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Abstract: Grain legumes play a significant global role and are integral to agriculture and food
production worldwide. Therefore, comprehending and analyzing the factors that influence grain
legume yield are of paramount importance for guiding agricultural management and decision
making. Traditional statistical analysis methods present limitations in interpreting results, but
explainable artificial intelligence (AI) provides a visual representation of model results, offering
insights into the key factors affecting grain legume yield. In this study, nine typical grain legume
species were selected from a published global experimental dataset: garden pea (Pisum sativum),
chickpea (Cicer arietinum), cowpea (Vigna unguiculata), garden vetch (Vicia sativa), faba bean (Vicia
faba), lentil (Lens culinaris), pigeon pea (Cajanus cajan), peanut (Arachis hypogaea), and white lupine
(Lupinus albus). Seven commonly used models were constructed for each legume species, and model
performance evaluation was conducted using accuracy, AUC, recall, precision, and F1 score metrics.
The best classification model was selected for each grain legume species. Employing Decision Tree
analysis, Feature Importance Evaluation, and SHapley Additive exPlanations (SHAP) as explainable
techniques, our study conducted both individual and comprehensive analyses of nine leguminous
crops. This approach offers a novel perspective, unveiling not only the unique responses of each crop
to the influencing factors but also demonstrating the common factors across different crops. According
to the experimental results, XGboost (XGB) and Random Forests (RF) are the best-performing models
among the nine types of grain legumes, and the classification accuracy of a specific species is as high
as 87.33%. Insights drawn from the feature importance map reveal that several factors, including
aerial biomass, precipitation, sunshine duration, soil conditions, growth cycle, and fertilization
strategy, have a pivotal influence. However, it was found from the SHAP graph that the responses
of various crops to these factors are not the same. This research furnishes novel perspectives and
insights into understanding the factors influencing grain legume yields. The findings provide a
robust scientific foundation for agricultural managers, experts, and policymakers in the pursuit of
optimizing pulse yields and advancing agricultural sustainability.

Keywords: grain legumes; explainable artificial intelligence; feature importance analysis; Decision
Trees; SHAP

1. Introduction

The Fabaceae family encompasses approximately 20,000 species, making it one of the
largest plant families worldwide. It is extensively cultivated and utilized globally. Grain
legumes, belonging to the Fabaceae family, possess numerous significant characteristics
and applications, rendering them a vital component of global agriculture and food pro-
duction. Firstly, grain legumes are recognized for their high protein content, establishing
them as a crucial source of dietary protein for both humans and animals. Additionally,
grain legumes play a pivotal role in soil improvement [1]. These plants form a symbiotic
relationship with specific soil bacteria, resulting in the formation of root nodules. Through
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nitrogen fixation, they convert atmospheric nitrogen into a readily available form for plants,
effectively enhancing soil fertility and reducing reliance on chemical nitrogen fertilizers [2].
Therefore, analyzing the factors that influence grain legume yield can offer a scientific
basis for agricultural decision makers to formulate sound agricultural policies and plans,
thereby significantly contributing to sustainable agricultural development and ensuring
food security [3].

Statistical analysis is a commonly used method for analyzing factors that affect grain
legume yield. In addition, multivariate analysis techniques, such as factor analysis and
principal component analysis [4], have been applied to explore the relationship between
multiple factors and their degree of influence on grain legume yield. The utilizations of the
Geographic Information System (GIS) and remote sensing technology (RS) [5] have also
been widespread in the spatial analysis of factors impacting grain legume yield. Researchers
can combine yield data and environmental factors by acquiring remote sensing data, such
as land use, land cover, and vegetation index, to conduct spatial analysis. This enables
the identification of the spatial distribution of grain legume yield and the assessment of
spatial variability in influencing factors [6]. Simulation modeling [7] stands as a significant
approach in studying the factors affecting grain legume yield. Mathematical models and
computer simulations are employed by researchers to simulate the growth process and
yield response of grain legumes, as well as to analyze the impact of various factors. These
models are capable of capturing complex interactions among multiple factors, facilitating
the prediction of pulse yield under different management practices and environmental
conditions. Machine learning and data mining methods [8] play an important role in the
analysis of factors affecting grain legume yield. Researchers can employ classification
and regression algorithms, such as Decision Trees, Support Vector Machines, and Random
Forests, to construct predictive models. By incorporating various environmental and
management factors as input, these models enable the prediction of grain legume yield and
the analysis of the importance of influencing factors.

However, it is essential to emphasize that while these methods may provide predic-
tions or correlations regarding factors influencing grain legume yield, they do not offer
detailed explanations of causality or underlying mechanisms. Our study aims to address
these limitations in the existing technologies. Explainable artificial intelligence [9] aims to
enhance the transparency and comprehensibility of decision making in machine learning
models. By enabling users to understand how a specific prediction is derived, it enhances
trust and acceptance of the model. This method not only provides prediction results, but
also reveals key factors that influence grain legume yield [10]. Moreover, grain legume yield
is influenced by multiple factors, and complex interactions and nonlinear relationships
may exist among these factors. Explainable artificial intelligence has the capability to better
capture these complexities, enabling us to present complex data relationships in a more
intuitive and understandable manner, surpassing the capabilities of traditional analytical
methods. This aids researchers and policymakers in gaining a better understanding and
explanation of the causes of yield fluctuations [11,12].

Currently, research on grain legumes primarily focuses on analyzing individual
species, overlooking the comprehensive analysis of multiple grain legumes. To bridge this
information and methodological gap, this study leverages a global experimental dataset
encompassing a substantial volume of grain legume yield data from numerous countries
and regions [13]. The dataset includes long-term grain legume production data, allowing
for an exploration of diverse factors, such as climate regions, soil types, and growing condi-
tions. By employing this dataset, multivariate analysis can be conducted to simultaneously
consider multiple potential influencing factors, enabling the identification and quantifica-
tion of interactions and comprehensive effects among these factors. This approach reveals
a more comprehensive network of influencing factors, facilitating the provision of compre-
hensive, accurate, and reliable analysis results. Based on the aforementioned datasets, in
this study, we selected yield-related data from nine representative grain legume species as
the dataset required for this paper. Subsequently, data normalization, numericalization of
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classification labels, and addressing of category imbalance were performed on the dataset.
Following preprocessing, seven models for the nine grain legume species were constructed.
The optimal model was selected to elucidate and analyze the factors affecting crop yield
through the utilization of explainable artificial intelligence. The specific process is depicted
in Figure 1. Architecture diagram in Figure 1.
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Figure 1. Architecture diagram.

2. Models and Methods
2.1. Dataset

The dataset utilized in this study was derived from the global grain legume experiment
dataset published in Scientific Data by Charles Cernay et al. [13]. This dataset comprises the
outcomes of field experiments documented in 173 articles. It encompasses measurement
data obtained from 360 field experiment sites across 18 countries spanning five continents,
encompassing 39 species of grain legumes. The dataset is composed of nine structured
tables and 198 standardized attributes, making it the most comprehensive agronomic
dataset for cereal grain legume crops on a global scale. After organizing, consolidating,
and refining the dataset, nine specific grain legume species were ultimately selected from
the nine genera of grain legumes defined by the Food and Agriculture Organization of
the United Nations (FAO) [14]. These selected species constitute the dataset employed in
this study. The dataset encompasses a total of 18,259 records, and the nine grain legume
species included are garden pea, chickpea, cowpea, garden vetch, faba bean, lentil, pigeon
pea, peanut, and white lupine. These species correspond to the following genera: Pisum
spp., Cicer arietinum, Vigna unguiculata, Vicia sativa, Vicia faba, Lens culinaris, Cajanus spp.,
Arachis, and Lupinus spp. Some samples of the dataset are shown in Table 1. The dataset
employed in this study encompasses 38 attributes, including grain yield, aerial biomass,
crop nitrogen content, soil texture, soil nitrogen content, experimental field precipitation,
experimental field temperature, fertilization management, irrigation management, and
pest management.
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Table 1. Partial sample of dataset attributes.

Crop_
Yield_
Grain

Site_
Latitude

Site_
Longi-
tude

Site_
Soil_

Sand_
Percent-

age

Site_
Soil_

Silt_ Per-
centage

Site_
Soil_
Clay_

Percent-
age

Site_
Soil_pH

Site_
Soil_N_
Percent-

age

Site_
Precipi-

ta-
tion_mm

Site_
Temper-
ature_

Celsius

Crop_
Biomass_

Aerial

Irriga-
tion_
Pres-
ence_
Irriga-
tion_
Dose

Fertiliza-
tion_
NPK_
Dose

Weed_
Insect_
Fungi_

Pres-
ence_
Treat-
ment_
Chemi-

cal_
Dose

2.89 37.3 13.31 33.8 20.3 45.9 7.9 0.14 552 16.7 0 0 69 0

1.42 37.3 13.31 27 23.2 49.8 8 0.12 552 16.7 0 0 69 0

2.17 37.3 13.31 27 23.2 49.8 8 0.12 552 16.7 0 0 69 1080

2.6 37.3 13.31 48.6 24.7 26.7 8 0.07 552 16.7 5.27 8 8 1080

2.84 37.3 13.31 18.1 24.7 57.2 8 0.09 552 16.7 7.43 8 8 1080

0.31 −31.29 118.12 0 0 42 7.5 0 272 18.1 4.47 0 145 300

0.48 −31.29 118.12 0 0 40 7 0 173 19.3 2.06 0 72.5 0

1.45 −28.32 115.3 0 0 21.7 7.9 0 209 19.2 3.44 0 145 300

1.22 −28.32 115.3 0 0 26.7 8.1 0 201 20.1 3.21 0 72.5 300

2.48 50.2 −107.4 0 0 6.5 0 351 4 6.59 106 20 0

2.9 35.05 147.21 0 15 29 4.7 0.13 715 0 8.2 0 20 0

2.41 36.4 37.2 0 0 0 0 0.06 429 15.6 5.99 0 26 0

3.18 43.61 3.88 0 0 0 0 0.1 531 11.7 6.5 0 44 0

0.87 47.03 −109.57 0 0 0 6.5 0 233 11.9 2.51 0 7.3 0

1.19 47.03 −109.57 0 0 0 6.5 0 233 11.9 2.51 0 22 0

0.91 45.4 −111.9 0 0 0 7.5 0 341 0 2.43 0 5 0

0.27 47.2 −109.53 0 0 0 7.6 0 303 0 2.27 0 5 0

0.53 45.46 −111.23 0 0 0 8.1 0 308 0 1.7 0 5 0

0.08 47.52 −111.41 0 0 0 6.7 0 235 0 0.97 0 5 0

0.91 45.4 −111.9 0 0 0 7.5 0 341 0 2.43 0 5 0

1.09 39.37 22.22 50.9 20 29.1 7.5 0 461 16.2 4.02 0 30 0

0.92 21.31 70.36 77 13 10 7.6 844 10 0

2.89 37.3 13.31 27 23.2 49.8 8 0.12 479 19.6 8.51 92 0

2.2. Data Preprocessing

Given the substantial volume of data in the original dataset, this study selectively
focused on the data tables pertinent to the yield of grain legumes. The seven tables—Site,
Crop_Sequence_Trt, Crop, Tillage, Fertilization, Weed_Insect_Fung, and Irrigation—were
interconnected via primary and foreign keys, thereby forming the dataset required for this
study. As the dataset exhibited numerous missing values and unbalanced categories, we
employed data preprocessing methods such as missing value processing, classification
label numericalization, data normalization, and c imbalance processing.

The dataset, characterized by a large number of missing values and zero values, ne-
cessitated certain measures to ensure data integrity and accuracy. We adopted a method
of deleting missing values and filling specific values to normalize the data, eliminating
data columns with excessive missing values. Missing values and zero values, which do not
represent a particular attribute value, were filled as the median using the fillna() function.
To ensure that all the features of the nine grain legumes data were on a similar scale, we
normalized the data using the fit_transform() function, allowing for the subsequent model
to consider the influence of different features in a more balanced manner, thereby enhancing
the accuracy of feature importance analysis. Due to the significant disparities in yield levels
across the various countries and regions covered by the dataset, we employed the Food and
Agriculture Organization (FAO) global average yield of grain legumes to classify each crop
into two categories: above and below the global average yield. Samples falling below the
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global average yield were labeled as “0”, while those exceeding it were labeled as “1” [14].
Due to the original dataset encompassing grain legume yield from various global countries
and regions, leading to significant yield discrepancies, there was a category imbalance issue
following the binary classification of crop yield data. To address the category imbalance,
data sampling was typically employed. Mainstream sampling methods include under-
sampling, oversampling, and mixed sampling, which all aim to balance the sample size
of different categories by altering the data volume. Undersampling serves as a technique
to decrease the majority class’s sample size, thereby ensuring a balanced sample size [15].
Random undersampling, a classic method, achieves this balance by randomly discarding
some samples from the majority class. In contrast to undersampling, oversampling aims to
increase the minority class’s sample size through mathematical modeling or method syn-
thesis, thereby balancing the sample sizes across different classes [16]. As oversampling can
augment the sample size, it is more commonly applied to smaller datasets. However, this
approach of sample synthesis may lead to overfitting. Mixed sampling is a technique that
amalgamates undersampling and oversampling to balance the sample sizes across various
categories. BATISTA et al. [17] proposed the SMOTEENN algorithm as a notable mixed
sampling method. Mixed sampling compensates for the reduction in sample size induced
by undersampling, concurrently optimizing the issue of sample overlap resulting from
oversampling and thereby balancing the dataset without altering the data volume [18]..

In this study, we employed different sampling methods to address category imbalance,
tailored to the unique data scale and distribution characteristics of the nine grain legumes.
As illustrated in Table 2, the Garden_pea dataset is large, with the majority class significantly
outnumbering the minority class, making random undersampling a suitable approach.
The White_lupine dataset is relatively small and exhibits a higher degree of imbalance
compared to the other small sample datasets. By implementing the random oversampling
method to augment the number of minority samples, we enhanced its representation in
the dataset, enabling the model to better learn the characteristics of the minority class.
The datasets for the remaining seven grain legumes were sampled using the SMOTEENN
method.

Table 2. Sampling methods of 9 grain legumes. (‘1’ indicates yields above global average, ‘0’ indicates
below).

Species Genus Number of
Entries 1 0 Sampling

Methods

Garden_pea Pisum spp. 7093 4420 2673 Random
Undersampling

Chickpea Cicer arietinum 2266 1845 421 SMOTEENN

Cowpea Vigna unguiculata 1263 1171 92 SMOTEENN

Garden_vetch Vicia sativa 644 411 233 SMOTEENN

Fababean Vicia faba 1368 823 545 SMOTEENN

Lentil Lens culinaris 2072 1624 448 SMOTEENN

Pigeonpea Cajanus spp. 432 256 176 SMOTEENN

Peanut Arachis 2175 1520 655 SMOTEENN

White_lupine Lupinus spp. 946 663 283 Random
Oversampling
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2.3. Evaluation Metrics

This study evaluated the classification performance of each model using metrics such
as accuracy, AUC, recall, precision, and F1 score. Accuracy represents the proportion
of correctly classified samples out of the total number of samples. Precision indicates
the proportion of true positive samples among the samples predicted as positive. Recall
represents the proportion of true positive samples among all positive samples. AUC (area
under the receiver operating characteristic curve) measures the area under the ROC curve,
which is used to assess the classification performance of imbalanced datasets. The F1 score
is the weighted average of precision and recall, calculated as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 = 2*
Precision*Recall

Precision + Recall
(4)

where TP (True Positive) represents instances correctly identified as positive by the model,
TN (True Negative) represents instances correctly identified as negative by the model, FP
(False Positive) represents instances incorrectly identified as positive by the model, and FN
(False Negative) represents instances incorrectly identified as negative by the model.

2.4. Model Building

Given the nature of the structured data employed in this study, we selected seven
models that are well-suited for this type of data: Logistic Regression (LR), Naive Bayes (NB),
Random Forests (RF), XGBoost (XGB), K-Nearest Neighbor (KNN), Decision Tree (DT),
and Support Vector Machine (SVM). These models represent various learning methods and
algorithms, suitable for handling structured data and widely applied in binary classification
tasks. Logistic Regression (LR) is a classical classification algorithm that utilizes a logistic
function on top of linear regression for classification prediction. It is applicable to binary
classification problems and excels in interpretability. Naive Bayes (NB) is a classification
algorithm based on Bayes’ theorem and the assumption of feature independence. Despite
its simplicity, it performs well in handling structured data. Random Forests (RF) and
XGBoost (XGB) are two ensemble learning methods that classify by constructing multiple
Decision Trees and aggregating their results. They typically perform well on structured
binary classification datasets. K-Nearest Neighbor (KNN) is an instance-based learning
method that predicts by finding the K nearest neighbors to a new sample in feature space,
often using voting to determine the sample’s class. Decision Tree (DT) is a tree-based
classification algorithm that categorizes samples through a series of decisions. It is widely
applied in handling structured data. Support Vector Machine (SVM) is a model that
classifies data by finding the optimal hyperplane, demonstrating strong generalization
capabilities. We divided the training and testing sets using a 7:3 ratio. GridSearchCV
was employed to optimize the parameters of all models. GridSearchCV is a widely used
parameter optimization method in machine learning, which searches for the optimal
parameter combination by iterating through a given parameter grid. This strategy was
applied to each model for all nine crops. We selected Logistic Regression (LR) and Random
Forests (RF) as example models and have detailed their parameter settings and the ranges
tested, as shown in Table 3. Subsequently, we evaluated each model for the nine crops
using metrics such as accuracy, AUC, recall, precision, and F1 score. Taking Fababean as an
example, the model evaluation results are presented in Table 4, indicating that the Random
Forest model performed the best for Fababean.
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Table 3. Parameter settings and ranges tested for Logistic Regression (LR) and Random Forests (RF).

Model Parameter Values

LR
C 0.01, 0.1, 1, 10

penalty 11, 12
solver liblinear, saga

RF

n_estimators 20, 50, 100, 200
max_depth 6, 8, 10, 20, 30

min_samples_split 2, 5, 10
min_samples_leaf 1, 2, 4, 6

max_features auto, sqrt, log2

Table 4. Evaluation results of 7 models of Fababean.(Best values in bold).

Model Acc. Auc. Prec. Rec. F1

XGBoost 0.75 0.74 0.77 0.75 0.74
Random Forests 0.79 0.770 0.83 0.79 0.78

Decision Tree 0.72 0.77 0.79 0.72 0.69
K-Nearest Neighbor 0.73 0.72 0.73 0.73 0.73

Naive Bayes 0.76 0.76 0.77 0.76 0.76
Logistic Regression 0.73 0.74 0.74 0.73 0.73

Support Vector Machine 0.69 0.69 0.69 0.69 0.69

The seven machine learning models were independently applied to the nine crops,
and the accuracy of each model for each crop is reported in Table 5. For example, the
classification accuracy of the XGB model for Garden_pea was 76.74%, while the RF model
achieved a classification accuracy of 86.76% for Chickpea and 87.33% for Cowpea. The
RF model also achieved classification accuracies of 77.31% for Garden_vetch, 78.83% for
Fababean, and 86.33% for Lentil. The XGB model achieved classification accuracies of
71.53% for Pigeonpea and 76.86% for Peanut, while the RF model achieved a classification
accuracy of 71.83% for White_lupine. As can be seen from Table 5, among the nine grain
legume species, the XGB and RF models yielded the best classification results.

Table 5. Accuracy-based performance comparison of 9 grain legume species across 7 models.(Best
values in bold).

Species Genus XGBoost Random
Forests

Decision
Tree

K-Nearest
Neighbor

Naive
Bayes

Logistic
Regression

Support
Vector

Machine

Garden_pea Pisum spp. 76.74 66.64 64.00 58.00 59.60 74.30 64.00

Chickpea Cicer
arietinum 82.06 86.76 79.26 81.32 81.02 77.20 76.76

Cowpea Vigna
sinensis 77.83 87.33 84.96 66.75 70.71 72.29 75.46

Garden_vetch Vicia sativa 76.29 77.31 65.46 71.64 70.10 70.10 69.59
Fababean Vicia faba 74.94 78.83 72.02 72.50 75.66 73.23 69.34

Lentil Lens
esculenta 85.36 86.33 75.24 71.86 85.85 85.85 79.10

Pigeonpea Cajanus
spp. 71.53 64.61 71.54 63.85 71.54 64.62 64.61

Peanut Arachis 76.86 74.12 64.78 41.50 60.33 74.12 50.69

White_lupine Lupinus
spp. 57.75 71.83 51.06 57.75 57.75 40.85 56.70

Random Forests, a bagging-based ensemble learning method proposed by Breiman
et al. [19], is a classifier composed of multiple independent Decision Trees. It boasts strong
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generalization ability, rapid training speed, and the capacity to handle high-dimensional
data without the need for feature selection, making it widely applicable to numerous
classification problems. XGBoost, an ensemble learning algorithm based on boosting
proposed by Chen T Q et al. [20], combines basis functions and weights through boosting
principles. It aggregates the results of multiple trees, summing the scores from each tree
to obtain the final score. Both Random Forests and XGBoost are ensemble tree models.
Given that Decision Trees tend to overfit when dealing with high-dimensional samples,
most practical applications utilize ensemble learning methods based on Decision Trees [21].
These methods combine multiple base learners (Decision Trees) to perform classification or
regression tasks, thereby enhancing the accuracy and robustness of the model [22].

3. Results and Discussion
3.1. Visualization of Decision Trees

As evidenced in Table 3, ensemble tree models demonstrate superior classification
performance in the structured data domain classification model [23] when compared to
other machine learning models. Furthermore, compared to certain black box models (such
as neural networks), Random Forests and XGBoost retain a degree of explainability. This is
due to the fact that the decision-making processes of Random Forests and XGBoost can be
understood and explained by visualizing the structure of each Decision Tree.

Figure 2, for instance, depicts a Decision Tree randomly selected from the Cowpea
dataset based on the RF model. The Decision Tree reveals that each node’s division
condition is the feature selection condition. Features closer to the root node in the Decision
Tree are of greater importance and play a pivotal role in the division of classification
results. The data flow process within the model is clearly visible from the Decision Tree.
The samples in the training set are divided according to the root node’s value condition,
Crop_N_Quantity_Aeria0.068. Samples with a value less than 0.068 enter the left child
node, while those with a value greater than or equal to 0.068 enter the right child node. The
term “samples is 100%” indicates that the node encompasses the entire training dataset.
The value [0.382, 0.618] represents the proportion of samples with category 0 and category 1
in the node, while “class = 1” signifies that the node’s predicted category is 1. The left node,
a leaf node, lacks characteristic conditions, indicating that no further division is required.
A gini index of 0 signifies that the node’s impurity is 0, and all samples belong to the same
category. The right node is further divided based on the sample’s “Crop_Biomass_Aerial”
feature value: if the sample’s Crop_Biomass_Aerial” is less than 0.107, it enters the left
child node; if it is greater than or equal to 0.107, it enters the right child node. The sample’s
category 0 proportion is approximately 35.3%, while category 1 accounts for about 64.7%,
hence the node’s predicted category is 1. This division process continues until the entire
Decision Tree is divided, with each node assigning samples to different sub-nodes based on
feature conditions and predicting the final category. Thus, the Decision Tree can determine
the sample’s category based on the feature value, providing an intuitive method to explain
the data flow understanding process.

Although Decision Trees inherently possess a certain degree of explainability, in en-
semble tree models such as Random Forests and XGBoost, explainability diminishes when
the classification results of multiple Decision Trees are combined. This is due to the intro-
duction of randomness and complex optimization processes during the construction of each
Decision Tree by Random Forests and XGBoost, resulting in a single Decision Tree’s weak-
ened explainability. Consequently, ensemble learning models are still considered “black
box models” with some explainability deficiencies. To provide more detailed explanations,
we can utilize explainability methods, one of the most commonly used being SHapley
Additive Explanations (SHAP), proposed by Lundberg and Lee in 2017 [24]. Based on the
concept of Shapley value in game theory, SHAP quantifies the contribution of different
features to the prediction result, revealing the degree of influence of each feature on the
prediction result.
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For instance, in the present Decision Tree, the primary important feature is identified
as “Crop_N_Quantity_Aerial”. Its location at the root node underscores its pivotal role in
the classification process. The succeeding crucial features include ”Crop_Biomass_Aerial”,
”Tillage_Seeding_Row_Inter”, ”Crop_N_Quantity_Aerial”, ”Crop_N_Fixed_Percentage_
Aerial”, ”Tillage_Seeding_Delay_Day_Number”, and ”Crop_Yield_Grain_DM_Percentage”.
These features, as illustrated in the SHAP summary graph of the crop, rank within the
top 20 in terms of importance. However, there exists a discrepancy between their order
of feature importance and their ranking within the Decision Tree. This inconsistency pri-
marily arises from the disparate methodologies employed by Decision Trees and the SHAP
summary graph in evaluating feature importance. While Decision Trees prioritize the
splitting capability of features, SHAP values quantify the average contribution of features
to the anticipated outcome. Consequently, a feature might be deemed important in a
Decision Tree owing to its effectiveness in segregating the sample into purer subsets, yet it
might not garner equivalent importance in a SHAP summary graph if its overall impact on
the prediction result is not substantial. Furthermore, the random forest model comprises
multiple Decision Trees, with each tree being trained on a subset of randomly selected data
and features. Therefore, the feature importance ascertained from a single Decision Tree
might not wholly represent the feature importance of the entire random forest model. In
contrast, SHAP values are calculated based on the entirety of the model—in other words,
all trees are taken into account. Therefore, the feature importance represented by the SHAP
value incorporates all data and features and, hence, presents a more holistic reflection of
the model’s behavior.

3.2. Feature Importance Analysis

The SHAP method, considering the combination of different feature values, computes
the average contribution of each feature to the model prediction and interprets this in
relation to the influence of feature values. The SHAP method is versatile, applicable to
a spectrum of model types ranging from traditional linear models to complex black box
models. It not only elucidates the prediction results of a single sample but also provides a
ranking and explanation of the importance of global features. This aids users in gaining a
profound understanding of the model’s decision-making process and prediction results.
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In this study, we utilized the SHAP value to analyze the salient feature information of the
training model. The central premise of SHAP feature importance is straightforward: a
feature with a larger absolute Shapley value holds significant importance. To ascertain
global importance, we computed the average of the absolute Shapley values for each feature
as shown in Equation (5), where Ij represents the total contribution measure of feature j to

the model’s prediction results; ϕ(i)
j denotes the SHAP value of feature j for the i-th sample;

and n is the total number of samples.

Ij = ∑n
i=1

∣∣∣ϕ(i)
j

∣∣∣ (5)

Taking the feature importance map of Chickpea as an example, Figure 3 displays the
results of the SHAP values sorted in descending order post RF model training. This figure
illustrates the 20 important features selected from a total of 38 features. By comparing the
SHAP values of the different features, it becomes evident that these important features
exert a substantial impact on the model output. Among them, the aerial biomass of crops,
the precipitation at the experimental point, and the longitude of the experimental point are
the three features that most significantly influence the yield of Chickpea. The concordance
of these findings with the SHAP summary graph (refer to Figure 4a) serves to reinforce the
significance of these features within the model.

Agriculture 2024, 14, 438  10  of  19 
 

 

SHAP values of the different features, it becomes evident that these important features 

exert a substantial impact on the model output. Among them, the aerial biomass of crops, 

the precipitation at the experimental point, and the longitude of the experimental point 

are the three features that most significantly influence the yield of Chickpea. The concord-

ance of these findings with the SHAP summary graph (refer to Figure 4a) serves to rein-

force the significance of these features within the model. 

 

Figure 3. Feature importance analysis. 

 

(a) Chickpea 

Figure 3. Feature importance analysis.

Agriculture 2024, 14, 438  10  of  19 
 

 

SHAP values of the different features, it becomes evident that these important features 

exert a substantial impact on the model output. Among them, the aerial biomass of crops, 

the precipitation at the experimental point, and the longitude of the experimental point 

are the three features that most significantly influence the yield of Chickpea. The concord-

ance of these findings with the SHAP summary graph (refer to Figure 4a) serves to rein-

force the significance of these features within the model. 

 

Figure 3. Feature importance analysis. 

 

(a) Chickpea 

Figure 4. Cont.



Agriculture 2024, 14, 438 11 of 18
Agriculture 2024, 14, 438  11  of  19 
 

 

 

(b) Cowpea 

 

(c) Garden_pea 

 

(d) Faba bean 

Figure 4. Cont.



Agriculture 2024, 14, 438 12 of 18
Agriculture 2024, 14, 438  12  of  19 
 

 

 

(e) Lentil 

 

(f) Peanut 

 

(g) Pigeon pea 

Figure 4. Cont.



Agriculture 2024, 14, 438 13 of 18
Agriculture 2024, 14, 438  13  of  19 
 

 

 

(h) Garden vetch 

 

(i) White lupine 

Figure 4. SHAP summary graph: x-axis shows feature contributions; line thickness reflects sample 

size; color transition indicates feature value change. 

3.3. SHAP Graph Analysis 

In an effort to further clarify the positive and negative relationships between signifi-

cant features and model output results, we utilized the SHAP summary graph for analysis 

in this study. The SHAP summary graph amalgamates feature importance with feature 

effects, where each point on the summary graph represents a Shapley value for a feature 

and an instance. The feature determines the position on the y-axis, while the Shapley value 

determines the position on the x-axis. Moving rightward from the origin, a positive Shap-

ley value indicates a positive contribution of the feature to the positive prediction result. 

The further to the right, the greater the contribution, and vice versa. The thickness of the 

line corresponds to the sample size, with a thicker line indicating a larger sample size. The 

color transition from blue to red represents the change in the feature value from small to 

large. 

The graph depicting chickpea yield (Figure 4a) indicates that precipitation is the sec-

ond most influential factor. An increase in precipitation generally results in a positive im-

pact on chickpea yield, as it is a crucial environmental factor for plant growth. Adequate 

precipitation supplies the plant with necessary moisture, thereby promoting growth and 

development. The longitude of the experimental site also positively influences chickpea 

yield, with higher longitudes typically correlating with extended sunshine hours, partic-

ularly  in  the summer. Sufficient sunlight promotes ample photosynthesis  in chickpeas, 

Figure 4. SHAP summary graph: x-axis shows feature contributions; line thickness reflects sample
size; color transition indicates feature value change.

3.3. SHAP Graph Analysis

In an effort to further clarify the positive and negative relationships between significant
features and model output results, we utilized the SHAP summary graph for analysis in
this study. The SHAP summary graph amalgamates feature importance with feature effects,
where each point on the summary graph represents a Shapley value for a feature and
an instance. The feature determines the position on the y-axis, while the Shapley value
determines the position on the x-axis. Moving rightward from the origin, a positive Shapley
value indicates a positive contribution of the feature to the positive prediction result. The
further to the right, the greater the contribution, and vice versa. The thickness of the line
corresponds to the sample size, with a thicker line indicating a larger sample size. The color
transition from blue to red represents the change in the feature value from small to large.

The graph depicting chickpea yield (Figure 4a) indicates that precipitation is the sec-
ond most influential factor. An increase in precipitation generally results in a positive
impact on chickpea yield, as it is a crucial environmental factor for plant growth. Adequate
precipitation supplies the plant with necessary moisture, thereby promoting growth and de-
velopment. The longitude of the experimental site also positively influences chickpea yield,
with higher longitudes typically correlating with extended sunshine hours, particularly
in the summer. Sufficient sunlight promotes ample photosynthesis in chickpeas, leading
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to the synthesis and accumulation of more organic matter, thereby enhancing biomass
accumulation and yield.

The cowpea graph (Figure 4b) demonstrates that higher latitudes yield greater harvests
of cowpea, a summer crop that completes its life cycle within a brief growing season.
Consequently, cowpea is a suitable crop for regions with shorter growing seasons, especially
in high latitudes or monsoon regions. Additionally, optimal seeding spacing can enhance
cowpea yield by optimizing plant density through inter-plant interaction and resource
competition. The nitrogen content of cowpea crops positively correlates with yield, as
legumes can symbiotically interact with rhizobia, which fix atmospheric nitrogen into a
usable form. This self-sufficient nitrogen supply increases leaf area and photosynthetic
intensity, thereby improving the conversion of light energy into biomass and yield.

The garden pea graph (Figure 4c) indicates a negative correlation between yield and
both site longitude and precipitation. For garden peas, extended sunshine hours may result
in excessive transpiration and water evaporation, negatively impacting plant growth and
yield. Higher precipitation can result in overly saturated soils, especially in areas with
poor drainage. Excessive moisture can adversely affect garden pea root health and growth,
increase water saturation in the soil, limit oxygen access to the roots, and lead to root
suffocation and rot. These factors can impede normal plant growth, thereby affecting yield.

The yield of faba beans (Figure 4d) negatively correlates with the percentage of sand
in the soil, as faba beans require a relatively high water supply, particularly during the
growing season and the flowering and fruiting periods. A higher sandy soil content may
cause the soil to be overly permeable, leading to rapid water drainage and making it
difficult to maintain an effective water supply, thereby affecting normal plant growth and
yield. A higher percentage of soil organic matter may positively impact the yield of faba
beans. Organic matter is a crucial component of soil and plays a significant role in plant
growth and development. An appropriate amount of organic matter can enhance the soil’s
water retention, fertilizer retention, and nutrient supply capacity, which benefits the root
development and nutrient absorption of plants.

The lentil graph (Figure 4e) shows that the latitude of the experimental sites positively
impacts yield, with higher latitudes generally having shorter growing seasons. Lentils are
early maturing crops with a relatively short growing period, typically around 70 to 120
days, and can complete their life cycle within a brief growing season. Additionally, the
yield of lentils negatively correlates with the dosage of phosphorus fertilizer. This may be
due to an excess of phosphorus fertilizer: although phosphorus is a crucial nutrient for
plant growth and development, a high concentration of phosphorus fertilizer may disrupt
the balance of the root system environment, interfering with the plant’s root system’s ability
to absorb water and other nutrients, thereby affecting plant growth and yield formation.

The analysis of the peanut yield (Figure 4f) graph indicates a positive correlation with
longitude. As a heliophilous plant, peanuts require ample sunlight for optimal growth and
development. However, the impact of pH on the predicted results does not exhibit clear
directionality. This suggests that the contribution of this feature to the predicted result does
not have a definitive positive or negative relationship. It may exert a minor influence on the
result, or its effects may be counterbalanced by other features. Furthermore, the duration
from sowing to harvest exerts a bidirectional effect on peanut yield. Extended growth
periods may have either negative or positive effects on yield, indicating a non-linear or
non-monotonic relationship between yield and the growth period. This could be attributed
to the strong interaction between this feature and other related features, causing changes
within a certain value range to exert a minor impact on the model’s output. Therefore,
to enhance peanut yield, it is advisable to cultivate in regions with ample sunlight while
considering the influence of other related factors on the growth cycle. This can aid in
optimizing planting strategies and yield prediction.

The pigeon pea (Figure 4g) yield graph demonstrates a negative correlation with both
tillage depth and soil nitrogen percentage, implying that the soil tillage depth and nitrogen
content in the soil adversely impact pigeon pea yield. Excessive tillage depths may disrupt
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soil structure and impede root development. Overly deep tillage may damage soil struc-
ture, disintegrate soil aggregates, lead to soil compaction, and decrease aeration, thereby
constraining the growth and development of pigeon pea roots. Additionally, elevated
soil nitrogen content may result in an oversupply or imbalance of nitrogen. Therefore, to
optimize pigeon pea yield, it is essential to maintain an appropriate depth of soil tillage
and nitrogen content in the soil. Avoiding excessive deep tillage and nitrogen supply,
preserving a stable soil structure, and moderating nitrogen supply will contribute to a
conducive growth environment, promote the growth and development of pigeon pea, and
consequently enhance yield.

The garden vetch yield (Figure 4h) graph also exhibits a bidirectional effect on yield,
similar to peanuts, indicating that garden vetch yield may interact more significantly with
other characteristics. Furthermore, the yield of garden vetch is negatively correlated with
both precipitation in millimeters and site longitude. Garden vetch, known for its strong
adaptability, is a relatively drought-tolerant plant that can thrive under various soil types
and water conditions, including drought and poor soil. Garden vetch is also shade-tolerant
and exhibits a certain degree of tolerance to low-light conditions, enabling successful
growth in some semi-shady areas.

White lupine (Figure 4i) yield is positively influenced by a moderate supply of pre-
cipitation, which can provide an adequate water supply. However, the latitude of the
experimental site and the dosage of potassium fertilizer exert a negative impact on the
yield, suggesting that white lupine requires a longer growing season to complete its life cy-
cle at lower latitudes. Longer growing seasons allow crops more time to grow, accumulate
nutrients, and develop yields, contributing to higher yields. Furthermore, white lupine has
a relatively low demand for potassium fertilizer, and an appropriate supply can promote
healthy plant growth, increase yield, and improve quality.

In the summary graph, we discern the relationship between the top 20 eigenvalues,
which exert the most substantial impact on yield, and the predicted outcomes. However, to
fully grasp the essence of this relationship, it is necessary to consult the SHAP dependency
plot. SHAP feature dependencies provide a clear-cut method for globally interpreting the
graphs. It becomes clear from the SHAP summary graph that a higher Biomass_Aerial
positively sways the yield of various crops, including Garden_pea, Chickpea, Cowpea,
Lentil, Pigeonpea, Peanut, and Narrowleaf_lupine. This suggests that as plants produce
more aerial biomass during their growth, their yields correspondingly escalate. Aerial
biomass includes the biomass of the stems, leaves, and fruits of plants. The increase
in aerial biomass signifies that plants can engage in more photosynthesis, synthesizing
and accumulating additional nutrients and organic substances, thereby fostering higher
yields. To exemplify this, we consider lentil. By selecting the feature Crop_Biomass_Aerial,
which has the most pronounced impact on the yield of lentil, we can plot a point for
each data instance. The x-axis represents the feature value, while the y-axis represents
the corresponding Shapley value. Figure 5 exhibits the SHAP feature dependence of
Crop_Biomass_Aerial, illustrating that as the value of Crop_Biomass_Aerial ascends, the
probability of surpassing the global average yield also rises.
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4. Conclusions

Grain legumes, as crucial food and protein sources, play an integral role in ensuring
global food security. This study offers an exhaustive perspective on understanding the
diverse factors that influence grain legume yields. By assessing the yield-influencing
factors at a global level, we gain a more profound comprehension of the varied responses
of different grain legumes to these factors, alongside discerning the causes and trends
of yield fluctuations. These insights serve as a foundation for formulating food security
policies and strategies. Utilizing explainable artificial intelligence, this study probes into
the factors influencing the yield of nine representative grain legumes. The analysis covers
data from varied geographical regions and temporal spans, taking into account the impact
of multiple factors on the yields of these legumes. It delineates the responses of different
grain legumes to environmental and management factors and identifies key determinants
affecting their yields. For example, chickpea yield exhibits positive correlations with
precipitation and sunshine duration, suggesting its adaptability to environmental factors.
Cowpea demonstrates higher productivity at elevated latitudes, indicative of its ability
to complete its life cycle within a brief growing season. Garden pea and faba bean yields
are significantly impacted by soil conditions, such as moisture content, organic matter
content, and soil type. Lentil and peanut yields have positive correlations with latitude
and longitude, underscoring the significance of their growing seasons and dependence on
photosynthesis. Peanut yield demonstrates a bidirectional effect with the duration from
sowing to harvest, showcasing its adaptability to environmental factors. Similarly, pigeon
pea yield is influenced by soil tillage depth and soil nitrogen content, emphasizing the
necessity of appropriate tillage and soil nutrient management. However, white lupine yield
is contingent upon a moderate supply of precipitation and soil potassium fertilizer dosage,
reflecting its sensitivity to environmental and soil nutrient conditions.

From the perspective of the factors affecting the yield of nine grain legumes, this
study has ascertained that an array of environmental and management factors, encom-
passing aerial biomass, precipitation, geographical coordinates (latitude and longitude),
soil conditions, growth cycle, and fertilizer application, collectively influence the yield
of these legumes. An augmentation in aerial biomass is associated with a boost in crop
yield; optimal levels of precipitation cater to the requisite hydration needs of the crops;
the geographical location (latitude and longitude) determines the sunshine time and the
length of the growing season, indirectly modulating photosynthesis and the accumulation
of biomass. Soil conditions, inclusive of nitrogen content, organic matter content, soil type,
and tillage depth, wield influence over root development and nutrient absorption; the
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span of the growth cycle dictates biomass accumulation; proper fertilizer use can provide
sufficient nutrients to promote crop growth. The interaction of these factors determines the
yield of grain legumes. In future planting management, it is necessary to fully consider
these factors and optimize planting strategies to meet the challenges brought about by
climate change and ensure the stable yield of grain legumes.

In future research, we can delve deeper into the specific mechanisms of action of these
factors and examine the interrelationships between different factors. Additionally, we can
consider employing more advanced explainable artificial intelligence models to enhance
our ability to explain grain legume yield. Furthermore, tailored planting strategies can be
studied and formulated based on specific regions and planting conditions to optimize yield
and quality. For instance, through efficient irrigation management and strategic fertilization
measures, we can provide the appropriate water and nutrient supply to enhance the growth
and yield of grain legumes. In summary, the study of factors impacting global grain legume
yield through the application of explainable artificial intelligence enables us to identify
and quantify the key influencers of grain legume yield. These analytical findings serve
as valuable references for agricultural management and policy formulation, aiding in
the improvement of crop production practices, adjustment of planting strategies, and
optimization of resource utilization. Ultimately, these efforts contribute to increasing global
grain legume yields, promoting sustainable agricultural development, and boosting global
food production.
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