Influence and Mechanism Study of Soil Moisture on the Stability of Arsenic-Bearing Ferrihydrite in Surface Soil Vertical Profiles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Soil Sample Collection
2.2. Chemicals
2.3. Synthesis of As(V)-Bearing Ferrihydrite
2.4. Incubation of As(V)-Fh in Soil
2.5. DGT Preparation, Deployment and Calculation
2.6. Determination of Soil pH and Eh
2.7. Spectral Analysis of As(V)-Fh
2.8. QA/QC
3. Results
3.1. Release of DGT-Labile Fe (DGT-Fe) in the Soil Vertical Pattern
3.2. Release of DGT-Labile As (DGT-As) in the Soil Vertical Pattern
3.3. Changes in Soil pH and Reduction Potential (Eh) with Time
3.4. XRD Analysis of As(V)-Fh with Incubation Time
3.5. SEM Analysis of As(V)-Fh with Respect to Incubation Time
3.6. Changes in the Specific Surface Area of As(V)-Fh with Incubation Time
3.7. Changes in the Coordination Complexation and Valence States of Elements on the As(V)-Fh Surface
4. Discussion
4.1. Transformation of As-Bearing Ferrihydrite in Soil
4.2. Redistribution Process of As in Mineral and Soil Systems
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hughes, M.F. Arsenic toxicity and potential mechanisms of action. Toxicol. Lett. 2002, 133, 1–16. [Google Scholar] [CrossRef]
- Finnegan, P.M.; Chen, W. Arsenic toxicity: The effects on plant metabolism. Front. Physiol. 2012, 3, 182. [Google Scholar] [CrossRef]
- Abdul, K.S.M.; Jayasinghe, S.S.; Chandana, E.P.; Jayasumana, C.; De Silva, P.M.C. Arsenic and human health effects: A review. Environ. Toxicol. 2015, 40, 828–846. [Google Scholar]
- Ng, J.C.; Wang, J.; Shraim, A. A global health problem caused by arsenic from natural sources. Chemosphere 2003, 52, 1353–1359. [Google Scholar] [CrossRef]
- Smedley, P.L.; Kinniburgh, D.G. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef]
- Yim, S.R.; Park, G.Y.; Lee, K.W.; Chung, M.S.; Shim, S.M. Determination of total arsenic content and arsenic speciation in different types of rice. Food Sci. Biotechnol. 2017, 26, 293–298. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Arsenic in Drinking-Water: Background Document for Development of WHO Guidelines for Drinking-Water Quality (No. WHO/SDE/WSH/03.04/75); World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- Michael, H.A. An arsenic forecast for China. Science 2013, 341, 852–853. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, W.; Liang, F.; Zhang, W.X. Heavy metal removal using nanoscale zero-valent iron (nZVI): Theory and application. J. Hazard. Mater. 2017, 322, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; An, W.; Liu, Z.; Lin, J.; Qian, Z.; Xue, S. The effects of biochar as the electron shuttle on the ferrihydrite reduction and related arsenic (As) fate. J. Hazard Mater. 2020, 390, 121391. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Moon, H.S.; Myneni, S.C.; Jaffé, P.R. Effect of dissimilatory iron and sulfate reduction on arsenic dynamics in the wetland rhizosphere and its bioaccumulation in wetland plants (Scirpus actus). J. Hazard. Mater. 2017, 321, 382–389. [Google Scholar] [CrossRef] [PubMed]
- Shipley, H.J.; Engates, K.E.; Guettner, A.M. Study of iron oxide nanoparticles in soil for remediation of arsenic. J. Nanopart. Res. 2011, 13, 2387–2397. [Google Scholar] [CrossRef]
- Matsumoto, S.; Kasuga, J.; Makino, T.; Arao, T. Evaluation of the effects of application of iron materials on the accumulation and speciation of arsenic in rice grain grown on uncontaminated soil with relatively high levels of arsenic. Environ. Exp. Bot. 2016, 125, 42–51. [Google Scholar] [CrossRef]
- Peak, D.; Regier, T. Direct observation of tetrahedrally coordinated Fe (III) in ferrihydrite. Environ. Sci. Technol. 2012, 46, 3163–3168. [Google Scholar] [CrossRef]
- Zhao, X.; Yuan, Z.; Wang, S.; Zhang, G.; Qu, S.; Wang, Y.; Liu, S.; Pan, Y.; Lin, J.; Jia, Y. The fate of co-existent cadmium and arsenic during Fe (II)-induced transformation of As (V)/Cd (II)-bearing ferrihydrite. Chemosphere 2022, 301, 134665. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.X.; Wang, Y.J.; Liu, C.; Wang, L.H.; Yang, K.; Zhou, D.M.; Li, W.; Sparks, D.L. Effect of iron oxide reductive dissolution on the transformation and immobilization of arsenic in soils: New insights from X-ray photoelectron and X-ray absorption spectroscopy. J. Hazard. Mater. 2014, 279, 212–219. [Google Scholar] [CrossRef]
- Das, S.; Essilfie-Dughan, J.; Hendry, M.J. Fate of adsorbed arsenate during phase transformation of ferrihydrite in the presence of gypsum and alkaline conditions. Chem. Geol. 2015, 411, 69–80. [Google Scholar] [CrossRef]
- Zhang, G.; Yuan, Z.; Lei, L.; Lin, J.; Wang, X.; Wang, S.; Jia, Y. Arsenic redistribution and transformation during Fe (II)-catalyzed recrystallization of As-adsorbed ferrihydrite under anaerobic conditions. Chem. Geol. 2019, 525, 380–389. [Google Scholar] [CrossRef]
- Erbs, J.J.; Berquó, T.S.; Reinsch, B.C.; Lowry, G.V.; Banerjee, S.K.; Penn, R.L. Reductive dissolution of arsenic-bearing ferrihydrite. Geochim. Cosmochim. Acta 2010, 74, 3382–3395. [Google Scholar] [CrossRef]
- Stolze, L.; Zhang, D.; Guo, H.; Rolle, M. Model-based interpretation of groundwater arsenic mobility during in situ reductive transformation of ferrihydrite. Environ. Sci. Technol. 2019, 53, 6845–6854. [Google Scholar] [CrossRef]
- Yang, F.; Xie, S.W.; Wei, C.Y.; Liu, J.X.; Zhang, H.Z.; Chen, T.; Zhang, J. Arsenic characteristics in the terrestrial environment in the vicinity of the Shimen realgar mine, China. Sci. Total Environ. 2018, 626, 77–86. [Google Scholar] [CrossRef]
- Wu, C.; Huang, L.; Xue, S.G.; Pan, W.S.; Zou, Q.; Hartley, W.; Wong, M.H. Oxic and anoxic conditions affect arsenic (As) accumulation and arsenite transporter expression in rice. Chemosphere 2017, 168, 969–975. [Google Scholar] [CrossRef]
- Mallet, M.; Barthélémy, K.; Ruby, C.; Renard, A.; Naille, S. Investigation of phosphate adsorption onto ferrihydrite by X-ray photoelectron spectroscopy. J. Colloid Interf. Sci. 2013, 407, 95–101. [Google Scholar] [CrossRef]
- Ding, Z.; Fu, F.; Dionysiou, D.D.; Tang, B. Coadsorption and subsequent redox conversion behaviors of As (III) and Cr (VI) on Al-containing ferrihydrite. Environ. Pollut. 2018, 235, 660–669. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, X.; Wang, Y.; Li, L.; Sun, Y.; Wang, Y.; Zeng, X. The stability of poorly crystalline arsenical ferrihydrite after long-term soil suspension incubation. Chemosphere 2022, 291, 132844. [Google Scholar] [CrossRef]
- Cai, L.; Liu, G.; Rensing, C.; Wang, G. Genes involved in arsenic transformation and resistance associated with different levels of arsenic-contaminated soils. BMC Microbiol. 2009, 9, 1–11. [Google Scholar] [CrossRef]
- Hu, S.W.; Lu, Y.; Peng, L.F.; Wang, P.; Zhu, M.Q.; Dohnalkova, A.C.; Chen, H.; Lin, Z.; Dang, Z.; Shi, Z. Coupled kinetics of ferrihydrite transformation and As(V) sequestration under the effect of humic acids: A mechanistic and quantitative study. Environ. Sci. Technol. 2018, 52, 11632–11641. [Google Scholar] [CrossRef]
- Yang, Z.; Bai, L.; Su, S.; Wang, Y.; Wu, C.; Zeng, X.; Sun, B. Stability of Fe–As composites formed with As (V) and aged ferrihydrite. J. Environ. Sci. 2021, 100, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Ojeda, J.J.; Romero-Gonzalez, M.E.; Pouran, H.M.; Pouran, H.M. In situ monitoring of the biofilm formation of Pseudomonas putida on hematite using flow-cell ATR-FTIR spectroscopy to investigate the formation of inner-sphere bonds between the bacteria and the mineral. Mineral. Mag. 2008, 72, 101–106. [Google Scholar] [CrossRef]
- Xue, Q.; Ran, Y.; Tan, Y.Z.; Peacock, C.L. Arsenite and arsenate binding to ferrihydrite organo-mineral coprecipitate: Implications for arsenic mobility and fate in natural environments. Chemosphere 2019, 224, 103–110. [Google Scholar] [CrossRef]
- Yu, P.; Fu, F.; Sun, G.; Tang, B. Effects of oxalate and citrate on the behavior and redistribution of Cr (VI) during ferrihydrite-Cr (VI) co-precipitates transformation. Chemosphere 2021, 266, 128977. [Google Scholar] [CrossRef] [PubMed]
- Kameda, K.; Hashimoto, Y.; Wang, S.L.; Hirai, Y.; Miyahara, H. Simultaneous and continuous stabilization of As and Pb in contaminated solution and soil by a ferrihydrite-gypsum sorbent. J. Hazard. Mater. 2017, 327, 171–179. [Google Scholar] [CrossRef]
- Perez, J.P.H.; Tobler, D.J.; Thomas, A.N.; Freeman, H.M.; Dideriksen, K.; Radnik, J.; Benning, L.G. Adsorption and reduction of arsenate during the Fe2+ -induced transformation of ferrihydrite. ACS Earth Space Chem. 2019, 3, 884–894. [Google Scholar] [CrossRef]
- Liu, H.; Li, P.; Lu, B.; Wei, Y.; Sun, Y. Transformation of ferrihydrite in the presence or absence of trace Fe(II): The effect of preparation procedures of ferrihydrite. J. Solid State Chem. 2009, 182, 1767–1771. [Google Scholar] [CrossRef]
- Malakar, A.; Kaiser, M.; Snow, D.D.; Walia, H.; Panda, B.; Ray, C. Ferrihydrite reduction increases arsenic and uranium bioavailability in unsaturated soil. Environ. Sci. Technol. 2020, 54, 13839–13848. [Google Scholar] [CrossRef]
- Grigg, A.R.; ThomasArrigo, L.K.; Schulz, K.; Rothwell, K.A. Ferrihydrite transformations in flooded paddy soils: Rates, pathways, and product spatial distributions. Environ. Sci. Proc. Imp. 2022, 24, 1867–1882. [Google Scholar] [CrossRef]
- Pedersen, H.D.; Postma, D.; Jakobsen, R. Release of arsenic associated with the reduction and transformation of iron oxides. Geochim. Cosmochim. Acta 2006, 70, 4116–4129. [Google Scholar] [CrossRef]
- Zhao, X.; Yuan, Z.; Wang, S.; Pan, Y.; Chen, N.; Ayetullah, T.; Kalong, C.; Aslan, A.; Chen, W.; Reza, D.; et al. Iron (II)-activated phase transformation of Cd-bearing ferrihydrite: Implications for cadmium mobility and fate under anaerobic conditions. Sci. Total Environ. 2022, 848, 157719. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, F.; Chen, M.; Liao, C.; Tong, H.; Hua, J. Adsorption and Stabilization of Lead during Fe(II)-catalyzed Phase Transformation of Ferrihydrite. Acta Chim. Sin. 2017, 75, 621–628. (In Chinese) [Google Scholar] [CrossRef]
- Handler, R.M.; Frierdich, A.J.; Johnson, C.M.; Rosso, K.M.; Beard, B.L.; Wang, C.; Latta, D.E.; Neumann, A.; Pasakarnis, T.; Premaratne, W.A.P.J.; et al. Fe (II)-catalyzed recrystallization of goethite revisited. Environ. Sci. Technol. 2014, 48, 11302–11311. [Google Scholar] [CrossRef]
- Pedersen, H.D.; Postma, D.; Jakobsen, R.; Larsen, O. Fast transformation of iron oxyhydroxides by the catalytic action of aqueous Fe(II). Geochim. Cosmochim. Acta 2005, 69, 3967–3977. [Google Scholar] [CrossRef]
- Das, S.; Essilfie-Dughan, J.; Hendry, M.J. Arsenate partitioning from ferrihydrite to hematite: Spectroscopic evidence. Am. Mineral. 2014, 99, 749–754. [Google Scholar] [CrossRef]
- Michael Bolanz, R.; Bläss, U.; Ackermann, S.; Ciobotă, V.; Rösch, P.; Tarcea, N.; Popp, J.; Majzlan, J. The effect of antimonate, arsenate, and phosphate on the transformation of ferrihydrite to goethite, hematite, feroxyhyte, and tripuhyite. Clays Clay Miner. 2013, 61, 11–25. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Chen, X.; Wang, Y.; Zhang, F.; Zhou, X.; Zhang, T. Influence and Mechanism Study of Soil Moisture on the Stability of Arsenic-Bearing Ferrihydrite in Surface Soil Vertical Profiles. Agriculture 2024, 14, 450. https://doi.org/10.3390/agriculture14030450
Li L, Chen X, Wang Y, Zhang F, Zhou X, Zhang T. Influence and Mechanism Study of Soil Moisture on the Stability of Arsenic-Bearing Ferrihydrite in Surface Soil Vertical Profiles. Agriculture. 2024; 14(3):450. https://doi.org/10.3390/agriculture14030450
Chicago/Turabian StyleLi, Lijuan, Xinyi Chen, Yan Wang, Fubin Zhang, Xinyi Zhou, and Tuo Zhang. 2024. "Influence and Mechanism Study of Soil Moisture on the Stability of Arsenic-Bearing Ferrihydrite in Surface Soil Vertical Profiles" Agriculture 14, no. 3: 450. https://doi.org/10.3390/agriculture14030450
APA StyleLi, L., Chen, X., Wang, Y., Zhang, F., Zhou, X., & Zhang, T. (2024). Influence and Mechanism Study of Soil Moisture on the Stability of Arsenic-Bearing Ferrihydrite in Surface Soil Vertical Profiles. Agriculture, 14(3), 450. https://doi.org/10.3390/agriculture14030450