effective,
with mIoU reaching 89.85% and Dice reaching 94.42%, so the Unet_V model is the most
effective in segmenting the whole image. In terms of network complexity, Segformer is
the smallest, with only 3.71 M parameters and 3.38 G FLOPs; in terms of model size, also
Segformer is the smallest, with only 14.24 MB, but the segmentation effect of Segformer
is not too good. Additionally, the network complexity difference between SegCoformer
and Segformer is very small, the mIoU of SegCoformer reaches 88.50%, which is 1.91%
higher than that of Segformer. Moreover, compared to Unet_V, the mIoU value is 1.35%
lower, but the number of parameters, floating-point computation, and model size of SegCo-
former is 4.51 M, 3.57 G, and 17.5 MB, which are about 11 times, 12 times and 12 times less
compared to Unet_V, respectively. SegCoformer has strong segmentation performance and
small computation consumption, which makes it a comprehensive and powerful semantic
segmentation network.

Table 7. Performance comparison with other semantic segmentation network parameters.

Model mIoU/% Dice/% Precision/% Recall/% Param/M GFLOPS/G Size/MB

Deep_X 86.47 92.42 93.54 91.33 54.70 41.71 209.70
Deep_M 88.28 93.47 94.24 92.72 5.81 13.21 22.40
Unet_V 89.85 94.42 94.99 93.86 24.89 112.92 94.97
Unet_R 89.55 93.08 94.95 91.29 43.93 46.03 167.90

Segformer 86.59 92.01 92.76 91.28 3.71 3.38 14.24
SegCoformer 88.50 93.90 95.02 92.81 4.51 3.57 17.51

Different models exhibit varying segmentation performance for the two types of
diseases, which we plotted as a double bar graph in order to evaluate the models more
intuitively, as shown in Figure 9. The optimal performance in early disease segmentation
was achieved by Unet_V, attaining an IoU value of 88.73%. For late disease segmentation,
SegCoformer proved to be the most effective, yielding an IoU value of 91.57%. When
considering prediction precision across various categories, SegCoformer stands out as the
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top performer. The best recall is also SegCoformer with 92.81%, which shows that the
model has good generalization ability and stability.
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Specifically, for the actual segmentation effect of the model, we selected deep_M,
Unet_V, Segformer, and SegCoformer, which have the highest mIoU, for the actual segmen-
tation comparison experiment, as shown in Figure 10. Analysis shows that, for potato early
blight segmentation results, Unet_V showcases the most superior segmentation perfor-
mance, excelling in capturing even the minutest spots with remarkable detail. Conversely,
Segformer’s segmentation performance is relatively subpar, as it struggles to identify nu-
merous small spots. SegCoformer and deep_M demonstrate similar performances, not
reaching the level of Unet_V, a distinction evident in Unet_V’s highest IoU score. Switching
to potato late blight segmentation results, SegCoformer notably emerges as the leader
among the various networks, boasting the most robust segmentation outcomes, complete
with intricate details. Comprehensively, SegCoformer is a semantic segmentation net-
work with strong segmentation performance and at the same time possessing smaller
network complexity.
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3.5. Comparative Experiment on Potato Disease Severity Grading

To assess the effectiveness of the Coformer and SegCoformer models in the task of
grading the severity of actual potato diseases, this study employed a set of 100 potato leaf
images from the test dataset. These images were used as samples for conducting tests
related to image classification, image segmentation, and severity grading. Among these
samples, there were 40 images of early blight, 40 images of late blight, and 20 images of
healthy potato leaves. The Coformer model was utilized for the classification task to predict
the disease category for each potato leaf. The SegCoformer model was employed for the
semantic segmentation task to obtain disease segmentation outcomes for each potato leaf.
By utilizing the severity grading rules proposed in this study, a severity grading value
(K value) was assigned to each test sample. Subsequently, a comparison was performed
between the predicted outcomes and the ground truth labels for these samples. Sit has
the highest accuracy on the classification task and Unet_V has the highest mIoU value
on the classification task, so the test comparison was conducted with Sit as the object
of the classification algorithm and Unet_V as the object of the segmentation algorithm,
respectively, as shown in Table 8, which shows the test results of the first 10 samples only.

Table 8. Test results for the first 10 samples.

No.
True Value Coformer SegCoformer Sit Unet_V

Class K/% Grade Class K/% Grade Class K/% Grade

1 Health 0 0 Health 0 0 Health 0 0
2 Late 5 1 Late 5 1 Early 6 3
3 Late 9 3 Late 11 5 Late 11 5
4 Early 9 3 Early 10 3 Early 10 3
5 Early 16 5 Early 15 5 Early 17 5
6 Late 17 5 Late 18 5 Late 11 5
7 Health 0 0 Health 0 0 Health 0 0
8 Health 0 0 Health 0 0 Health 0 0
9 Late 39 7 Late 45 7 Late 49 7

10 Early 9 3 Early 9 3 Early 10 3

Analyzing Table 8, it can be learned that on the classification task, the Coformer and
Sit proposed in this study are accurate for potato early blight, late blight and healthy leaf
images. On the segmentation task, compared to the ground truth values, SegCoformer
exhibits an average error of 2.04% in predicting K values, while Unet_V demonstrates
an average absolute error of 1.46% in predicting K values. Unet_V has a slightly smaller
average error, and the K-value results for both models indicate that the differences between
the actual and predicted outcomes are not significant.

SegCoformer achieved a testing accuracy of 83% in assessing the severity of these
100 samples, while Unet_V achieved an accuracy of 84%. Both models demonstrated
relatively high actual precision in predicting the severity of disease on individual leaves.
To provide a comprehensive comparison, combining the insights from this table and other
experiments, we created a contrast between the Coformer + SegCoformer combination
and the Sit + Unet_V combination for grading the severity of potato diseases. We visually
presented this multidimensional data comparison through a corresponding bar graph, as
shown in Figure 11. The relevant parameters encompass classification performance (CP/%),
segmentation performance (SP/%), the average error in K value prediction on the test set
(KE/%), testing accuracy on the test set (TSA/%), comprehensive time for a single image
(CT/ms), and total floating-point computation (TFO/G). Due to the different weights of
the samples, we normalized these parameters in order to compare multiple parameters
from different models. For positive weights, we set the maximum value to 1 and divide
the other values by the maximum value to obtain the ratio of the parameters. For example,
if the maximum value of parameter A is 10 and the minimum value is 2, the normalized
parameter A is a scaled value between 0.2 and 1. Conversely, for inverse weights use
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inverse normalization. In this way, we can eliminate the effect of parameter units and better
compare the relative sizes of different parameters.
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Analyzing Table 9 and Bar Graph 11 shows that the performance of Coformer +
SegCoformer is slightly lower than Sit + Unet_V, and the correctness of the test set is almost
equal. The inference speed of Coformer + SegCoformer is significantly better than that of
Sit + Unet_V, and in terms of the total floating-point computation, Coformer+ SegCoformer
is absolutely superior, compared with Sit + Unet_V as it can reduce more computation. As
for the processing speed of a single image, Coformer+ SegCoformer is 258.26 ms, which is
reduced by about 3 times compared to Sit + Unet_V. In the comprehensive analysis, the
two-model combination method proposed in this study is suitable for efficient identification
and fast grading of potato disease severity.

Table 9. Comprehensive performance comparison of the two combinations.

CP/% SP/% KE/% TSA/% CT/ms TFO/G

C + S 99.06 89.85 1.46 84 771.46 128.08
S + U 97.86 88.50 2.04 83 258.26 4.03

4. Conclusions

This study proposed a two-stage approach for the rapid grading of potato disease
severity and constructed experimental datasets for disease classification and semantic
segmentation. The disease classification data comprised a total of 3000 images sourced
from the publicly available datasets of PlantVillage and Kaggle. Moreover, the leaf semantic
segmentation dataset was formed by selecting 1343 images from the disease classification
dataset, focusing on early and late blight images. In addition, in order to improve the
generalization ability of the model, different types of image enhancement were applied to
the experimental data of disease classification and leaf semantic segmentation in this study.
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Subsequently, this study combined the ConvNeXt V2 block with the Segformer block,
adopting the design concept of the C-C-T-T combination. This design not only endowed
the convolutional neural network with exceptional generalization capabilities but also
harnessed the collective advantages of the self-attention mechanism’s full field perception.
Through this approach, a highly efficient and lightweight Transformer-based classification
model named Coformer was developed. On the potato disease classification dataset, Co-
former achieved an accuracy of 97.86%, all while maintaining a parameter count of merely
4.06 million. We added the MLP module for semantic information and image resolution
reduction to Coformer, and developed a semantic segmentation model, SegCoformer, with
an mIoU of 88.50% on the potato leaf semantic segmentation dataset, while the number
of parameters was only 4.51 M, the method has a high accuracy while possessing a fast-
processing speed, processing an image only takes 258.26 ms. These combined qualities
enable its utilization in the swift grading of potato leaf severity.

Lastly, this study proposed a severity grading rule for potato diseases and employed
a set of 100 potato leaf samples from the test dataset as subjects for image classification,
image segmentation, and severity grading tests. The results indicated that the two model
approaches introduced in this study effectively addressed the efficient identification and
rapid grading of actual potato disease severity.

In summary, the method proposed in this study for the rapid severity grading of potato
diseases meets practical application requirements, and the Coformer and SegCoformer
models can also be applied to other datasets. However, during the research process, there
still exist some potential areas for improvement and shortcomings. The adaptability and
generalization performance of the models towards leaves at different growth stages is rela-
tively insufficient. The background of the dataset is rather Singular, and there is a relatively
limited amount of experimental data available for semantic segmentation. In future work,
we intend to deploy the models on edge intelligent mobile devices for conducting field-
based severity grading of potato diseases. This deployment will facilitate the processing
of relevant decision-making information on lower-level devices. Additionally, we plan to
collect more potato disease images from field conditions with complex backgrounds to use
as training input for the models. This will enhance the models’ generalization capabilities
in complex background environments.
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